5,324 research outputs found

    A Discriminative Representation of Convolutional Features for Indoor Scene Recognition

    Full text link
    Indoor scene recognition is a multi-faceted and challenging problem due to the diverse intra-class variations and the confusing inter-class similarities. This paper presents a novel approach which exploits rich mid-level convolutional features to categorize indoor scenes. Traditionally used convolutional features preserve the global spatial structure, which is a desirable property for general object recognition. However, we argue that this structuredness is not much helpful when we have large variations in scene layouts, e.g., in indoor scenes. We propose to transform the structured convolutional activations to another highly discriminative feature space. The representation in the transformed space not only incorporates the discriminative aspects of the target dataset, but it also encodes the features in terms of the general object categories that are present in indoor scenes. To this end, we introduce a new large-scale dataset of 1300 object categories which are commonly present in indoor scenes. Our proposed approach achieves a significant performance boost over previous state of the art approaches on five major scene classification datasets

    Subgraph Networks Based Contrastive Learning

    Full text link
    Graph contrastive learning (GCL), as a self-supervised learning method, can solve the problem of annotated data scarcity. It mines explicit features in unannotated graphs to generate favorable graph representations for downstream tasks. Most existing GCL methods focus on the design of graph augmentation strategies and mutual information estimation operations. Graph augmentation produces augmented views by graph perturbations. These views preserve a locally similar structure and exploit explicit features. However, these methods have not considered the interaction existing in subgraphs. To explore the impact of substructure interactions on graph representations, we propose a novel framework called subgraph network-based contrastive learning (SGNCL). SGNCL applies a subgraph network generation strategy to produce augmented views. This strategy converts the original graph into an Edge-to-Node mapping network with both topological and attribute features. The single-shot augmented view is a first-order subgraph network that mines the interaction between nodes, node-edge, and edges. In addition, we also investigate the impact of the second-order subgraph augmentation on mining graph structure interactions, and further, propose a contrastive objective that fuses the first-order and second-order subgraph information. We compare SGNCL with classical and state-of-the-art graph contrastive learning methods on multiple benchmark datasets of different domains. Extensive experiments show that SGNCL achieves competitive or better performance (top three) on all datasets in unsupervised learning settings. Furthermore, SGNCL achieves the best average gain of 6.9\% in transfer learning compared to the best method. Finally, experiments also demonstrate that mining substructure interactions have positive implications for graph contrastive learning.Comment: 12 pages, 6 figure

    Morpho-MNIST: Quantitative Assessment and Diagnostics for Representation Learning

    Get PDF
    Revealing latent structure in data is an active field of research, having brought exciting new models such as variational autoencoders and generative adversarial networks, and is essential to push machine learning towards unsupervised knowledge discovery. However, a major challenge is the lack of suitable benchmarks for an objective and quantitative evaluation of learned representations. To address this issue we introduce Morpho-MNIST. We extend the popular MNIST dataset by adding a morphometric analysis enabling quantitative comparison of different models, identification of the roles of latent variables, and characterisation of sample diversity. We further propose a set of quantifiable perturbations to assess the performance of unsupervised and supervised methods on challenging tasks such as outlier detection and domain adaptation

    Domain Generalization -- A Causal Perspective

    Full text link
    Machine learning models rely on various assumptions to attain high accuracy. One of the preliminary assumptions of these models is the independent and identical distribution, which suggests that the train and test data are sampled from the same distribution. However, this assumption seldom holds in the real world due to distribution shifts. As a result models that rely on this assumption exhibit poor generalization capabilities. Over the recent years, dedicated efforts have been made to improve the generalization capabilities of these models collectively known as -- \textit{domain generalization methods}. The primary idea behind these methods is to identify stable features or mechanisms that remain invariant across the different distributions. Many generalization approaches employ causal theories to describe invariance since causality and invariance are inextricably intertwined. However, current surveys deal with the causality-aware domain generalization methods on a very high-level. Furthermore, we argue that it is possible to categorize the methods based on how causality is leveraged in that method and in which part of the model pipeline is it used. To this end, we categorize the causal domain generalization methods into three categories, namely, (i) Invariance via Causal Data Augmentation methods which are applied during the data pre-processing stage, (ii) Invariance via Causal representation learning methods that are utilized during the representation learning stage, and (iii) Invariance via Transferring Causal mechanisms methods that are applied during the classification stage of the pipeline. Furthermore, this survey includes in-depth insights into benchmark datasets and code repositories for domain generalization methods. We conclude the survey with insights and discussions on future directions

    Multi modal multi-semantic image retrieval

    Get PDF
    PhDThe rapid growth in the volume of visual information, e.g. image, and video can overwhelm users’ ability to find and access the specific visual information of interest to them. In recent years, ontology knowledge-based (KB) image information retrieval techniques have been adopted into in order to attempt to extract knowledge from these images, enhancing the retrieval performance. A KB framework is presented to promote semi-automatic annotation and semantic image retrieval using multimodal cues (visual features and text captions). In addition, a hierarchical structure for the KB allows metadata to be shared that supports multi-semantics (polysemy) for concepts. The framework builds up an effective knowledge base pertaining to a domain specific image collection, e.g. sports, and is able to disambiguate and assign high level semantics to ‘unannotated’ images. Local feature analysis of visual content, namely using Scale Invariant Feature Transform (SIFT) descriptors, have been deployed in the ‘Bag of Visual Words’ model (BVW) as an effective method to represent visual content information and to enhance its classification and retrieval. Local features are more useful than global features, e.g. colour, shape or texture, as they are invariant to image scale, orientation and camera angle. An innovative approach is proposed for the representation, annotation and retrieval of visual content using a hybrid technique based upon the use of an unstructured visual word and upon a (structured) hierarchical ontology KB model. The structural model facilitates the disambiguation of unstructured visual words and a more effective classification of visual content, compared to a vector space model, through exploiting local conceptual structures and their relationships. The key contributions of this framework in using local features for image representation include: first, a method to generate visual words using the semantic local adaptive clustering (SLAC) algorithm which takes term weight and spatial locations of keypoints into account. Consequently, the semantic information is preserved. Second a technique is used to detect the domain specific ‘non-informative visual words’ which are ineffective at representing the content of visual data and degrade its categorisation ability. Third, a method to combine an ontology model with xi a visual word model to resolve synonym (visual heterogeneity) and polysemy problems, is proposed. The experimental results show that this approach can discover semantically meaningful visual content descriptions and recognise specific events, e.g., sports events, depicted in images efficiently. Since discovering the semantics of an image is an extremely challenging problem, one promising approach to enhance visual content interpretation is to use any associated textual information that accompanies an image, as a cue to predict the meaning of an image, by transforming this textual information into a structured annotation for an image e.g. using XML, RDF, OWL or MPEG-7. Although, text and image are distinct types of information representation and modality, there are some strong, invariant, implicit, connections between images and any accompanying text information. Semantic analysis of image captions can be used by image retrieval systems to retrieve selected images more precisely. To do this, a Natural Language Processing (NLP) is exploited firstly in order to extract concepts from image captions. Next, an ontology-based knowledge model is deployed in order to resolve natural language ambiguities. To deal with the accompanying text information, two methods to extract knowledge from textual information have been proposed. First, metadata can be extracted automatically from text captions and restructured with respect to a semantic model. Second, the use of LSI in relation to a domain-specific ontology-based knowledge model enables the combined framework to tolerate ambiguities and variations (incompleteness) of metadata. The use of the ontology-based knowledge model allows the system to find indirectly relevant concepts in image captions and thus leverage these to represent the semantics of images at a higher level. Experimental results show that the proposed framework significantly enhances image retrieval and leads to narrowing of the semantic gap between lower level machinederived and higher level human-understandable conceptualisation

    Contrastive Learning and the Emergence of Attributes Associations

    Full text link
    In response to an object presentation, supervised learning schemes generally respond with a parsimonious label. Upon a similar presentation we humans respond again with a label, but are flooded, in addition, by a myriad of associations. A significant portion of these consist of the presented object attributes. Contrastive learning is a semi-supervised learning scheme based on the application of identity preserving transformations on the object input representations. It is conjectured in this work that these same applied transformations preserve, in addition to the identity of the presented object, also the identity of its semantically meaningful attributes. The corollary of this is that the output representations of such a contrastive learning scheme contain valuable information not only for the classification of the presented object, but also for the presence or absence decision of any attribute of interest. Simulation results which demonstrate this idea and the feasibility of this conjecture are presented.Comment: 10 page
    • …
    corecore