2,990 research outputs found

    FedCSD: A Federated Learning Based Approach for Code-Smell Detection

    Full text link
    This paper proposes a Federated Learning Code Smell Detection (FedCSD) approach that allows organizations to collaboratively train federated ML models while preserving their data privacy. These assertions have been supported by three experiments that have significantly leveraged three manually validated datasets aimed at detecting and examining different code smell scenarios. In experiment 1, which was concerned with a centralized training experiment, dataset two achieved the lowest accuracy (92.30%) with fewer smells, while datasets one and three achieved the highest accuracy with a slight difference (98.90% and 99.5%, respectively). This was followed by experiment 2, which was concerned with cross-evaluation, where each ML model was trained using one dataset, which was then evaluated over the other two datasets. Results from this experiment show a significant drop in the model's accuracy (lowest accuracy: 63.80\%) where fewer smells exist in the training dataset, which has a noticeable reflection (technical debt) on the model's performance. Finally, the last and third experiments evaluate our approach by splitting the dataset into 10 companies. The ML model was trained on the company's site, then all model-updated weights were transferred to the server. Ultimately, an accuracy of 98.34% was achieved by the global model that has been trained using 10 companies for 100 training rounds. The results reveal a slight difference in the global model's accuracy compared to the highest accuracy of the centralized model, which can be ignored in favour of the global model's comprehensive knowledge, lower training cost, preservation of data privacy, and avoidance of the technical debt problem.Comment: 17 pages, 7 figures, Journal pape

    Do software models based on the UML aid in source-code comprehensibility? Aggregating evidence from 12 controlled experiments

    Get PDF
    In this paper, we present the results of long-term research conducted in order to study the contribution made by software models based on the Unified Modeling Language (UML) to the comprehensibility of Java source-code deprived of comments. We have conducted 12 controlled experiments in different experimental contexts and on different sites with participants with different levels of expertise (i.e., Bachelor’s, Master’s, and PhD students and software practitioners from Italy and Spain). A total of 333 observations were obtained from these experiments. The UML models in our experiments were those produced in the analysis and design phases. The models produced in the analysis phase were created with the objective of abstracting the environment in which the software will work (i.e., the problem domain), while those produced in the design phase were created with the goal of abstracting implementation aspects of the software (i.e., the solution/application domain). Source-code comprehensibility was assessed with regard to correctness of understanding, time taken to accomplish the comprehension tasks, and efficiency as regards accomplishing those tasks. In order to study the global effect of UML models on source-code comprehensibility, we aggregated results from the individual experiments using a meta-analysis. We made every effort to account for the heterogeneity of our experiments when aggregating the results obtained from them. The overall results suggest that the use of UML models affects the comprehensibility of source-code, when it is deprived of comments. Indeed, models produced in the analysis phase might reduce source-code comprehensibility, while increasing the time taken to complete comprehension tasks. That is, browsing source code and this kind of models together negatively impacts on the time taken to complete comprehension tasks without having a positive effect on the comprehensibility of source code. One plausible justification for this is that the UML models produced in the analysis phase focus on the problem domain. That is, models produced in the analysis phase say nothing about source code and there should be no expectation that they would, in any way, be beneficial to comprehensibility. On the other hand, UML models produced in the design phase improve source-code comprehensibility. One possible justification for this result is that models produced in the design phase are more focused on implementation details. Therefore, although the participants had more material to read and browse, this additional effort was paid back in the form of an improved comprehension of source code

    Mining Version Histories for Detecting Code Smells

    Get PDF
    Code smells are symptoms of poor design and implementation choices that may hinder code comprehension, and possibly increase change- and fault-proneness. While most of the detection techniques just rely on structural information, many code smells are intrinsically characterized by how code elements change over time. In this paper, we propose HIST (Historical Information for Smell deTection), an approach exploiting change history information to detect instances of five different code smells, namely Divergent Change, Shotgun Surgery, Parallel Inheritance, Blob, and Feature Envy.We evaluate HIST in two empirical studies. The first, conducted on twenty open source projects, aimed at assessing the accuracy of HIST in detecting instances of the code smells mentioned above. The results indicate that the precision of HIST ranges between 72% and 86%, and its recall ranges between 58% and 100%. Also, results of the first study indicate that HIST is able to identify code smells that cannot be identified by competitive approaches solely based on code analysis of a single system’s snapshot. Then, we conducted a second study aimed at investigating to what extent the code smells detected by HIST (and by competitive code analysis techniques) reflect developers’ perception of poor design and implementation choices. We involved twelve developers of four open source projects that recognized more than 75% of the code smell instances identified by HIST as actual design/implementation problems

    Toward an Effective Automated Tracing Process

    Get PDF
    Traceability is defined as the ability to establish, record, and maintain dependency relations among various software artifacts in a software system, in both a forwards and backwards direction, throughout the multiple phases of the project’s life cycle. The availability of traceability information has been proven vital to several software engineering activities such as program comprehension, impact analysis, feature location, software reuse, and verification and validation (V&V). The research on automated software traceability has noticeably advanced in the past few years. Various methodologies and tools have been proposed in the literature to provide automatic support for establishing and maintaining traceability information in software systems. This movement is motivated by the increasing attention traceability has been receiving as a critical element of any rigorous software development process. However, despite these major advances, traceability implementation and use is still not pervasive in industry. In particular, traceability tools are still far from achieving performance levels that are adequate for practical applications. Such low levels of accuracy require software engineers working with traceability tools to spend a considerable amount of their time verifying the generated traceability information, a process that is often described as tedious, exhaustive, and error-prone. Motivated by these observations, and building upon a growing body of work in this area, in this dissertation we explore several research directions related to enhancing the performance of automated tracing tools and techniques. In particular, our work addresses several issues related to the various aspects of the IR-based automated tracing process, including trace link retrieval, performance enhancement, and the role of the human in the process. Our main objective is to achieve performance levels, in terms of accuracy, efficiency, and usability, that are adequate for practical applications, and ultimately to accomplish a successful technology transfer from research to industry

    EMPIRICAL ASSESSMENT OF THE IMPACT OF USING AUTOMATIC STATIC ANALYSIS ON CODE QUALITY

    Get PDF
    Automatic static analysis (ASA) tools analyze the source or compiled code looking for violations of recommended programming practices (called issues) that might cause faults or might degrade some dimensions of software quality. Antonio Vetro' has focused his PhD in studying how applying ASA impacts software quality, taking as reference point the different quality dimensions specified by the standard ISO/IEC 25010. The epistemological approach he used is that one of empirical software engineering. During his three years PhD, he's been conducting experiments and case studies on three main areas: Functionality/Reliability, Performance and Maintainability. He empirically proved that specific ASA issues had impact on these quality characteristics in the contexts under study: thus, removing them from the code resulted in a quality improvement. Vetro' has also investigated and proposed new research directions for this field: using ASA to improve software energy efficiency and to detect the problems deriving from the interaction of multiple languages. The contribution is enriched with the final recommendation of a generalized process for researchers and practitioners with a twofold goal: improve software quality through ASA and create a body of knowledge on the impact of using ASA on specific software quality dimensions, based on empirical evidence. This thesis represents a first step towards this goa

    A systematic literature review on the code smells datasets and validation mechanisms

    Full text link
    The accuracy reported for code smell-detecting tools varies depending on the dataset used to evaluate the tools. Our survey of 45 existing datasets reveals that the adequacy of a dataset for detecting smells highly depends on relevant properties such as the size, severity level, project types, number of each type of smell, number of smells, and the ratio of smelly to non-smelly samples in the dataset. Most existing datasets support God Class, Long Method, and Feature Envy while six smells in Fowler and Beck's catalog are not supported by any datasets. We conclude that existing datasets suffer from imbalanced samples, lack of supporting severity level, and restriction to Java language.Comment: 34 pages, 10 figures, 12 tables, Accepte

    Deployment and Operation of Complex Software in Heterogeneous Execution Environments

    Get PDF
    This open access book provides an overview of the work developed within the SODALITE project, which aims at facilitating the deployment and operation of distributed software on top of heterogeneous infrastructures, including cloud, HPC and edge resources. The experts participating in the project describe how SODALITE works and how it can be exploited by end users. While multiple languages and tools are available in the literature to support DevOps teams in the automation of deployment and operation steps, still these activities require specific know-how and skills that cannot be found in average teams. The SODALITE framework tackles this problem by offering modelling and smart editing features to allow those we call Application Ops Experts to work without knowing low level details about the adopted, potentially heterogeneous, infrastructures. The framework offers also mechanisms to verify the quality of the defined models, generate the corresponding executable infrastructural code, automatically wrap application components within proper execution containers, orchestrate all activities concerned with deployment and operation of all system components, and support on-the-fly self-adaptation and refactoring
    • …
    corecore