201 research outputs found

    Surprising Instabilities in Training Deep Networks and a Theoretical Analysis

    Full text link
    We discover restrained numerical instabilities in current training practices of deep networks with SGD. We show numerical error (on the order of the smallest floating point bit) induced from floating point arithmetic in training deep nets can be amplified significantly and result in significant test accuracy variance, comparable to the test accuracy variance due to stochasticity in SGD. We show how this is likely traced to instabilities of the optimization dynamics that are restrained, i.e., localized over iterations and regions of the weight tensor space. We do this by presenting a theoretical framework using numerical analysis of partial differential equations (PDE), and analyzing the gradient descent PDE of a simplified convolutional neural network (CNN). We show that it is stable only under certain conditions on the learning rate and weight decay. We reproduce the localized instabilities in the PDE for the simplified network, which arise when the conditions are violated

    Adversarial games in machine learning : challenges and applications

    Full text link
    L’apprentissage automatique repose pour un bon nombre de problèmes sur la minimisation d’une fonction de coût, pour ce faire il tire parti de la vaste littérature sur l’optimisation qui fournit des algorithmes et des garanties de convergences pour ce type de problèmes. Cependant récemment plusieurs modèles d’apprentissage automatique qui ne peuvent pas être formulé comme la minimisation d’un coût unique ont été propose, à la place ils nécessitent de définir un jeu entre plusieurs joueurs qui ont chaque leur propre objectif. Un de ces modèles sont les réseaux antagonistes génératifs (GANs). Ce modèle génératif formule un jeu entre deux réseaux de neurones, un générateur et un discriminateur, en essayant de tromper le discriminateur qui essaye de distinguer les vraies images des fausses, le générateur et le discriminateur s’améliore résultant en un équilibre de Nash, ou les images produites par le générateur sont indistinguable des vraies images. Malgré leur succès les GANs restent difficiles à entrainer à cause de la nature antagoniste du jeu, nécessitant de choisir les bons hyperparamètres et résultant souvent en une dynamique d’entrainement instable. Plusieurs techniques de régularisations ont été propose afin de stabiliser l’entrainement, dans cette thèse nous abordons ces instabilités sous l’angle d’un problème d’optimisation. Nous commençons par combler le fossé entre la littérature d’optimisation et les GANs, pour ce faire nous formulons GANs comme un problème d’inéquation variationnelle, et proposons de la littérature sur le sujet pour proposer des algorithmes qui convergent plus rapidement. Afin de mieux comprendre quels sont les défis de l’optimisation des jeux, nous proposons plusieurs outils afin d’analyser le paysage d’optimisation des GANs. En utilisant ces outils, nous montrons que des composantes rotationnelles sont présentes dans le voisinage des équilibres, nous observons également que les GANs convergent rarement vers un équilibre de Nash mais converge plutôt vers des équilibres stables locaux (LSSP). Inspirer par le succès des GANs nous proposons pour finir, une nouvelle famille de jeux que nous appelons adversarial example games qui consiste à entrainer simultanément un générateur et un critique, le générateur cherchant à perturber les exemples afin d’induire en erreur le critique, le critique cherchant à être robuste aux perturbations. Nous montrons qu’à l’équilibre de ce jeu, le générateur est capable de générer des perturbations qui transfèrent à toute une famille de modèles.Many machine learning (ML) problems can be formulated as minimization problems, with a large optimization literature that provides algorithms and guarantees to solve this type of problems. However, recently some ML problems have been proposed that cannot be formulated as minimization problems but instead require to define a game between several players where each player has a different objective. A successful application of such games in ML are generative adversarial networks (GANs), where generative modeling is formulated as a game between a generator and a discriminator, where the goal of the generator is to fool the discriminator, while the discriminator tries to distinguish between fake and real samples. However due to the adversarial nature of the game, GANs are notoriously hard to train, requiring careful fine-tuning of the hyper-parameters and leading to unstable training. While regularization techniques have been proposed to stabilize training, we propose in this thesis to look at these instabilities from an optimization perspective. We start by bridging the gap between the machine learning and optimization literature by casting GANs as an instance of the Variational Inequality Problem (VIP), and leverage the large literature on VIP to derive more efficient and stable algorithms to train GANs. To better understand what are the challenges of training GANs, we then propose tools to study the optimization landscape of GANs. Using these tools we show that GANs do suffer from rotation around their equilibrium, and that they do not converge to Nash-Equilibria. Finally inspired by the success of GANs to generate images, we propose a new type of games called Adversarial Example Games that are able to generate adversarial examples that transfer across different models and architectures

    Enhanced Deep Network Designs Using Mitochondrial DNA Based Genetic Algorithm And Importance Sampling

    Get PDF
    Machine learning (ML) is playing an increasingly important role in our lives. It has already made huge impact in areas such as cancer diagnosis, precision medicine, self-driving cars, natural disasters predictions, speech recognition, etc. The painstakingly handcrafted feature extractors used in the traditional learning, classification and pattern recognition systems are not scalable for large-sized datasets or adaptable to different classes of problems or domains. Machine learning resurgence in the form of Deep Learning (DL) in the last decade after multiple AI (artificial intelligence) winters and hype cycles is a result of the convergence of advancements in training algorithms, availability of massive data (big data) and innovation in compute resources (GPUs and cloud). If we want to solve more complex problems with machine learning, we need to optimize all three of these areas, i.e., algorithms, dataset and compute. Our dissertation research work presents the original application of nature-inspired idea of mitochondrial DNA (mtDNA) to improve deep learning network design. Additional fine-tuning is provided with Monte Carlo based method called importance sampling (IS). The primary performance indicators for machine learning are model accuracy, loss and training time. The goal of our dissertation is to provide a framework to address all these areas by optimizing network designs (in the form of hyperparameter optimization) and dataset using enhanced Genetic Algorithm (GA) and importance sampling. Algorithms are by far the most important aspect of machine learning. We demonstrate the application of mitochondrial DNA to complement the standard genetic algorithm for architecture optimization of deep Convolution Neural Network (CNN). We use importance sampling to reduce the dataset variance and sample more often from the instances that add greater value from the training outcome perspective. And finally, we leverage massive parallel and distributed processing of GPUs in the cloud to speed up training. Thus, our multi-approach method for enhancing deep learning combines architecture optimization, dataset optimization and the power of the cloud to drive better model accuracy and reduce training time

    Leveraging deep reinforcement learning in the smart grid environment

    Full text link
    L’apprentissage statistique moderne démontre des résultats impressionnants, où les or- dinateurs viennent à atteindre ou même à excéder les standards humains dans certaines applications telles que la vision par ordinateur ou les jeux de stratégie. Pourtant, malgré ces avancées, force est de constater que les applications fiables en déploiement en sont encore à leur état embryonnaire en comparaison aux opportunités qu’elles pourraient apporter. C’est dans cette perspective, avec une emphase mise sur la théorie de décision séquentielle et sur les recherches récentes en apprentissage automatique, que nous démontrons l’applica- tion efficace de ces méthodes sur des cas liés au réseau électrique et à l’optimisation de ses acteurs. Nous considérons ainsi des instances impliquant des unités d’emmagasinement éner- gétique ou des voitures électriques, jusqu’aux contrôles thermiques des bâtiments intelligents. Nous concluons finalement en introduisant une nouvelle approche hybride qui combine les performances modernes de l’apprentissage profond et de l’apprentissage par renforcement au cadre d’application éprouvé de la recherche opérationnelle classique, dans le but de faciliter l’intégration de nouvelles méthodes d’apprentissage statistique sur différentes applications concrètes.While modern statistical learning is achieving impressive results, as computers start exceeding human baselines in some applications like computer vision, or even beating pro- fessional human players at strategy games without any prior knowledge, reliable deployed applications are still in their infancy compared to what these new opportunities could fathom. In this perspective, with a keen focus on sequential decision theory and recent statistical learning research, we demonstrate efficient application of such methods on instances involving the energy grid and the optimization of its actors, from energy storage and electric cars to smart buildings and thermal controls. We conclude by introducing a new hybrid approach combining the modern performance of deep learning and reinforcement learning with the proven application framework of operations research, in the objective of facilitating seamlessly the integration of new statistical learning-oriented methodologies in concrete applications

    Federated Learning's Blessing: FedAvg has Linear Speedup

    Full text link
    Federated learning (FL) learns a model jointly from a set of participating devices without sharing each other's privately held data. The characteristics of non-iid data across the network, low device participation, and the mandate that data remain private bring challenges in understanding the convergence of FL algorithms, particularly in regards to how convergence scales with the number of participating devices. In this paper, we focus on Federated Averaging (FedAvg)--the most widely used and effective FL algorithm in use today--and provide a comprehensive study of its convergence rate. Although FedAvg has recently been studied by an emerging line of literature, it remains open as to how FedAvg's convergence scales with the number of participating devices in the FL setting--a crucial question whose answer would shed light on the performance of FedAvg in large FL systems. We fill this gap by establishing convergence guarantees for FedAvg under three classes of problems: strongly convex smooth, convex smooth, and overparameterized strongly convex smooth problems. We show that FedAvg enjoys linear speedup in each case, although with different convergence rates. For each class, we also characterize the corresponding convergence rates for the Nesterov accelerated FedAvg algorithm in the FL setting: to the best of our knowledge, these are the first linear speedup guarantees for FedAvg when Nesterov acceleration is used. To accelerate FedAvg, we also design a new momentum-based FL algorithm that further improves the convergence rate in overparameterized linear regression problems. Empirical studies of the algorithms in various settings have supported our theoretical results
    • …
    corecore