4,031 research outputs found

    Toward Virtual Biopsy Through an All Fiber Optic Ultrasonic Miniaturized Transducer: A Proposal

    Get PDF
    Abstract-The present generation of devices based on opto-acoustic and aeousto-optic conversion lets us foresee t h e possibility of realizing complete miniaturized transmitting-receiving transducers, able t o generate and detect wideband ultrasounds by laser light. In the present paper, a miniaturized ultrasonic transducer entirely based on fiber optic technology is proposed. Such a device springs from the conjunction between our research, which has produced a highly efficient fiber optic opt-acoustic source, with t h e results obtained by other researchers concerning t h e realization of an ultrasonic receiver based on optical interferometry. Making use of t h e thermo-elastic effect for ultrasound generation, a source of ultrasound can be obtained by coupling a fiber optic t o pulsed laser, if a film capable of absorbing laser light is placed onto fiber end. Starting from these remarks, we propose an efficient opto-acoustic source, able t o generate pressure pulses with amplitude of the order of lo4 P a and handwidth extending up t o 40 MHz and beyond by using graphite materials a s absorbing film. This solution makes use of a low-power pulsed laser as optical source possible. An ultrasonic receiving element was realized placing a Fabry-Perot cavity over t h e tip of a fiber optic. The cavity thickness modulation induced by ultrasonic beam is detected hy a n interferometer optical technique. W e have realized a prototype of a receiving device t h a t exhibits a sensitivity comparable with t h a t of piezoelectric devices (10-100 nV/Pa) and an almost flat bandwidth extending up t o 20 MHz or more. T h e extreme miniaturization of the resulting ultrasonic transducer, together with its wide ultrasonic frequency bandwidth, is t h e first step toward ultrasonic tissue biopsy. In this paper, hefore discussing t h e problem of constructing a complete ultrasonic transducer composed by a transmitter and receiver, t h e results carried out in these fields during the last decade are reviewed

    Mid-Air Haptics for Control Interfaces

    Get PDF
    Control interfaces and interactions based on touch-less gesture tracking devices have become a prevalent research topic in both industry and academia. Touch-less devices offer a unique interaction immediateness that makes them ideal for applications where direct contact with a physical controller is not desirable. On the other hand, these controllers inherently lack active or passive haptic feedback to inform users about the results of their interaction. Mid-air haptic interfaces, such as those using focused ultrasound waves, can close the feedback loop and provide new tools for the design of touch-less, un-instrumented control interactions. The goal of this workshop is to bring together the growing mid-air haptic research community to identify and discuss future challenges in control interfaces and their application in AR/VR, automotive, music, robotics and teleoperation

    Graphene and Related Materials for the Internet of Bio-Nano Things

    Full text link
    Internet of Bio-Nano Things (IoBNT) is a transformative communication framework, characterized by heterogeneous networks comprising both biological entities and artificial micro/nano-scale devices, so-called Bio-Nano Things (BNTs), interfaced with conventional communication networks for enabling innovative biomedical and environmental applications. Realizing the potential of IoBNT requires the development of new and unconventional communication technologies, such as molecular communications, as well as the corresponding transceivers, bio-cyber interfacing technologies connecting the biochemical domain of IoBNT to the electromagnetic domain of conventional networks, and miniaturized energy harvesting and storage components for the continuous power supply to BNTs. Graphene and related materials (GRMs) exhibit exceptional electrical, optical, biochemical, and mechanical properties, rendering them ideal candidates for addressing the challenges posed by IoBNT. This perspective article highlights recent advancements in GRM-based device technologies that are promising for implementing the core components of IoBNT. By identifying the unique opportunities afforded by GRMs and aligning them with the practical challenges associated with IoBNT, particularly in the materials domain, our aim is to accelerate the transition of envisaged IoBNT applications from theoretical concepts to practical implementations, while also uncovering new application areas for GRMs

    Southwest Research Institute assistance to NASA in biomedical areas of the technology

    Get PDF
    Significant applications of aerospace technology were achieved. These applications include: a miniaturized, noninvasive system to telemeter electrocardiographic signals of heart transplant patients during their recuperative period as graded situations are introduced; and economical vital signs monitor for use in nursing homes and rehabilitation hospitals to indicate the onset of respiratory arrest; an implantable telemetry system to indicate the onset of the rejection phenomenon in animals undergoing cardiac transplants; an exceptionally accurate current proportional temperature controller for pollution studies; an automatic, atraumatic blood pressure measurement device; materials for protecting burned areas in contact with joint bender splints; a detector to signal the passage of animals by a given point during ecology studies; and special cushioning for use with below-knee amputees to protect the integrity of the skin at the stump/prosthesis interface

    Review of photoacoustic imaging plus X

    Full text link
    Photoacoustic imaging (PAI) is a novel modality in biomedical imaging technology that combines the rich optical contrast with the deep penetration of ultrasound. To date, PAI technology has found applications in various biomedical fields. In this review, we present an overview of the emerging research frontiers on PAI plus other advanced technologies, named as PAI plus X, which includes but not limited to PAI plus treatment, PAI plus new circuits design, PAI plus accurate positioning system, PAI plus fast scanning systems, PAI plus novel ultrasound sensors, PAI plus advanced laser sources, PAI plus deep learning, and PAI plus other imaging modalities. We will discuss each technology's current state, technical advantages, and prospects for application, reported mostly in recent three years. Lastly, we discuss and summarize the challenges and potential future work in PAI plus X area

    Development of a Focused Broadband Ultrasonic Transducer for High Resolution Fundamental and Harmonic Intravascular Imaging

    Get PDF
    Intravascular ultrasound (IVUS) is increasingly employed for detection and evaluation of coronary artery diseases. Tissue Harmonic Imaging provides different tissue information that could additionally be used to improve diagnostic accuracy. However, current IVUS systems, with their unfocussed transducers, may not be capable of operating in harmonic imaging mode. Thus, there is a need to develop suitable transducers and appropriate techniques to allow imaging in multi modes for complementary diagnostic information. Focused PVDF TrFE transducers were developed using MEMS (Micro-Electro-Mechanical-Systems) compatible protocols. The transducers were characterized using pulse-echo techniques and exhibited broad bandwidth (110 at -6dB) with axial resolutions of Such promising results suggest that focused, broadband PVDF TrFE transducers have opened up the potential to incorporate harmonic imaging modality in IVUS and also improve the image quality. In addition, the transducer\u27s multimodality imaging capability, not possible with the current systems, could enhance the functionality and thereby the clinical use of IVU
    • …
    corecore