3,786 research outputs found

    Toward Dynamical Sensor Management for Reactive Wall-following

    Get PDF
    We propose a new paradigm for reactive wallfollowing by a planar robot taking the form of an actively steered sensor model that augments the robot’s motion dynamics. We postulate a foveated sensor capable of delivering third-order infinitesimal (range, tangent, and curvature) data at a point along a wall (modeled as an unknown smooth plane curve) specified by the angle of the ray from the robot’s body that first intersects it. We develop feedback policies for the coupled (point or unicycle) sensorimotor system that drive the sensor’s foveal angle as a function of the instantaneous infinitesimal data, in accord with the trade-off between a desired standoff and progress-rate as the wall’s curvature varies unpredictably in the manner of an unmodeled noise signal. We prove that in any neighborhood within which the thirdorder infinitesimal data accurately predicts the local “shape” of the wall, neither robot will ever hit it. We empirically demonstrate with comparative physical studies that the new active sensor management strategy yields superior average tracking performance and avoids catastrophic collisions or wall losses relative to the passive sensor variant. This work was supported by AFOSR MURI FA9550–10–1−0567. For further information, visit Kod*lab

    Analysis and Observations from the First Amazon Picking Challenge

    Full text link
    This paper presents a overview of the inaugural Amazon Picking Challenge along with a summary of a survey conducted among the 26 participating teams. The challenge goal was to design an autonomous robot to pick items from a warehouse shelf. This task is currently performed by human workers, and there is hope that robots can someday help increase efficiency and throughput while lowering cost. We report on a 28-question survey posed to the teams to learn about each team's background, mechanism design, perception apparatus, planning and control approach. We identify trends in this data, correlate it with each team's success in the competition, and discuss observations and lessons learned based on survey results and the authors' personal experiences during the challenge

    Challenging the Computational Metaphor: Implications for How We Think

    Get PDF
    This paper explores the role of the traditional computational metaphor in our thinking as computer scientists, its influence on epistemological styles, and its implications for our understanding of cognition. It proposes to replace the conventional metaphor--a sequence of steps--with the notion of a community of interacting entities, and examines the ramifications of such a shift on these various ways in which we think

    Autonomous Behaviors With A Legged Robot

    Get PDF
    Over the last ten years, technological advancements in sensory, motor, and computational capabilities have made it a real possibility for a legged robotic platform to traverse a diverse set of terrains and execute a variety of tasks on its own, with little to no outside intervention. However, there are still several technical challenges to be addressed in order to reach complete autonomy, where such a platform operates as an independent entity that communicates and cooperates with other intelligent systems, including humans. A central limitation for reaching this ultimate goal is modeling the world in which the robot is operating, the tasks it needs to execute, the sensors it is equipped with, and its level of mobility, all in a unified setting. This thesis presents a simple approach resulting in control strategies that are backed by a suite of formal correctness guarantees. We showcase the virtues of this approach via implementation of two behaviors on a legged mobile platform, autonomous natural terrain ascent and indoor multi-flight stairwell ascent, where we report on an extensive set of experiments demonstrating their empirical success. Lastly, we explore how to deal with violations to these models, specifically the robot\u27s environment, where we present two possible extensions with potential performance improvements under such conditions

    Cybernetic automata: An approach for the realization of economical cognition for multi-robot systems

    Get PDF
    The multi-agent robotics paradigm has attracted much attention due to the variety of pertinent applications that are well-served by the use of a multiplicity of agents (including space robotics, search and rescue, and mobile sensor networks). The use of this paradigm for most applications, however, demands economical, lightweight agent designs for reasons of longer operational life, lower economic cost, faster and easily-verified designs, etc. An important contributing factor to an agent’s cost is its control architecture. Due to the emergence of novel implementation technologies carrying the promise of economical implementation, we consider the development of a technology-independent specification for computational machinery. To that end, the use of cybernetics toolsets (control and dynamical systems theory) is appropriate, enabling a principled specifi- cation of robotic control architectures in mathematical terms that could be mapped directly to diverse implementation substrates. This dissertation, hence, addresses the problem of developing a technologyindependent specification for lightweight control architectures to enable robotic agents to serve in a multi-agent scheme. We present the principled design of static and dynamical regulators that elicit useful behaviors, and integrate these within an overall architecture for both single and multi-agent control. Since the use of control theory can be limited in unstructured environments, a major focus of the work is on the engineering of emergent behavior. The proposed scheme is highly decentralized, requiring only local sensing and no inter-agent communication. Beyond several simulation-based studies, we provide experimental results for a two-agent system, based on a custom implementation employing field-programmable gate arrays

    Efficient PID Controller based Hexapod Wall Following Robot

    Get PDF
    This paper presents a design of wall following behaviour for hexapod robot based on PID controller. PID controller is proposed here because of its ability to control many cases of non-linear systems. In this case, we proposed a PID controller to improve the speed and stability of hexapod robot movement while following the wall. In this paper, PID controller is used to control the robot legs, by adjusting the value of swing angle during forward or backward movement to maintain the distance between the robot and the wall. The experimental result was verified by implementing the proposed control method into actual prototype of hexapod robot

    Auto-weighted Bayesian Physics-Informed Neural Networks and robust estimations for multitask inverse problems in pore-scale imaging of dissolution

    Full text link
    In this article, we present a novel data assimilation strategy in pore-scale imaging and demonstrate that this makes it possible to robustly address reactive inverse problems incorporating Uncertainty Quantification (UQ). Pore-scale modeling of reactive flow offers a valuable opportunity to investigate the evolution of macro-scale properties subject to dynamic processes. Yet, they suffer from imaging limitations arising from the associated X-ray microtomography (X-ray microCT) process, which induces discrepancies in the properties estimates. Assessment of the kinetic parameters also raises challenges, as reactive coefficients are critical parameters that can cover a wide range of values. We account for these two issues and ensure reliable calibration of pore-scale modeling, based on dynamical microCT images, by integrating uncertainty quantification in the workflow. The present method is based on a multitasking formulation of reactive inverse problems combining data-driven and physics-informed techniques in calcite dissolution. This allows quantifying morphological uncertainties on the porosity field and estimating reactive parameter ranges through prescribed PDE models with a latent concentration field and dynamical microCT. The data assimilation strategy relies on sequential reinforcement incorporating successively additional PDE constraints. We guarantee robust and unbiased uncertainty quantification by straightforward adaptive weighting of Bayesian Physics-Informed Neural Networks (BPINNs), ensuring reliable micro-porosity changes during geochemical transformations. We demonstrate successful Bayesian Inference in 1D+Time and 2D+Time calcite dissolution based on synthetic microCT images with meaningful posterior distribution on the reactive parameters and dimensionless numbers

    Ultrasound Tomography for control of Batch Crystallization

    Get PDF

    Intelligent systems: towards a new synthetic agenda

    Get PDF
    corecore