6 research outputs found

    Human activity recognition for pervasive interaction

    Get PDF
    PhD ThesisThis thesis addresses the challenge of computing food preparation context in the kitchen. The automatic recognition of fine-grained human activities and food ingredients is realized through pervasive sensing which we achieve by instrumenting kitchen objects such as knives, spoons, and chopping boards with sensors. Context recognition in the kitchen lies at the heart of a broad range of real-world applications. In particular, activity and food ingredient recognition in the kitchen is an essential component for situated services such as automatic prompting services for cognitively impaired kitchen users and digital situated support for healthier eating interventions. Previous works, however, have addressed the activity recognition problem by exploring high-level-human activities using wearable sensing (i.e. worn sensors on human body) or using technologies that raise privacy concerns (i.e. computer vision). Although such approaches have yielded significant results for a number of activity recognition problems, they are not applicable to our domain of investigation, for which we argue that the technology itself must be genuinely “invisible”, thereby allowing users to perform their activities in a completely natural manner. In this thesis we describe the development of pervasive sensing technologies and algorithms for finegrained human activity and food ingredient recognition in the kitchen. After reviewing previous work on food and activity recognition we present three systems that constitute increasingly sophisticated approaches to the challenge of kitchen context recognition. Two of these systems, Slice&Dice and Classbased Threshold Dynamic Time Warping (CBT-DTW), recognize fine-grained food preparation activities. Slice&Dice is a proof-of-concept application, whereas CBT-DTW is a real-time application that also addresses the problem of recognising unknown activities. The final system, KitchenSense is a real-time context recognition framework that deals with the recognition of a more complex set of activities, and includes the recognition of food ingredients and events in the kitchen. For each system, we describe the prototyping of pervasive sensing technologies, algorithms, as well as real-world experiments and empirical evaluations that validate the proposed solutions.Vietnamese government’s 322 project, executed by the Vietnamese Ministry of Education and Training

    Toward Recognition of Short and Non-repetitive Activities from Wearable Sensors

    No full text

    Toward Recognition of Short and Non-repetitive Activities from Wearable Sensors

    No full text
    Abstract. Activity recognition has gained a lot of interest in recent years due to its potential and usefulness for context-aware computing. Most approaches for activity recognition focus on repetitive or long time patterns within the data. There is however high interest in recognizing very short activities as well, such as pushing and pulling an oil stick or opening an oil container as sub-tasks of checking the oil level in a car. This paper presents a method for the latter type of activity recog-nition using start and end postures (short fixed positions of the wrist) in order to identify segments of interest in a continuous data stream. Experiments show high discriminative power for using postures to recog-nize short activities in continuous recordings. Additionally, classifications using postures and HMMs for recognition are combined

    Kompensation positionsbezogener Artefakte in Aktivitätserkennung

    Get PDF
    This thesis investigates, how placement variations of electronic devices influence the possibility of using sensors integrated in those devices for context recognition. The vast majority of context recognition research assumes well defined, fixed sen- sor locations. Although this might be acceptable for some application domains (e.g. in an industrial setting), users, in general, will have a hard time coping with these limitations. If one needs to remember to carry dedicated sensors and to adjust their orientation from time to time, the activity recognition system is more distracting than helpful. How can we deal with device location and orientation changes to make context sensing mainstream? This thesis presents a systematic evaluation of device placement effects in context recognition. We first deal with detecting if a device is carried on the body or placed somewhere in the environ- ment. If the device is placed on the body, it is useful to know on which body part. We also address how to deal with sensors changing their position and their orientation during use. For each of these topics some highlights are given in the following. Regarding environmental placement, we introduce an active sampling ap- proach to infer symbolic object location. This approach requires only simple sensors (acceleration, sound) and no infrastructure setup. The method works for specific placements such as "on the couch", "in the desk drawer" as well as for general location classes, such as "closed wood compartment" or "open iron sur- face". In the experimental evaluation we reach a recognition accuracy of 90% and above over a total of over 1200 measurements from 35 specific locations (taken from 3 different rooms) and 12 abstract location classes. To derive the coarse device placement on the body, we present a method solely based on rotation and acceleration signals from the device. It works independent of the device orientation. The on-body placement recognition rate is around 80% over 4 min. of unconstrained motion data for the worst scenario and up to 90% over a 2 min. interval for the best scenario. We use over 30 hours of motion data for the analysis. Two special issues of device placement are orientation and displacement. This thesis proposes a set of heuristics that significantly increase the robustness of motion sensor-based activity recognition with respect to sen- sor displacement. We show how, within certain limits and with modest quality degradation, motion sensor-based activity recognition can be implemented in a displacement tolerant way. We evaluate our heuristics first on a set of synthetic lower arm motions which are well suited to illustrate the strengths and limits of our approach, then on an extended modes of locomotion problem (sensors on the upper leg) and finally on a set of exercises performed on various gym machines (sensors placed on the lower arm). In this example our heuristic raises the dis- placed recognition rate from 24% for a displaced accelerometer, which had 96% recognition when not displaced, to 82%

    Multi-modal on-body sensing of human activities

    Get PDF
    Increased usage and integration of state-of-the-art information technology in our everyday work life aims at increasing the working efficiency. Due to unhandy human-computer-interaction methods this progress does not always result in increased efficiency, for mobile workers in particular. Activity recognition based contextual computing attempts to balance this interaction deficiency. This work investigates wearable, on-body sensing techniques on their applicability in the field of human activity recognition. More precisely we are interested in the spotting and recognition of so-called manipulative hand gestures. In particular the thesis focuses on the question whether the widely used motion sensing based approach can be enhanced through additional information sources. The set of gestures a person usually performs on a specific place is limited -- in the contemplated production and maintenance scenarios in particular. As a consequence this thesis investigates whether the knowledge about the user's hand location provides essential hints for the activity recognition process. In addition, manipulative hand gestures -- due to their object manipulating character -- typically start in the moment the user's hand reaches a specific place, e.g. a specific part of a machinery. And the gestures most likely stop in the moment the hand leaves the position again. Hence this thesis investigates whether hand location can help solving the spotting problem. Moreover, as user-independence is still a major challenge in activity recognition, this thesis investigates location context as a possible key component in a user-independent recognition system. We test a Kalman filter based method to blend absolute position readings with orientation readings based on inertial measurements. A filter structure is suggested which allows up-sampling of slow absolute position readings, and thus introduces higher dynamics to the position estimations. In such a way the position measurement series is made aware of wrist motions in addition to the wrist position. We suggest location based gesture spotting and recognition approaches. Various methods to model the location classes used in the spotting and recognition stages as well as different location distance measures are suggested and evaluated. In addition a rather novel sensing approach in the field of human activity recognition is studied. This aims at compensating drawbacks of the mere motion sensing based approach. To this end we develop a wearable hardware architecture for lower arm muscular activity measurements. The sensing hardware based on force sensing resistors is designed to have a high dynamic range. In contrast to preliminary attempts the proposed new design makes hardware calibration unnecessary. Finally we suggest a modular and multi-modal recognition system; modular with respect to sensors, algorithms, and gesture classes. This means that adding or removing a sensor modality or an additional algorithm has little impact on the rest of the recognition system. Sensors and algorithms used for spotting and recognition can be selected and fine-tuned separately for each single activity. New activities can be added without impact on the recognition rates of the other activities
    corecore