7,030 research outputs found

    Active Learning: Effects of Core Training Design Elements on Self-Regulatory Processes, Learning, and Adaptability

    Get PDF
    This research describes a comprehensive examination of the cognitive, motivational, and emotional processes underlying active learning approaches, their effects on learning and transfer, and the core training design elements (exploration, training frame, emotion-control) and individual differences (cognitive ability, trait goal orientation, trait anxiety) that shape these processes. Participants (N = 350) were trained to operate a complex computer-based simulation. Exploratory learning and error-encouragement framing had a positive effect on adaptive transfer performance and interacted with cognitive ability and dispositional goal orientation to influence trainees’ metacognition and state goal orientation. Trainees who received the emotion-control strategy had lower levels of state anxiety. Implications for developing an integrated theory of active learning, learner-centered design, and research extensions are discussed

    An Incremental Construction of Deep Neuro Fuzzy System for Continual Learning of Non-stationary Data Streams

    Full text link
    Existing FNNs are mostly developed under a shallow network configuration having lower generalization power than those of deep structures. This paper proposes a novel self-organizing deep FNN, namely DEVFNN. Fuzzy rules can be automatically extracted from data streams or removed if they play limited role during their lifespan. The structure of the network can be deepened on demand by stacking additional layers using a drift detection method which not only detects the covariate drift, variations of input space, but also accurately identifies the real drift, dynamic changes of both feature space and target space. DEVFNN is developed under the stacked generalization principle via the feature augmentation concept where a recently developed algorithm, namely gClass, drives the hidden layer. It is equipped by an automatic feature selection method which controls activation and deactivation of input attributes to induce varying subsets of input features. A deep network simplification procedure is put forward using the concept of hidden layer merging to prevent uncontrollable growth of dimensionality of input space due to the nature of feature augmentation approach in building a deep network structure. DEVFNN works in the sample-wise fashion and is compatible for data stream applications. The efficacy of DEVFNN has been thoroughly evaluated using seven datasets with non-stationary properties under the prequential test-then-train protocol. It has been compared with four popular continual learning algorithms and its shallow counterpart where DEVFNN demonstrates improvement of classification accuracy. Moreover, it is also shown that the concept drift detection method is an effective tool to control the depth of network structure while the hidden layer merging scenario is capable of simplifying the network complexity of a deep network with negligible compromise of generalization performance.Comment: This paper has been published in IEEE Transactions on Fuzzy System

    Toward Meta-level Control of Autonomous Agents

    Get PDF
    AbstractMetareasoning is an important capability for autonomous systems, particularly for those being deployed on long duration missions. An agent with increased self-observation and the ability to control itself in response to changing environments will be more capable in achieving its goals. This is essential for long-duration missions where system designers will not be able to, theoretically or practically, predict all possible problems that the agent may encounter. In this paper we describe preliminary work that integrates the metacognitive architecture MIDCA with an autonomous TREX agent, creating a more self-observable and adaptive agent

    Matching bias in syllogistic reasoning: Evidence for a dual-process account from response times and confidence ratings

    Get PDF
    We examined matching bias in syllogistic reasoning by analysing response times, confidence ratings, and individual differences. Roberts’ (2005) “negations paradigm” was used to generate conflict between the surface features of problems and the logical status of conclusions. The experiment replicated matching bias effects in conclusion evaluation (Stupple & Waterhouse, 2009), revealing increased processing times for matching/logic “conflict problems”. Results paralleled chronometric evidence from the belief bias paradigm indicating that logic/belief conflict problems take longer to process than non-conflict problems (Stupple, Ball, Evans, & Kamal-Smith, 2011). Individuals’ response times for conflict problems also showed patterns of association with the degree of overall normative responding. Acceptance rates, response times, metacognitive confidence judgements, and individual differences all converged in supporting dual-process theory. This is noteworthy because dual-process predictions about heuristic/analytic conflict in syllogistic reasoning generalised from the belief bias paradigm to a situation where matching features of conclusions, rather than beliefs, were set in opposition to logic

    Sharing Learners' Behavior to Enhance a Metacognition-oriented Intelligent Tutoring System

    Get PDF
    International audienceLiterature shows that Intelligent Tutoring Systems (ITS) are growing in acceptance and popularity because they increase performances of students, leverage cognitive development, but also significantly reduce time to acquire knowledge and competencies. Moreover, monitoring metacognitive skills enables learners to assess performance and select appropriate fix-up: individuals unable to ensure self-monitoring cannot detect errors and as a consequence, they process information less efficiently than skilled monitors. Thus, we present an ITS offering the opportunity of evaluating various metacognitive indicators and able to share this information with others learning tools. Our online tutor is based on an existing ITS authoring tool that we extended to support metacognition and share learners’ profiles and activities into a standardized, distributed and open tracking repository. This framework, validated by an experimentation, thus helps to correlate metadata experiences with real performanc

    Applying science of learning in education: Infusing psychological science into the curriculum

    Get PDF
    The field of specialization known as the science of learning is not, in fact, one field. Science of learning is a term that serves as an umbrella for many lines of research, theory, and application. A term with an even wider reach is Learning Sciences (Sawyer, 2006). The present book represents a sliver, albeit a substantial one, of the scholarship on the science of learning and its application in educational settings (Science of Instruction, Mayer 2011). Although much, but not all, of what is presented in this book is focused on learning in college and university settings, teachers of all academic levels may find the recommendations made by chapter authors of service. The overarching theme of this book is on the interplay between the science of learning, the science of instruction, and the science of assessment (Mayer, 2011). The science of learning is a systematic and empirical approach to understanding how people learn. More formally, Mayer (2011) defined the science of learning as the “scientific study of how people learn” (p. 3). The science of instruction (Mayer 2011), informed in part by the science of learning, is also on display throughout the book. Mayer defined the science of instruction as the “scientific study of how to help people learn” (p. 3). Finally, the assessment of student learning (e.g., learning, remembering, transferring knowledge) during and after instruction helps us determine the effectiveness of our instructional methods. Mayer defined the science of assessment as the “scientific study of how to determine what people know” (p.3). Most of the research and applications presented in this book are completed within a science of learning framework. Researchers first conducted research to understand how people learn in certain controlled contexts (i.e., in the laboratory) and then they, or others, began to consider how these understandings could be applied in educational settings. Work on the cognitive load theory of learning, which is discussed in depth in several chapters of this book (e.g., Chew; Lee and Kalyuga; Mayer; Renkl), provides an excellent example that documents how science of learning has led to valuable work on the science of instruction. Most of the work described in this book is based on theory and research in cognitive psychology. We might have selected other topics (and, thus, other authors) that have their research base in behavior analysis, computational modeling and computer science, neuroscience, etc. We made the selections we did because the work of our authors ties together nicely and seemed to us to have direct applicability in academic settings

    LOGICAL AND PSYCHOLOGICAL PARTITIONING OF MIND: DEPICTING THE SAME MAP?

    Get PDF
    The aim of this paper is to demonstrate that empirically delimited structures of mind are also differentiable by means of systematic logical analysis. In the sake of this aim, the paper first summarizes Demetriou's theory of cognitive organization and growth. This theory assumes that the mind is a multistructural entity that develops across three fronts: the processing system that constrains processing potentials, a set of specialized structural systems (SSSs) that guide processing within different reality and knowledge domains, and a hypecognitive system that monitors and controls the functioning of all other systems. In the second part the paper focuses on the SSSs, which are the target of our logical analysis, and it summarizes a series of empirical studies demonstrating their autonomous operation. The third part develops the logical proof showing that each SSS involves a kernel element that cannot be reduced to standard logic or to any other SSS. The implications of this analysis for the general theory of knowledge and cognitive development are discussed in the concluding part of the paper

    Evolving Ensemble Fuzzy Classifier

    Full text link
    The concept of ensemble learning offers a promising avenue in learning from data streams under complex environments because it addresses the bias and variance dilemma better than its single model counterpart and features a reconfigurable structure, which is well suited to the given context. While various extensions of ensemble learning for mining non-stationary data streams can be found in the literature, most of them are crafted under a static base classifier and revisits preceding samples in the sliding window for a retraining step. This feature causes computationally prohibitive complexity and is not flexible enough to cope with rapidly changing environments. Their complexities are often demanding because it involves a large collection of offline classifiers due to the absence of structural complexities reduction mechanisms and lack of an online feature selection mechanism. A novel evolving ensemble classifier, namely Parsimonious Ensemble pENsemble, is proposed in this paper. pENsemble differs from existing architectures in the fact that it is built upon an evolving classifier from data streams, termed Parsimonious Classifier pClass. pENsemble is equipped by an ensemble pruning mechanism, which estimates a localized generalization error of a base classifier. A dynamic online feature selection scenario is integrated into the pENsemble. This method allows for dynamic selection and deselection of input features on the fly. pENsemble adopts a dynamic ensemble structure to output a final classification decision where it features a novel drift detection scenario to grow the ensemble structure. The efficacy of the pENsemble has been numerically demonstrated through rigorous numerical studies with dynamic and evolving data streams where it delivers the most encouraging performance in attaining a tradeoff between accuracy and complexity.Comment: this paper has been published by IEEE Transactions on Fuzzy System

    Explicitness and ellipsis as features of conversational style in British English and Ecuadorian Spanish

    Get PDF
    In this article I examine differences in conversational style between British English and Ecuadorian Spanish which can be the source of communication conflict among speakers of these two languages in telephone conversations, and, presumably in other types of interaction. I look at the language of mediated and non-mediated telephone conversations and examine one feature that interacts with indirectness, i.e., the degree of explicitness participants employ to realize similar acts or moves in the two languages. In non-mediated telephone interactions both British English and Ecuadorian Spanish speakers appear to display a preference for the use of explicitness in formulating various telephone management moves. On the other hand, in mediated interactions, while the British appear to favour explicitness, Ecuadorians in the present study, make use of elliptical forms. The latter, however, tend to be accompanied by deference markers. Differences in the use of explicit and elliptical utterances are interpreted as reflecting that, in certain types of interactions, Ecuadorians favour a style that can be characterized as fast and deferential, but possibly rather abrupt to the English, whereas the latter appear to favour a less hurried style which emphasizes the expression of consideration rather than deference

    The Interplay of Processing Efficiency and Working Memory with the Development of Metacognitive Performance in Mathematics

    Get PDF
    The present study outlines a specific three level hierarchy of the cognitive system and especially the relations of specific cognitive and metacognitive processes in mathematics. The emphasis is on the impact of the development of processing efficiency and working memory ability on the development of metacognitive abilities and mathematical performance. We had used instruments measuring pupils´ metacognitive ability, mathematical performance, working memory and processing efficiency. We administered them to 126 pupils (8-11 years old) three times, with breaks of 3-4 months between them. Results indicated that the development of each of the abilities was affected by the state of the others. Particularly, processing efficiency had a coordinator role on the growth of mathematical performance, while self-image, as a specific metacognitive ability, depended mainly on the previous working memory ability
    corecore