32,340 research outputs found

    Automated Visual Fin Identification of Individual Great White Sharks

    Get PDF
    This paper discusses the automated visual identification of individual great white sharks from dorsal fin imagery. We propose a computer vision photo ID system and report recognition results over a database of thousands of unconstrained fin images. To the best of our knowledge this line of work establishes the first fully automated contour-based visual ID system in the field of animal biometrics. The approach put forward appreciates shark fins as textureless, flexible and partially occluded objects with an individually characteristic shape. In order to recover animal identities from an image we first introduce an open contour stroke model, which extends multi-scale region segmentation to achieve robust fin detection. Secondly, we show that combinatorial, scale-space selective fingerprinting can successfully encode fin individuality. We then measure the species-specific distribution of visual individuality along the fin contour via an embedding into a global `fin space'. Exploiting this domain, we finally propose a non-linear model for individual animal recognition and combine all approaches into a fine-grained multi-instance framework. We provide a system evaluation, compare results to prior work, and report performance and properties in detail.Comment: 17 pages, 16 figures. To be published in IJCV. Article replaced to update first author contact details and to correct a Figure reference on page

    Wavelet Features for Recognition of First Episode of Schizophrenia from MRI Brain Images

    Get PDF
    Machine learning methods are increasingly used in various fields of medicine, contributing to early diagnosis and better quality of care. These outputs are particularly desirable in case of neuropsychiatric disorders, such as schizophrenia, due to the inherent potential for creating a new gold standard in the diagnosis and differentiation of particular disorders. This paper presents a scheme for automated classification from magnetic resonance images based on multiresolution representation in the wavelet domain. Implementation of the proposed algorithm, utilizing support vector machines classifier, is introduced and tested on a dataset containing 104 patients with first episode schizophrenia and healthy volunteers. Optimal parameters of different phases of the algorithm are sought and the quality of classification is estimated by robust cross validation techniques. Values of accuracy, sensitivity and specificity over 71% are achieved

    An automated pattern recognition system for classifying indirect immunofluorescence images for HEp-2 cells and specimens

    Get PDF
    AbstractImmunofluorescence antinuclear antibody tests are important for diagnosis and management of autoimmune conditions; a key step that would benefit from reliable automation is the recognition of subcellular patterns suggestive of different diseases. We present a system to recognize such patterns, at cellular and specimen levels, in images of HEp-2 cells. Ensembles of SVMs were trained to classify cells into six classes based on sparse encoding of texture features with cell pyramids, capturing spatial, multi-scale structure. A similar approach was used to classify specimens into seven classes. Software implementations were submitted to an international contest hosted by ICPR 2014 (Performance Evaluation of Indirect Immunofluorescence Image Analysis Systems). Mean class accuracies obtained on heldout test data sets were 87.1% and 88.5% for cell and specimen classification respectively. These were the highest achieved in the competition, suggesting that our methods are state-of-the-art. We provide detailed descriptions and extensive experiments with various features and encoding methods

    The Profiling Potential of Computer Vision and the Challenge of Computational Empiricism

    Full text link
    Computer vision and other biometrics data science applications have commenced a new project of profiling people. Rather than using 'transaction generated information', these systems measure the 'real world' and produce an assessment of the 'world state' - in this case an assessment of some individual trait. Instead of using proxies or scores to evaluate people, they increasingly deploy a logic of revealing the truth about reality and the people within it. While these profiling knowledge claims are sometimes tentative, they increasingly suggest that only through computation can these excesses of reality be captured and understood. This article explores the bases of those claims in the systems of measurement, representation, and classification deployed in computer vision. It asks if there is something new in this type of knowledge claim, sketches an account of a new form of computational empiricism being operationalised, and questions what kind of human subject is being constructed by these technological systems and practices. Finally, the article explores legal mechanisms for contesting the emergence of computational empiricism as the dominant knowledge platform for understanding the world and the people within it

    Automated design of robust discriminant analysis classifier for foot pressure lesions using kinematic data

    Get PDF
    In the recent years, the use of motion tracking systems for acquisition of functional biomechanical gait data, has received increasing interest due to the richness and accuracy of the measured kinematic information. However, costs frequently restrict the number of subjects employed, and this makes the dimensionality of the collected data far higher than the available samples. This paper applies discriminant analysis algorithms to the classification of patients with different types of foot lesions, in order to establish an association between foot motion and lesion formation. With primary attention to small sample size situations, we compare different types of Bayesian classifiers and evaluate their performance with various dimensionality reduction techniques for feature extraction, as well as search methods for selection of raw kinematic variables. Finally, we propose a novel integrated method which fine-tunes the classifier parameters and selects the most relevant kinematic variables simultaneously. Performance comparisons are using robust resampling techniques such as Bootstrap632+632+and k-fold cross-validation. Results from experimentations with lesion subjects suffering from pathological plantar hyperkeratosis, show that the proposed method can lead tosim96sim 96%correct classification rates with less than 10% of the original features

    Machine Analysis of Facial Expressions

    Get PDF
    No abstract
    corecore