10 research outputs found

    Toward the interpretation of non-constructive reasoning as non-monotonic learning

    Get PDF
    AbstractWe study an abstract representation of the learning process, which we call learning sequence, aiming at a constructive interpretation of classical logical proofs, that we see as learning strategies, coming from Coquand’s game theoretic interpretation of classical logic. Inspired by Gold’s notion of limiting recursion and by the Limit-Computable Mathematics by Hayashi, we investigate the idea of learning in the limit in the general case, where both guess retraction and resumption are allowed. The main contribution is the characterization of the limits of non-monotonic learning sequences in terms of the extension relation between guesses

    Interactive Learning-Based Realizability for Heyting Arithmetic with EM1

    Full text link
    We apply to the semantics of Arithmetic the idea of ``finite approximation'' used to provide computational interpretations of Herbrand's Theorem, and we interpret classical proofs as constructive proofs (with constructive rules for ∨,∃\vee, \exists) over a suitable structure \StructureN for the language of natural numbers and maps of G\"odel's system \SystemT. We introduce a new Realizability semantics we call ``Interactive learning-based Realizability'', for Heyting Arithmetic plus \EM_1 (Excluded middle axiom restricted to Σ10\Sigma^0_1 formulas). Individuals of \StructureN evolve with time, and realizers may ``interact'' with them, by influencing their evolution. We build our semantics over Avigad's fixed point result, but the same semantics may be defined over different constructive interpretations of classical arithmetic (Berardi and de' Liguoro use continuations). Our notion of realizability extends intuitionistic realizability and differs from it only in the atomic case: we interpret atomic realizers as ``learning agents''

    Knowledge Spaces and the Completeness of Learning Strategies

    Get PDF
    We propose a theory of learning aimed to formalize some ideas underlying Coquand's game semantics and Krivine's realizability of classical logic. We introduce a notion of knowledge state together with a new topology, capturing finite positive and negative information that guides a learning strategy. We use a leading example to illustrate how non-constructive proofs lead to continuous and effective learning strategies over knowledge spaces, and prove that our learning semantics is sound and complete w.r.t. classical truth, as it is the case for Coquand's and Krivine's approaches

    Knowledge Spaces and the Completeness of Learning Strategies

    Get PDF

    Proofs as stateful programs: A first-order logic with abstract Hoare triples, and an interpretation into an imperative language

    Full text link
    We introduce an extension of first-order logic that comes equipped with additional predicates for reasoning about an abstract state. Sequents in the logic comprise a main formula together with pre- and postconditions in the style of Hoare logic, and the axioms and rules of the logic ensure that the assertions about the state compose in the correct way. The main result of the paper is a realizability interpretation of our logic that extracts programs into a mixed functional/imperative language. All programs expressible in this language act on the state in a sequential manner, and we make this intuition precise by interpreting them in a semantic metatheory using the state monad. Our basic framework is very general, and our intention is that it can be instantiated and extended in a variety of different ways. We outline in detail one such extension: A monadic version of Heyting arithmetic with a wellfounded while rule, and conclude by outlining several other directions for future work.Comment: 29 page

    Le direzioni della ricerca logica in Italia: Logica e Informatica

    Get PDF

    Learning, realizability and games in classical arithmetic

    Get PDF
    PhDAbstract. In this dissertation we provide mathematical evidence that the concept of learning can be used to give a new and intuitive computational semantics of classical proofs in various fragments of Predicative Arithmetic. First, we extend Kreisel modi ed realizability to a classical fragment of rst order Arithmetic, Heyting Arithmetic plus EM1 (Excluded middle axiom restricted to 0 1 formulas). We introduce a new realizability semantics we call \Interactive Learning-Based Realizability". Our realizers are self-correcting programs, which learn from their errors and evolve through time, thanks to their ability of perpetually questioning, testing and extending their knowledge. Remarkably, that capability is entirely due to classical principles when they are applied on top of intuitionistic logic. Secondly, we extend the class of learning based realizers to a classical version PCFClass of PCF and, then, compare the resulting notion of realizability with Coquand game semantics and prove a full soundness and completeness result. In particular, we show there is a one-to-one correspondence between realizers and recursive winning strategies in the 1-Backtracking version of Tarski games. Third, we provide a complete and fully detailed constructive analysis of learning as it arises in learning based realizability for HA+EM1, Avigad's update procedures and epsilon substitution method for Peano Arithmetic PA. We present new constructive techniques to bound the length of learning processes and we apply them to reprove - by means of our theory - the classic result of G odel that provably total functions of PA can be represented in G odel's system T. Last, we give an axiomatization of the kind of learning that is needed to computationally interpret Predicative classical second order Arithmetic. Our work is an extension of Avigad's and generalizes the concept of update procedure to the trans nite case. Trans- nite update procedures have to learn values of trans nite sequences of non computable functions in order to extract witnesses from classical proofs
    corecore