1,668 research outputs found

    Towards Attack-Resilient Geometric Data Perturbation

    Get PDF

    Resilient Distributed Optimization Algorithms for Resource Allocation

    Get PDF
    Distributed algorithms provide flexibility over centralized algorithms for resource allocation problems, e.g., cyber-physical systems. However, the distributed nature of these algorithms often makes the systems susceptible to man-in-the-middle attacks, especially when messages are transmitted between price-taking agents and a central coordinator. We propose a resilient strategy for distributed algorithms under the framework of primal-dual distributed optimization. We formulate a robust optimization model that accounts for Byzantine attacks on the communication channels between agents and coordinator. We propose a resilient primal-dual algorithm using state-of-the-art robust statistics methods. The proposed algorithm is shown to converge to a neighborhood of the robust optimization model, where the neighborhood's radius is proportional to the fraction of attacked channels.Comment: 15 pages, 1 figure, accepted to CDC 201

    Adversarial sample generation and training using geometric masks for accurate and resilient license plate character recognition

    Full text link
    Reading dirty license plates accurately in moving vehicles is challenging for automatic license plate recognition systems. Moreover, license plates are often intentionally tampered with a malicious intent to avoid police apprehension. Usually, such groups and individuals know how to fool the existing recognition systems by making minor unnoticeable plate changes. Designing and developing deep learning methods resilient to such real-world 'attack' practices remains an active research problem. As a solution, this work develops a resilient method to recognize license plate characters. Extracting 1057 character images from 160 Nepalese vehicles, as the first step, we trained several standard deep convolutional neural networks to obtain 99.5% character classification accuracy. On adversarial images generated to simulate malicious tampering, however, our model's accuracy dropped to 25%. Next, we enriched our dataset by generating and adding geometrically masked images, retrained our models, and investigated the models' predictions. The proposed approach of training with generated adversarial images helped our adversarial attack-aware license plate character recognition (AA-LPCR) model achieves an accuracy of 99.7%. This near-perfect accuracy demonstrates that the proposed idea of random geometric masking is highly effective for improving the accuracy of license plate recognition models. Furthermore, by performing interpretability studies to understand why our models work, we identify and highlight attack-prone regions in the input character images. In sum, although Nepal's embossed license plate detection systems are vulnerable to malicious attacks, our findings suggest that these systems can be upgraded to close to 100% resilience

    Building Confidential and Efficient Query Services in the Cloud with RASP Data Perturbation

    Full text link
    With the wide deployment of public cloud computing infrastructures, using clouds to host data query services has become an appealing solution for the advantages on scalability and cost-saving. However, some data might be sensitive that the data owner does not want to move to the cloud unless the data confidentiality and query privacy are guaranteed. On the other hand, a secured query service should still provide efficient query processing and significantly reduce the in-house workload to fully realize the benefits of cloud computing. We propose the RASP data perturbation method to provide secure and efficient range query and kNN query services for protected data in the cloud. The RASP data perturbation method combines order preserving encryption, dimensionality expansion, random noise injection, and random projection, to provide strong resilience to attacks on the perturbed data and queries. It also preserves multidimensional ranges, which allows existing indexing techniques to be applied to speedup range query processing. The kNN-R algorithm is designed to work with the RASP range query algorithm to process the kNN queries. We have carefully analyzed the attacks on data and queries under a precisely defined threat model and realistic security assumptions. Extensive experiments have been conducted to show the advantages of this approach on efficiency and security.Comment: 18 pages, to appear in IEEE TKDE, accepted in December 201

    Print-Scan Resilient Text Image Watermarking Based on Stroke Direction Modulation for Chinese Document Authentication

    Get PDF
    Print-scan resilient watermarking has emerged as an attractive way for document security. This paper proposes an stroke direction modulation technique for watermarking in Chinese text images. The watermark produced by the idea offers robustness to print-photocopy-scan, yet provides relatively high embedding capacity without losing the transparency. During the embedding phase, the angle of rotatable strokes are quantized to embed the bits. This requires several stages of preprocessing, including stroke generation, junction searching, rotatable stroke decision and character partition. Moreover, shuffling is applied to equalize the uneven embedding capacity. For the data detection, denoising and deskewing mechanisms are used to compensate for the distortions induced by hardcopy. Experimental results show that our technique attains high detection accuracy against distortions resulting from print-scan operations, good quality photocopies and benign attacks in accord with the future goal of soft authentication

    CALLOC: Curriculum Adversarial Learning for Secure and Robust Indoor Localization

    Full text link
    Indoor localization has become increasingly vital for many applications from tracking assets to delivering personalized services. Yet, achieving pinpoint accuracy remains a challenge due to variations across indoor environments and devices used to assist with localization. Another emerging challenge is adversarial attacks on indoor localization systems that not only threaten service integrity but also reduce localization accuracy. To combat these challenges, we introduce CALLOC, a novel framework designed to resist adversarial attacks and variations across indoor environments and devices that reduce system accuracy and reliability. CALLOC employs a novel adaptive curriculum learning approach with a domain specific lightweight scaled-dot product attention neural network, tailored for adversarial and variation resilience in practical use cases with resource constrained mobile devices. Experimental evaluations demonstrate that CALLOC can achieve improvements of up to 6.03x in mean error and 4.6x in worst-case error against state-of-the-art indoor localization frameworks, across diverse building floorplans, mobile devices, and adversarial attacks scenarios
    corecore