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ENHANCED DEEP NETWORK DESIGNS USING 

MITOCHONDRIAL DNA BASED GENETIC ALGORITHM 

AND IMPORTANCE SAMPLING 

ABSTRACT 

Machine learning (ML) is playing an increasingly important role in our lives. It 

has already made huge impact in areas such as cancer diagnosis, precision medicine, 

self-driving cars, natural disasters predictions, speech recognition, etc. The 

painstakingly handcrafted feature extractors used in the traditional learning, 

classification and pattern recognition systems are not scalable for large-sized datasets or 

adaptable to different classes of problems or domains. Machine learning resurgence in 

the form of Deep Learning (DL) in the last decade after multiple AI (artificial 

intelligence) winters and hype cycles is a result of the convergence of advancements in 

training algorithms, availability of massive data (big data) and innovation in compute 

resources (GPUs and cloud). If we want to solve more complex problems with machine 

learning, we need to optimize all three of these areas, i.e., algorithms, dataset and 

compute. Our dissertation research work presents the original application of nature-

inspired idea of mitochondrial DNA (mtDNA) to improve deep learning network 

design. Additional fine-tuning is provided with Monte Carlo based method called 
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importance sampling (IS). The primary performance indicators for machine learning are 

model accuracy, loss and training time. The goal of our dissertation is to provide a 

framework to address all these areas by optimizing network designs (in the form of 

hyperparameter optimization) and dataset using enhanced Genetic Algorithm (GA) and 

importance sampling. Algorithms are by far the most important aspect of machine 

learning. We demonstrate the application of mitochondrial DNA to complement the 

standard genetic algorithm for architecture optimization of deep Convolution Neural 

Network (CNN). We use importance sampling to reduce the dataset variance and 

sample more often from the instances that add greater value from the training outcome 

perspective. And finally, we leverage massive parallel and distributed processing of 

GPUs in the cloud to speed up training. Thus, our multi-approach method for enhancing 

deep learning combines architecture optimization, dataset optimization and the power of 

the cloud to drive better model accuracy and reduce training time. 
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CHAPTER 1: INTRODUCTION 

Model accuracy, loss and training time are the key performance indicators of any 

machine learning framework or algorithm.  Accuracy and loss are impacted by multiple 

factors. Backpropagation, the de facto training method, has its share of shortcomings. 

They are manifested in the form of getting stuck in local minima, overshooting the 

potential global minima or overfitting a model to a data set. The explosion of smart 

devices, sensors and the Internet of Things (IoT) have resulted in an exponential increase 

in the amount of data. Dataset sample size and dimensions have a highly outsized impact 

on the problem space and training time. The issue is exacerbated with the addition of any 

new parameter value to the neural network. These are significant challenges and 

overcoming them could result in enormous benefits to the field of machine learning. We 

need relevant data with less noise and optimized deep architecture designs to reduce the 

loss function and yield better accuracy. Our research tackles these problems by proposing 

a framework for coming up with an enhanced deep learning architecture with dataset 

sampling and hyperparameter optimization. 

1.1 Research Problem and Contribution 

Only weights and biases are learned by gradient descent-based training of Deep 

Neural Networks (DNN). The other hyperparameters shape the architecture of the 

network and have a huge influence on the quality of the model but finding optimal values 
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for them is not a trivial solution. The hyperparameter space grows exponentially and they 

also display non-linearity and interactions. A network with twelve hyperparameters, each 

with five potential values can have about 250 million unique combinations of 

hyperparameter sequences. If training on each set takes 6 minutes, exhaustive training on 

all potential combinations of the hyperparameters to find the optimal values will take 

almost 3000 years. Expert knowledge or random selection are some alternate options, but 

they are not scalable or consistently reliable. Metaheuristics such as evolutionary 

algorithms are a great choice for solving combinatorial optimization problems like 

hyperparameter optimization. While other researchers have used evolutionary algorithms 

such as standard implementation of genetic algorithm (GA), we introduce additional 

nature-inspired enhancements to GA for better exploration of the hyperparameter solution 

space to optimize the DNN architecture.  

The accuracy of machine learning (ML) model is determined to a great extent by 

its training dataset. Yet the dataset optimization is often not the center of the focus to 

improve ML models. Datasets used in the training process affect the convergence of the 

training process and accuracy of the models. We complement the training with Monte 

Carlo based variance reduction method called importance sampling. We demonstrate that 

these fine-tunings result in tangible improvements in the network accuracy on MNIST 

dataset that outperforms standard use of GA. 

1.2 Motivation 

Deep learning is perhaps the most significant development in the field of 

computer science in recent times. Its impact has been felt in nearly all scientific fields. It 
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is already disrupting and transforming businesses and industries. There is a race among 

the world’s leading economies and technology companies to advance deep learning. 

There are already many areas where deep learning has exceeded human level capability 

and performance, e.g., predicting movie ratings, decision to approve loan applications, 

time taken by car delivery, etc. [1]. On March 27, 2019 the three deep learning pioneers 

(Yoshua Bengio, Geoffrey Hinton, and Yann LeCun) were awarded the Turing Award, 

which is also referred to as the “Nobel Prize” of computing[2]. While a lot has been 

accomplished, there is more to advance in deep learning. Deep learning has a potential to 

improve human lives with more accurate diagnosis of diseases like cancer [3], discovery 

of new drugs, prediction of natural disasters [4]. E.g., [5] reported that a deep learning 

network was able to learn from 129,450 images of 2,032 diseases and was able to 

diagnose at the same level as 21 board certified dermatologists. Google AI [3] was able to 

beat the average accuracy of US board certified general pathologists in grading prostate 

cancer by 70% to 61%.    

The literature survey covers the vast subject of deep learning and presents a 

holistic survey of dispersed information under one section. Other review papers [6-9] 

focus on specific areas and implementations without encompassing the full scope of the 

field. The research chapter delves into the specific research topic. It presents novel work 

by collating the works of leading authors from the wide scope and breadth the deep 

learning.. The review and research sections describe the different types of deep learning 

network architectures, deep learning algorithms, their shortcomings, optimization 

methods and the latest implementations and applications.  
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1.3 Contribution of Research 

Our work looks at the ML problem from multiple perspective with the end goal of 

improving the overall network accuracy and reducing training time. It provides a novel 

approach of combining enhanced genetic algorithm for hyperparameter and architecture 

optimization, Monte Carlo based importance sampling method, and parallel and 

distributed gpu processing in the cloud to speed up the training.  

Exhaustive ways to solve combinatorial optimization problem is not tractable. 

Traveling salesman problem (TSP) is such a problem, where we need to find the shortest 

path through every city from the original city and back, provided the distances between 

every pair of cities are given. TSP is an NP-hard problem and its time complexity rises 

factorially with each new city. Such problems are well suited for metaheuristics like 

genetic algorithm. Genetic algorithm like other metaheuristics is inspired by the natural 

phenomenon of natural selection, genetic crossover and mutation. It provides a means to 

navigate the hyperparameter solution space in an intuitive way. It uses both exploration 

and exploitation of the space to overcome the local minima and get close to the near-

optimal solution. We use the concept of mitochondrial DNA (mtDNA) to further enhance 

the genetic algorithm. 

Not all instances from the training dataset are equally significant from the 

perspective of their impact to training. Importance sampling can help us focus more on 

the important ones and stop wasting CPU or GPU cycles on using the un-important 

instances at every epoch or mini-batch. E.g., we achieve high accuracy with just one 
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epoch on the MNIST dataset using a relatively small network. It would make more sense 

to sample more from the important instances in subsequent epochs. 

We demonstrate empirically that our approach can achieve improvement in 

training and testing errors on MNIST dataset compared to training when these fine-

tunings are not used. These approaches return better results independently when the stand 

on their own and are complimentary to each other when combined.  



 
 

CHAPTER 2: LITERATURE SURVEY 

Neural Network is a machine learning (ML) technique that is inspired by and 

resembles the human nervous system and the structure of the brain. It consists of 

processing units organized in input, hidden and output layers. The nodes or units in each 

layer are connected to nodes in adjacent layers. Each connection has a weight value. The 

inputs are multiplied by the respective weights and summed at each unit. The sum then 

undergoes a transformation based on the activation function, which is in most cases is a 

sigmoid function, tan hyperbolic or rectified linear unit (ReLU). These functions are used 

because they have a mathematically favorable derivative, making it easier to compute 

partial derivatives of the error delta with respect to individual weights. Sigmoid and tanh 

functions also squash the input into a narrow output range or option, i.e., 0/1 and -1/+1 

respectively. They implement saturated nonlinearity as the outputs plateaus or saturates 

before/after respective thresholds. ReLu on the other hand exhibits both saturating and 

non-saturating behaviors with 𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥). The output of the function is then fed 

as input to the subsequent unit in the next layer. The result of the final output layer is 

used as the solution for the problem. 

Neural Networks can be used in a variety of problems including pattern recognition, 

classification, clustering, dimensionality reduction, computer vision, natural language 

processing (NLP), regression, predictive analysis, etc. Figure 1 is an example of image 

recognition. It shows how a deep neural network called Convolution Neural Network 



 
 

21 

(CNN) can learn hierarchical levels of representations from a low-level input vector and 

successfully identify the higher-level object. The red squares in the figure are simply a 

gross generalization of the pixel values of the highlighted section of the figure. CNNs can 

progressively extract higher representations of the image after each layer and finally 

recognize the image. 

 
Figure 1. Image recognition by a CNN 

The implementation of neural networks consists of the following steps: 

1. Acquire training and testing data set  

2. Prepare data for training 

3. Train the neural network model 

4. Make prediction with test data 

Our work focuses on optimizing the acquisition of training dataset and the 

training steps, so we can make better prediction from the trained model.  
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The paper is organized in the following sections: 

1. Introduction 

2. Literature Survey 

3. Research & Related Work 

4. Implementation 

5. Results 

6. Conclusion 

In 1957, Frank Rosenblatt created the perceptron, the first prototype of what we 

now know as a neural network [10]. It had two layers of processing units that could 

recognize simple patterns. Instead of undergoing more research and development, neural 

networks entered a dark phase of its history in 1969, when professors at MIT 

demonstrated that it couldn’t even learn a simple XOR function[11].  

In addition, there was another finding that particularly dampened the motivation 

for DNN. The universal approximation theorem showed that a single hidden layer was 

able to solve any continuous problem [12]. It was mathematically proven as well [13], 

which further questioned the validity of DNN. While a single hidden layer could be used 

to learn, it was not efficient and didn’t provide the capability presented by the 

hierarchical abstraction of multiple hidden layers of DNN that we know now.  But it was 

not just the universal approximation theorem that held back the progress of DNN. Back 

then, we didn’t have a way to train a DNN either. These factors prolonged the so-called 

AI winter, i.e., a phase in the history of artificial intelligence where it didn’t get much 

funding and interest, and as a result didn’t advance much either.  
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A breakthrough in DNN occurred with the advent of backpropagation learning 

algorithm. It was proposed in the 1970s [14] but it wasn’t until mid-1980s [15] that it was 

fully understood and applied to neural networks. The self-directed learning was made 

possible with the deeper understanding and application of backpropagation algorithm. 

The automation of feature extractors is what differentiates a DNNs from earlier 

generation machine learning techniques. 

DNN is a type of neural network modeled as a multilayer perceptron (MLP) that 

is trained with algorithms to learn representations from data sets without any manual 

design of feature extractors. As the name Deep Learning suggests, it consists of higher or 

deeper number of processing layers, which contrasts with shallow learning model with 

fewer layers of units. The shift from shallow to deep learning has allowed for more 

complex and non-linear functions to be mapped, as they cannot be efficiently mapped 

with shallow architectures. This improvement has been complemented by the 

proliferation of cheaper processing units such as the general-purpose graphic processing 

unit (GPGPU) and large volume of data set (big data) to train from. While GPGPUs are 

less powerful that CPUs, the number of parallel processing cores in them outnumber CPU 

cores by orders of magnitude. This makes GPGPUs better for implementing DNNs. In 

addition to the backpropagation algorithm and GPU, the adoption and advancement of 

ML and particularly Deep Learning can be attributed to the explosion of data or bigdata 

in the last 10 years. ML will continue to impact and disrupt all areas of our lives from 

education, finance, governance, healthcare, manufacturing, marketing and others [16].  
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2.1 Classification of Neural Network 

Neural Networks can be classified into the following different types. 

1. Feedforward Neural Network 

2. Recurrent Neural Network (RNN) 

3. Radial Basis Function Neural Network 

4. Kohonen Self Organizing Neural Network 

5. Modular Neural Network 

In feedforward neural network, information flows in just one direction from input 

to output layer (via hidden nodes if any). They do not form any circles or loopbacks. 

Figure 2a shows a particular type of implementation of a multilayer feedforward neural 

network with values and functions computed along the forward pass path. Z is the 

weighed sum of the inputs and y represents the non-linear activation function f of Z at 

each layer. W represents the weights between the two units in the adjoining layers 

indicated by the subscript letters and b represents the bias value of the unit. 

Unlike feedforward neural networks, the processing units in RNN form a cycle. 

The output of a layer becomes the input to the next layer, which is typically the only layer 

in the network, thus the output of the layer becomes an input to itself forming a feedback 

loop. This allows the network to have memory about the previous states and use that to 

influence the current output. One significant outcome of this difference is that unlike 

feedforward neural network, RNN can take a sequence of inputs and generate a sequence 

of output values as well, rendering it very useful for applications that require processing 
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sequence of time phased input data like speech recognition, frame-by-frame video 

classification, etc. 

Figure 2b demonstrates the unrolling of a RNN in time. E.g., if a sequence of 3-

word sentence constitutes an input, then each word would correspond to a layer and thus 

the network would be unfolded or unrolled 3 times into a 3-layer RNN. 

Here is the mathematical explanation of the diagram: 𝑥𝑡 represents the input at 

time 𝑡. 𝑈, 𝑉, and 𝑊 are the learned parameters that are shared by all steps. 𝑂𝑡 is the 

output at time 𝑡. 𝑆𝑡 represents the state at time 𝑡 and can be computed as follows, where 𝑓 

is the activation function, e.g., ReLU. 

𝑆𝑡 = 𝑓(𝑈𝑥𝑡 + 𝑊𝑠𝑡−1)                                   (1) 

 

Figure 2a. Feedforward neural network [15] 
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Figure 2b. The unrolling of RNN in time [15] 

Radial basis function neural network is used in classification, function 

approximation, time series prediction problems, etc. It consists of input, hidden and 

output layers. The hidden layer includes a radial basis function (implemented as gaussian 

function) and each node represents a cluster center. The network learns to designate the 

input to a center and the output layer combines the outputs of the radial basis function 

and weight parameters to perform classification or inference[17].   

Kohonen self-organizing neural network self organizes the network model into 

the input data using unsupervised learning. It consists of two fully connected layers, i.e., 

input layer and output layer. The output layer is organized as a two-dimensional grid. 

There is no activation function and the weights represent the attributes (position) of the 

output layer node. The Euclidian distance between the input data and each output layer 

node with respect to the weights are calculated. The weights of the closest node and its 

neighbors from the input data are updated to bring them closer to the input data with the 

formula below[18]. 

𝑤𝑖(𝑡 + 1) = 𝑤𝑖(𝑡) + 𝛼(𝑡)𝜂𝑗∗𝑖(𝑥(𝑡) − 𝑤𝑖(𝑡))                                  (2) 
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Where 𝑥(𝑡) is the input data at time t, 𝑤𝑖(𝑡) is the 𝑖𝑡ℎ weight at time t and 𝜂𝑗∗𝑖 is 

the neighborhood function between the 𝑖𝑡ℎ 𝑎𝑛𝑑 𝑗𝑡ℎ nodes. 

Modular neural network breaks down large network into smaller independent 

neural network modules. The smaller networks perform specific task which are later 

combined as part of a single output of the entire network [19]. 

DNNs are implemented in the following popular ways:  

1. Sparse Autoencoders 

2. Convolution Neural Networks (CNNs or ConvNets) 

3. Restricted Boltzmann Machines (RBMs) 

4. Long Short-Term Memory (LSTM) 

Autoencoders are neural networks that learn features or encoding from a given 

dataset in order to perform dimensionality reduction. Sparse Autoencoder is a variation of 

Autoencoders, where some of the units output a value close to zero or are inactive and do 

not fire. Deep CNN uses multiple layers of unit collections that interact with the input 

(pixel values of an image) and result in desired feature extraction. CNN finds it 

application in image recognition, recommender systems and NLP. RBM is used to learn 

probability distribution within the data set. 

All these networks use backpropagation for training. Backpropagation uses 

gradient descent for error reduction, by adjusting the weights based on the partial 

derivative of the error with respect to each weight.  
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Neural Network models can also be divided into the following two distinct 

categories:  

1. Discriminative 

2. Generative 

Discriminative model is a bottom-up approach in which data flows from input 

layer via the hidden layers to the output layer. They are used in supervised training for 

problems like classification and regression. Generative models on the other hand are top-

down and data flows in the opposite direction. They are used in unsupervised pre-training 

and probabilistic distribution problems. If the input x and corresponding label y are 

given, a discriminative model learns the probability distribution p(y|x), i.e., the 

probability of y given x directly, whereas a generative model learns the joint probability 

of p(x,y), from which P(y|x) can be predicted [20]. In general whenever labelled data is 

available discriminative approaches are undertaken as they provide effective training, and 

when labelled data is not available generative approach can be taken [21].  

Training can be broadly categorized into three types: 

1. Supervised 

2. Unsupervised 

3. Semi-supervised 

Supervised learning consists of labeled data which is used to train the network, 

whereas unsupervised learning there is no labeled data set, thus no learning based on 

feedback. In unsupervised learning, neural networks are pre-trained using generating 
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models such as RBMs and later could be fine-tuned using standard supervised learning 

algorithms. It is then used on test data set to determine patterns or classifications. Big 

data has pushed the envelope even further for deep learning with its sheer volume and 

variety of data. Contrary to our intuitive inclination, there is no clear consensus on 

whether supervised learning is better than the unsupervised learning. Both have their 

merits and use cases. [22] demonstrated enhanced results with unsupervised learning 

using unstructured video sequences for camera motion estimation and monocular depth. 

Modified Neural Networks such as Deep Belief Network (DBM) as described by Xue-

Wen Chen et al. [23] uses both labeled and unlabeled data with supervised and 

unsupervised learning respectively to improve performance. Developing a way to 

automatically extract meaningful features from labeled and unlabeled high dimensional 

data space is challenging. Yann LeCun et al. asserts that one way we could achieve this 

would be to utilize and integrate both unsupervised and supervised learning [24]. 

Complementing unsupervised learning (with un-labeled data) with supervised learning 

(with labeled data) is referred to as semi-supervised learning.  

DNN and training algorithms have to overcome two major challenges: premature 

convergence and overfitting. Premature convergence occurs when the weights and bias of 

the DNN settle into a state that is only optimal at a local level and misses out on the 

global minima of the entire multi-dimensional space. Overfitting on the other hand 

describes a state when DNNs become highly tailored to a given training data set at a fine 

grain level that it becomes unfit, rigid and less adaptable for any other test data set. 
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Along with different types of training, algorithms and architecture, we also have 

different machine learning frameworks (Table 1) and libraries that have made training 

models easier. These frameworks make complex mathematical functions, training 

algorithms and statistically modeling available without having to write them on your 

own. Some provide distributed and parallel processing capabilities, and convenient 

development and deployment features. Figure 3 shows a graph with various deep learning 

libraries along with their Github stars from 2015-2018. Github is the largest hosting 

service provider of source code in the world [25]. Github stars are indicative of how 

popular a project is on Github. TensorFlow is the most popular DL library. 

 

Figure 3. Github stars by Deep Learning Library [26] 
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Table 1. Popular Deep Learning Frameworks and Libraries 

Framework 
Institution License 1st Release 

Caffe Berkeley AI Research BSD / Free 2015 

Microsoft Cognitive Toolkit Microsoft MIT License / Free 2016 

Gluon AWS and Microsoft Open Source 2017 

Keras Individual Author MIT License / Free 2015 

MXNet Apache Software Foundation Apache 2.0 / Free 2015 

TensorFlow Google Brain Apache 2.0 / Free 2015 

Theano University of Montreal BSD / Free 2008 

Torch Ronan Collobert et al. BSD / Free 2002 

PyTorch Facebook BSD / Free 2016 

Chainer Preferred Networks BSD / Free 2015 

Deeplearning4j Adam Gibson et al. Apache 2.0 / Free 2014 

 

2.2 DNN Architectures 

Deep neural network consists of several layers of nodes. Different architectures 

have been developed to solve problems in different domains or use-cases. E.g., CNN is 

used most of the time in computer vision and image recognition, and RNN is commonly 

used in time series problems/forecasting. On the other hand, there is no clear winner for 

general problems like classification as the choice of architecture could depend on 

multiple factors. Nonetheless [27] evaluated 179 classifiers and concluded that parallel 

random forest or parRF_t, which is essentially parallel implementation of variation of 

decision tree, performed the best. Below are three of the most common architectures of 

deep neural networks. 

1. Convolution Neural Network (CNN) 

2. Autoencoder 

3. Restricted Boltzmann Machine (RBM) 

4. Long Short-Term Memory (LSTM) 
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2.2.1 Convolution Neural Network 

CNN is based on the human visual cortex and is the neural network of choice for 

computer vision (image recognition). It has been applied to areas such has cancer 

diagnosis, self-driving cars, etc. As shown in Figure 4a, a CNN consists of a series of 

convolution and sub-sampling layers followed by a fully connected layer and a 

normalizing (e.g., softmax function) layer. Figure 4a illustrates the well-known 7 layered 

LeNet-5 CNN architecture devised by LeCun et al. [28] for digit recognition. The series 

of multiple convolution layers perform progressively more refined feature extraction at 

every layer moving from input to output layers. Fully connected layers that perform 

classification follow the convolution layers. Sub-sampling or pooling layers are often 

inserted between each convolution layers.  

Figure 4a. 7-layer Architecture of CNN for character recognition [28] 

CNN’s takes a 2D 𝑛 𝑥 𝑛 pixelated image as an input. Each layer consists of 

groups of 2D neurons called filters or kernels. Unlike other neural networks, neurons in 

each feature extraction layers of CNN are not connected to all neurons in the adjacent 

layers. Instead, they are only connected to the spatially mapped fixed sized and partially 

overlapping neurons in the previous layer’s input image or feature map. This region in 

the input is called local receptive field. The lowered number of connections reduces 
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training time and chances of overfitting. As show in Figure 4b, all neurons in a filter are 

connected to the same number of neurons in the previous input layer (or feature map) and 

are constrained to have the same sequence of weights and biases. These factors speed up 

the learning and reduces the memory requirements for the network. Thus, each neuron in 

a specific filter looks for the same pattern but in different parts of the input image. Sub-

sampling layers reduce the size of the network. In addition, along with local receptive 

fields and shared weights (within the same filter), it effectively reduces the network’s 

susceptibility of shifts, scale and distortions of images [29]. Max/mean pooling or local 

averaging filters are used often to achieve sub-sampling. The final layers of CNN are 

responsible for the actual classifications, where neurons between the layers are fully 

connected. Deep CNN can be implemented with multiple series of weight-sharing 

convolution layers and sub-sampling layers.  

 

Figure 4b. Single convolution layer of CNN 
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The deep nature of the CNN results in high quality representations while 

maintaining locality, reduced parameters and invariance to minor variations in the input 

image [30]. In most cases, backpropagation is used solely for training all parameters 

(weights and biases) in CNN. Here is a brief description of the algorithm. The cost 

function with respect to individual training example (𝑥, 𝑦) in hidden layers can be 

defined as [31]: 

          𝐽(𝑊, 𝑏; 𝑥, 𝑦) =
1

2
||ℎ𝑤,𝑏(𝑥) − 𝑦||2           (3) 

The equation for error term 𝛿 for layer 𝑙 is given by [31]: 

             𝛿(𝑙) = ((𝑊(𝑙))𝑇𝛿(𝑙+1)) . 𝑓′(𝑧(𝑙))          (4) 

Where 𝛿(𝑙+1) is the error for (𝑙 +  1)th layer of a network whose cost function is 

𝐽(𝑊, 𝑏; 𝑥, 𝑦). 𝑓′(𝑧(𝑙)) represents the derivate of the activation function. 

              𝛻𝑤(𝑙)𝐽(𝑊, 𝑏; 𝑥, 𝑦) =  𝛿(𝑙+1) (𝑎(𝑙+1))𝑇          (5) 

                    𝛻
𝑏(𝑙)

𝐽(𝑊, 𝑏; 𝑥, 𝑦) =  𝛿
(𝑙+1)

           (6) 

Where 𝑎 is the input, such that 𝑎(1) is the input for 1st layer (i.e., the actual input 

image) and 𝑎(𝑙) is the input for 𝑙 − 𝑡ℎ layer. 

Error for sub-sampling layer is calculated as [31]: 

𝛿𝑘

(𝑙)
= 𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒 ((𝑊𝑘

(𝑙)
)𝑇𝛿𝑘

(𝑙+1)) .  𝑓′(𝑧
𝑘
(𝑙))          (7) 
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Where 𝑘 represent the filter number in the layer. In the sub-sampling layer, the 

error has to be cascaded in the opposite direction, e.g., where mean pooling is used, 

upsample evenly distributes the error to the previous input unit. And finally, here is the 

gradient w.r.t. feature maps [31]: 

𝛻
𝑤𝑘

(𝑙)𝐽(𝑊, 𝑏; 𝑥, 𝑦) = ∑(𝑎
𝑖
(𝑙))

𝑚

𝑖−1

∗ 𝑟𝑜𝑡90 (𝛿𝑘

(𝑙+1)
, 2)      (8) 

𝛻
𝑏𝑘
(𝑙)𝐽(𝑊, 𝑏; 𝑥, 𝑦) = ∑(𝛿𝑘

(𝑙+1))
𝑎,𝑏.

𝑎,𝑏

      (9) 

Where (𝑎𝑖
(𝑙)) ∗  𝛿𝑘

(𝑙+1)
 represents the convolution between error and the 𝑖 − 𝑡ℎ 

input in the 𝑙 − 𝑡ℎ layer with respect to the 𝑘 − 𝑡ℎ filter.  

Algorithm 1 represents a high-level description and flow of the backpropagation 

algorithm as used in a CNN as it goes through multiple epochs until either the maximum 

iterations are reached, or the cost function target is met. 

In addition to discriminative models such as image recognition, CNN can also be 

used for generative models such as deconvolving images to make blurry image sharper. 

[32] achieves this by leveraging Fourier transformation to regularize inversion of the 

blurred images and denoising. Different implementations of CNN has shown continuous 

improvement of accuracy in computer vision. The improvements are tested against the 

same benchmark (ImageNet) to ensure unbiased results. 
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Algorithm 1: CNN Backpropagation Algorithm Pseudo Code 

1: 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑡𝑜 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 (𝑠𝑚𝑎𝑙𝑙) 

2: 𝑆𝑒𝑡 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 𝑡𝑜 𝑎 𝑠𝑚𝑎𝑙𝑙 𝑣𝑎𝑙𝑢𝑒 (𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒) 

3: 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑛 = 1;𝑩𝒆𝒈𝒊𝒏 

4:   𝒇𝒐𝒓 𝑛 <  𝑚𝑎𝑥 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑂𝑅 𝐶𝑜𝑠𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 𝑚𝑒𝑡, 𝒅𝒐 

5:     𝒇𝒐𝒓 𝑖𝑚𝑎𝑔𝑒 𝑥1  𝑡𝑜 𝑥𝑖 , 𝒅𝒐 

6:       𝑎. 𝐹𝑜𝑟𝑤𝑎𝑟𝑑 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛, 𝑝𝑜𝑜𝑙𝑖𝑛𝑔 𝑎𝑛𝑑 𝑡ℎ𝑒𝑛 𝑓𝑢𝑙𝑙𝑦 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑙𝑎𝑦𝑒𝑟𝑠 

7:       𝑏. 𝐷𝑒𝑟𝑖𝑣𝑒 𝐶𝑜𝑠𝑡 𝐹𝑢𝑐𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑖𝑚𝑎𝑔𝑒 

8:       𝑐. 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑒𝑟𝑟𝑜𝑟 𝑡𝑒𝑟𝑚 𝛿(𝑙) 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑡𝑦𝑝𝑒 𝑜𝑓 𝑙𝑎𝑦𝑒𝑟𝑠. 

9:           𝑁𝑜𝑡𝑒 𝑡ℎ𝑎𝑡 𝑡ℎ𝑒 𝑒𝑟𝑟𝑜𝑟 𝑔𝑒𝑡𝑠 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒𝑑 𝑓𝑟𝑜𝑚 𝑙𝑎𝑦𝑒𝑟 𝑡𝑜 𝑙𝑎𝑦𝑒𝑟 𝑖𝑛 𝑡ℎ𝑒 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 

10:          𝑖. 𝑓𝑢𝑙𝑙𝑦 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑙𝑎𝑦𝑒𝑟 

11:          𝑖𝑖. 𝑝𝑜𝑜𝑙𝑖𝑛𝑔 𝑙𝑎𝑦𝑒𝑟 

12:          𝑖𝑖𝑖. 𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑙𝑎𝑦𝑒𝑟 

13:     𝑑. 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝛻
𝑤𝑘

(𝑙)  𝑎𝑛𝑑 𝛻
𝑏𝑘

(𝑙)  𝑓𝑜𝑟 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝛻
𝑤𝑘

(𝑙)𝑎𝑛𝑑 𝑏𝑖𝑎𝑠 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑙𝑎𝑦𝑒𝑟 

14:           𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 

15:          𝑖. 𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑙𝑎𝑦𝑒𝑟 

16:          𝑖𝑖. 𝑝𝑜𝑜𝑙𝑖𝑛𝑔 𝑙𝑎𝑦𝑒𝑟 

17:          𝑖𝑖𝑖. 𝑓𝑢𝑙𝑙𝑦 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑙𝑎𝑦𝑒𝑟 

18:     𝑒. 𝑈𝑝𝑑𝑎𝑡𝑒 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 

19:           𝑤𝑗𝑖
(𝑙)

 ←  𝑤𝑗𝑖
(𝑙)

 +  ∆𝑤𝑗𝑖
(𝑙)

  

20:     𝑓. 𝑈𝑝𝑑𝑎𝑡𝑒 𝑏𝑖𝑎𝑠 

21:           𝑏𝑗
(𝑙)

 ←  𝑏𝑗
(𝑙)

 +  ∆𝑏𝑗
(𝑙)

 

 

Here are the well-known variation and implementation of the CNN architecture.  

1. AlexNet: CNN developed to run on Nvidia parallel computing platform to 

support GPUs 

2. Inception: Deep CNN developed by Google  

3. ResNet: Very deep Residual network developed by Microsoft. It won 1st place 

in the ILSVRC 2015 competition on ImageNet dataset. 

4. VGG: Very deep CNN developed for large scale image recognition 

5. DCGAN: Deep convolutional generative adversarial networks proposed by 

[33]. It is used in unsupervised learning of hierarchy of feature representations 

in input objects. 
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2.2.2 Autoencoder 

Autoencoder is a neural network that uses unsupervised algorithm and learns the 

representation in the input data set for dimensionality reduction and to recreate the 

original data set. The learning algorithm is based on the implementation of the 

backpropagation. 

 

Figure 5. Linear representation of a 2D data input using PCA 

Autoencoders extend the idea of principal component analysis (PCA). As shown 

in Figure 5, a PCA transforms multi-dimensional data into a linear representation. Figure 

5 demonstrates how a 2D input data can be reduced to a linear vector using PCA. 

Autoencoders on the other hand can go further and produce nonlinear representation. 

PCA determines a set of linear variables in the directions with largest variance. The 𝑝 

dimensional input data points are represented as 𝑚 orthogonal directions, such that 𝑚 ≤

 𝑝 and constitutes a lower (i.e., less than 𝑚) dimensional space. The original data points 

are projected into the principal directions thus omitting information in the corresponding 
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orthogonal directions. PCA focuses more on the variances rather than covariances and 

correlations and it looks for the linear function with the most variance [34]. The goal is to 

determine the direction with the least mean square error, which would then have the least 

reconstruction error.  

Autoencoders use encoder and decoder blocks of non-linear hidden layers to 

generalize PCA to perform dimensionality reduction and eventual reconstruction of the 

original data. It uses greedy layer by layer unsupervised pre-training and fine-tuning with 

backpropagation [35]. Despite using backpropagation, which is mostly used in supervised 

training, autoencoders are considered unsupervised DNN because they regenerate the 

input 𝑥(𝑖) itself instead of a different set of target values 𝑦(𝑖), i.e., 𝑦(𝑖) = 𝑥(𝑖). Hinton et 

al. were able to achieve a near perfect reconstruction of 784-pixel images using 

autoencoder, proving that it is far better than PCA [36].  

While performing dimensionality reduction, autoencoders come up with 

interesting representations of the input vector in the hidden layer. This is often attributed 

to the smaller number of nodes in the hidden layer or every second layer of the two-layer 

blocks. But even if there are higher number of nodes in the hidden layer, a sparsity 

constraint can be enforced on the hidden units to retain interesting lower dimension 

representations of the inputs. To achieve sparsity, some nodes are restricted from firing, 

i.e., the output is set to a value close to zero. 

Figure 6 shows single layer feature detector blocks of RBMs used in pre-training, 

which is followed by unrolling  [36]. Unrolling combines the stacks of RBMs to create 
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the encoder block and then reverses the encoder block to create the decoder section, and 

finally the network is fine-tuned with backpropagation [36]. 

 

 

Figure 6. Training stages in Autoencoder [36] 

Figure 7 illustrates a simplified representation of how autoencoders can reduce 

the dimension of the input data and learn to recreate it in the output layer. Wang et al. 

[37] successfully implemented a deep autoencoder with stacks of RBM blocks similar to 

Figure 6 to achieve better modeling accuracy and efficiency than the proper orthogonal 

decomposition (POD) method for dimensionality reduction of distributed parameter 



 
 

40 

systems (DPSs). The equation below describes the average of activation function 𝑎𝑗
(2)

 of 

𝑗𝑡ℎ unit of 2nd layer when the 𝑥𝑡ℎ input activates the neuron [38]. 

𝜌̂ 𝑗 =
1

𝑚
∑ [𝑎𝑗

(2)𝑚
𝑖=1 𝑥(𝑖) ]         (10)      

 

Figure 7. Autoencoder nodes 

A sparsity parameter 𝜌is introduced such that 𝜌 is very close to zero, e.g., 0.03 

and 𝜌̂ =  𝜌. To ensure that 𝜌̂ =  𝜌, a penalty term 𝐾𝐿(𝜌|| 𝜌̂ )𝑗  is introduced such that the 

Kullback–Leibler (KL) divergence term 𝐾𝐿(𝜌||𝜌̂ )𝑗 = 0, if 𝜌̂ = 𝜌𝑗 , else becomes large 

monotonically as the difference between the two values diverges [38]. Here is the 

updated cost function [38]: 

𝐽 (𝑊, 𝑏)𝑠𝑝𝑎𝑟𝑠𝑒 = 𝐽(𝑊, 𝑏) + 𝛽 ∑ 𝐾𝐿(𝜌|| 𝜌̂ )𝑗

𝑠2

𝑗=1

 ]         (11) 
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Where s2 equals the number of units in 2nd layer and 𝛽 is the parameter than 

controls sparsity penalty term’s weight. 

2.2.3 Restricted Boltzmann Machine (RBM) 

Restricted Boltzmann Machine is an artificial neural network where we can apply 

unsupervised learning algorithm to build non-linear generative models from unlabeled 

data [39]. The goal is to train the network to increase a function (e.g., product or log) of 

the probability of vector in the visible units so it can probabilistically reconstruct the 

input. It learns the probability distribution over its inputs. As shown in Figure 8, RBM is 

made of two-layer network called the visible layer and the hidden layer. Each unit in the 

visible layer is connected to all units in the hidden layer and there are no connections 

between the units in the same layer.  

The energy (E) function of the configuration of the visible and hidden units, (v, h) 

is expressed in the following way [40]: 

E(v, h) = − ∑ 𝑎𝑖𝑣𝑖

𝑖 𝜀 𝑣𝑖𝑠𝑖𝑏𝑙𝑒

− ∑ 𝑏𝑗ℎ𝑗

𝑗 𝜀 ℎ𝑖𝑑𝑑𝑒𝑛

− ∑𝑣𝑖ℎ𝑗

𝑖,𝑗

𝑤𝑖𝑗          (12) 

vi and hj are the vector states of the visible unit i and hidden unit j. ai and bj 

represents the bias of visible and hidden units. Wij denotes the weight between the 

respective visible and hidden units. 

The partition function, Z is represented by the sum of all possible pairs of visible 

and hidden vectors [40]. 
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Figure 8. Restricted Boltzmann Machine 

𝑍 = ∑ 𝑒−𝐸 (𝑣,ℎ)   
𝑣,ℎ                 (13) 

The probability of every pair of visible and hidden vectors is given by the 

following [40]. 

𝑝(𝑣, ℎ) =
1

𝑍
𝑒−𝐸 (𝑣,ℎ)                                    (14) 

The probability of a particular visible layer vector is provided by the following 

[40]. 

𝑝(𝑣) =
1

𝑍
∑ 𝑒−𝐸 (𝑣,ℎ)

ℎ
                    (15) 

As you can see from the equations above, the partition function becomes higher 

with lower energy function value. Thus during the training process, the weights and 

biases of the network are adjusted to arrive at a lower energy and thus maximize the 

probability assigned to the training vector. It is mathematically convenient to compute the 

derivative of the log probability of a training vector. 

𝜕 log 𝑝(𝑣)

𝜕𝑤𝑖𝑗

= 〈𝑣𝑖ℎ𝑗〉𝑑𝑎𝑡𝑎
− 〈𝑣𝑖ℎ𝑗〉𝑚𝑜𝑑𝑒𝑙         

(16) 
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In the equation [40] above 〈vihj〉data and 〈vihj〉model represents the expectations 

under the respective distributions. 

Thus, the adjustments in the weights can be denoted as follows [40], where ϵ is 

the learning rate. 

∆𝑤𝑖𝑗 = 𝜖(〈𝑣𝑖ℎ𝑗〉𝑑𝑎𝑡𝑎 − 〈𝑣𝑖ℎ𝑗〉𝑚𝑜𝑑𝑒𝑙)            (17) 

2.2.4 Long Short-Term Memory (LSTM) 

LSTM is an implementation of the Recurrent Neural Network and was first 

proposed by Hochreiter et al. in 1997 [41]. Unlike the earlier described feed forward 

network architectures, LSTM can retain knowledge of earlier states and can be trained for 

work that requires memory or state awareness. LSTM partly addresses a major limitation 

of RNN, i.e., the problem of vanishing gradients by letting gradients to pass unaltered. As 

shown in the illustration in Figure 9, LSTM consists of blocks of memory cell state 

through which signal flows while being regulated by input, forget and output gates. These 

gates control what is stored, read and written on the cell. LSTM is used by Google, Apple 

and Amazon in their voice recognition platforms [42]. 

In Figure 9, 𝐶, 𝑥, ℎ represent cell, input and output values. Subscript 𝑡 denotes 

time step value, i.e., 𝑡 − 1 is from previous LSTM block (or from time 𝑡 − 1) and 

𝑡 denotes current block values. The symbol σ is the sigmoid function and 𝑡𝑎𝑛ℎ is the 

hyperbolic tangent function. Operator + is the element-wise summation and x is the 

element-wise multiplication. 
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Figure 9. LSTM Block with memory cell and gates 

The computations of the gates are described in the equations below[41, 43]. 

𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑤𝑓ℎ𝑡−1 + 𝑏𝑓)             (18)  

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑤𝑖ℎ𝑡−1 + 𝑏𝑖)             (19) 

 𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑤𝑜ℎ𝑡−1 + 𝑏𝑜)             (20)  

𝑐𝑡 = 𝑓𝑡 ⨂𝑐𝑡−1 + 𝑖𝑡⨂ 𝜎𝑐(𝑊𝑐𝑥𝑡 + 𝑤𝑐ℎ𝑡−1 + 𝑏𝑐)             (21) 

ℎ𝑡 = 𝑜𝑡 ⨂ 𝜎ℎ(𝑐𝑡)             (22) 

Where 𝑓, 𝑖, 𝑜 are the forget, input and output gate vectors respectively.  

𝑊,𝑤, 𝑏 𝑎𝑛𝑑 ⨂ represent weights of input, weights of recurrent output, bias and element-

wise multiplication respectively.  
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There is a smaller variation of the LSTM known as gated recurrent units (GRU). 

GRUs are smaller in size than LSTM as they don’t include the output gate, and can 

perform better than LSTM on only some simpler datasets[44, 45]. 

LSTMs recurrent neural networks can keep track of long-term dependencies. 

Therefore, they are great for learning from sequence input data and building models that 

rely on context and earlier states. The cell block of LSTM retains pertinent information of 

previous states. The input, forget and output gates dictates new data going into the cell, 

what remains in the cell and the cell values used in the calculation of the output of the 

LSTM block respectively [41, 43]. Naul et al. demonstrated LSTM and GRU based 

autoencoders for automatic feature extractions [46].  

2.2.5 Comparison of DNN Networks 

Table 2 provides a compact summary and comparison of the different DNN 

architectures. The examples of implementations, applications, datasets and DL software 

frameworks presented in the table are not implied to be exhaustive. In addition, some of 

the categorization of the network architectures could be implemented in hybrid fashion. 

E.g., even though RBMs are generative models and their training is considered 

unsupervised, they can have elements of discriminative model when training is fine-tuned 

with supervised learning. The table also provides examples of common applications for 

using different architectures. 
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Table 2:  DNN Network comparison table 

Network 

Type Architecture 

Network 

Model 

Training 

Type 

Training 

Algorithm 

Implementation 

Sample 

Common 

Application 

Popular 

Dataset 

Sample 

DL Framework 

(sample) 
Fe

ed
fo

rw
ar

d
 N

eu
ra

l N
et

w
o

rk
 

CNN 
Discrimina

tive 
Supervised 

Gradient 

Descent 

based 

Backpropagat

ion 

Siamese 

Network, Deep 

CNN 

Image 

recognition/classif

ication 

MNIST 

TensorFlow, Caffe, 

Theano, Torch, 

Deeplearning4j, 

Microsoft Cognitive 

Toolkit, Keras, 

MXNet, PyTorch 

Residual 

Network 

Discrimina

tive 
Supervised 

Gradient 

Descent 

based 

Backpropagat

ion 

Deep ResNet; 

HighwayNet; 

DenseNet 

Image recognition ImageNet 
TensorFlow, 

PyTorch, Keras 

Autoencoder Generative 
Unsupervi

sed 

Backpropagat

ion 

Sparse 

Autoencoders, 

Variational 

Autoencoders 

Dimensionality 

Reduction; 

Encoding 

MNIST 

TensorFlow, 

Deeplearning4j, 

Keras 

Adversarial 

Networks 

Generative 

& 

Discrimina

tive 

Unsupervi

sed 

Backpropagat

ion 

Generative 

Adversarial 

Network 

Generate realistic 

fake data; 

Reconstruction of 

3D models; Image 

improvement 

CIFAR10 TensorFlow, Keras 

RBM 

Generative 

with 

Discrimina

tive 

finetuning 

Unsupervi

sed 

Gradient 

Descent 

based 

Contrastive 

divergence 

Deep Belief 

Network; Deep 

Boltzmann 

Machine 

Dimensionality 

Reduction; 

Feature learning; 

Topic modeling 

MNIST 

TensorFlow, 

Deeplearning4j, 

Keras, MXNet, 

Theano, Torch 

Recurrent 

Neural 

Network 

LSTM 
Discrimina

tive 
Supervised 

Gradient 

Descent & 

Backpropagat

ion through 

Time 

Deep RNN, 

Gated Recurrent 

Unit (GRU), 

Neural Machine 

Translation 

(NMT) 

Natural Language 

Processing; 

Language 

Translation 

MNIST 

Stroke 

Sequence 

TensorFlow, Caffe, 

Theano, Torch, 

Deeplearning4j, 

Microsoft Cognitive 

Toolkit, Keras, 

MXNet, PyTorch 

Radial 

Basis 

Function 

NN 

RBF Network 
Discrimina

tive 

Supervised 

and 

Unsupervi

sed 

K-means 

Clustering; 

Least Square 

Function 

Radial Basis 

Function NN 

Function 

approximation; 

Time series 

prediction 

Fisher's Iris 

data set 
TensorFlow 

Kohonen 

Self 

Organizing 

NN 

Nodes 

arranged in 

hexagonal or 

rectangular 

grid 

Generative 
Unsupervi

sed 

Competitive 

Learning 

Kohonen Self 

Organizing NN 

Dimensionality 

Reduction; 

Optimization 

problems; 

Clustering analysis 

SPAMbase TensorFlow 
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2.3 Dataset 

Access to data is a critical factor for training robust ML models. The explosion of 

smart devices, sensors, cloud and edge computing have resulted in massive volume, 

variety and velocity of data. While this has been a tremendous boon to ML, normalizing 

and sanitizing this data before utilizing them for training is a challenge. The goal of 

dataset optimization is to reduce the dimensions or the size of the dataset with the intent 

of improving the accuracy and/or reducing training time, without compromising on the 

quality. There are several type of dataset optimization methods that are currently in 

practice.    

Dataset optimization including importance sampling has been used to fine-tune 

the training process and achieve both training speed-up and accuracy improvement. Here 

are some of the earlier related work. 

[47] enhanced variations of stochastic optimization (prox-SMD and prox-SDCA) 

with importance sampling to reduce the variance resulting in better convergence rate of 

the training. [48] optimized the training of CNN and RNN with importance sampling by 

computing an upper bound for the gradient and estimation for the variance reduction.    

Dataset and training data in general come with lot of noise that do not contribute 

to the training process and in some cases hinder training. An effective sampling from the 

full dataset is a great way to address this concern. [49] showed that the sampling based of 

word frequency compression and speaker distribution can have a positive impact on 

training. 
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2.4 Training Algorithms  

The learning algorithm constitutes the main part of Deep Learning. The number 

of layers differentiates the deep neural network from shallow ones. The higher the 

number of layers, the deeper it becomes. Each layer can be specialized to detect a specific 

aspect or feature.  

As indicated by Maryam M Jajafabadi et al. [50], in case of image (face) 

recognitions, first layer can detect edges and the second can detect higher features such as 

various part of the face, e.g., ears, eyes, etc., and the third layer can go further up the 

complexity order by even learning facial shapes of various persons. Even though each 

layer might learn or detect a defined feature, the sequence is not always designed for it, 

especially in unsupervised learning. These feature extractors in each layer had to be 

manually programmed prior to the development of training algorithms such as gradient 

descent. These hand-crafted classifiers didn’t scale for lager dataset or adapt to variation 

in the dataset. This message was echoed in the 1998 paper [28] by Yann Lecun et al., 

where they demonstrate that systems with more automatic learning and reduced manually 

designed heuristics yields far better pattern recognition.  

Backpropagation provides representation learning methodology, where raw data 

can be fed without the need to manually massage it for classifiers, and it will 

automatically find the representations needed for classification or recognition [15]. The 

goal of the learning algorithm is to find the optimal values for the weight vectors to solve 

a class of problem in a domain.  
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Some of the well-known training algorithms are: 

1. Gradient Descent 

2. Stochastic Gradient Descent 

3. Momentum 

4. Levenberg–Marquardt algorithm 

5. Backpropagation through time 

2.4.1 Gradient Descent 

Gradient descent (GD) is the underlying idea in most of machine learning and 

deep learning algorithms. It is based on the concept of Newton’s Algorithm for finding 

the roots (or zero value) of a 2D function. To achieve this, we randomly pick a point in 

the curve and slide to the right or left along the x-axis based on negative or positive value 

of the derivative or slope of the function at the chosen point until the value of the y-axis, 

i.e., function or f(x) becomes zero. The same idea is used in gradient descent, where we 

traverse or descend along a certain path in a multi-dimensional weight space if the cost 

function keeps decreasing and stop once the error rate ceases to decrease. Newton’s 

method is prone to getting stuck in local minima if the derivative of the function at the 

current point is zero. Likewise, this risk is also present when using gradient descent on a 

non-convex function. In fact, the impact is amplified in the multi-dimensional (each 

dimension represents a weight variable) and multi-layer landscape of DNN and it result 

in a sub-optimal set of weights. Cost function is one half the square of the difference 

between the desired output minus the current output as shown below. 
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C =
1

2
(𝑦

expected
− 𝑦

𝑎𝑐𝑡𝑢𝑎𝑙
)

2

                             (23) 

Backpropagation methodology uses gradient descent. In backpropagation, chain 

rule and partial derivatives are employed to determine error delta for any change in the 

value of each weight. The individual weights are then adjusted to reduce the cost function 

after every learning iteration of training data set, resulting in a final multi-dimensional 

(multi-weight) landscape of weight values [15]. We process through all the samples in the 

training dataset before applying the updates to the weights.  This process is repeated until 

cost function doesn’t reduce any further.  

Figure 10 shows the error derivatives in relation to outputs in each hidden layer, 

which is the weighted summation of the error derivates in relation to the inputs in the unit 

in the above layer. E.g., when 𝜕𝐸/𝜕𝑧𝑘  calculated, the partial error derivative with respect 

to 𝑤𝑗𝑘 to   is equal to𝑦𝑗𝜕𝐸/𝜕𝑧𝑘. 

 

Figure 10. Error calculation in Multilayer Neural Network [15] 
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2.4.2. Stochastic Gradient Descent 

Stochastic Gradient Descent (SGD) is the most common variation and 

implementation of gradient descent. In gradient descent, we process through all the 

samples in the training dataset before applying the updates to the weights. While in SGD, 

updates are applied after running through a minibatch of n number of samples. Since we 

are updating the weights more frequently in SGD than in GD, we can converge towards 

global minimum much faster. 

2.4.3. Momentum 

In the standard SGD, learning rate is used as a fixed multiplier of the gradient to 

compute step size or update to the weight. This can cause the update to overshoot a 

potential minima, if the gradient is too steep, or delay the convergence if the gradient is 

noisy. Using the concept of momentum in physics, the momentum algorithm presents a 

velocity 𝑣 variable that configured as an exponentially decreasing average of the gradient 

[51]. This helps prevent costly descent in the wrong direction.  In the equation below, 

𝛼 ∈ [0,1) is the momentum parameter and 𝜖 is the learning rate. 

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑈𝑝𝑑𝑎𝑡𝑒: 𝑣  ←  𝛼𝑣 −  𝜖𝑔                (24) 

        𝐴𝑐𝑡𝑢𝑎𝑙 𝑈𝑝𝑑𝑎𝑡𝑒: 𝜃  ← 𝜃 +  𝑣                (25) 

2.4.4 Levenberg-Marquardt algorithm 

Levenberg-Marquadt algorithm (LMA) is primarily used in solving non-linear 

least squares problems such as curve fitting. In least squares problems, we try to fit a 
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given data points with a function with the least amount of sum of the squares of the errors 

between the actual data points and points in the function. LMA uses a combination of 

gradient descent and Gauss-Newton method. Gradient descent is employed to reduce the 

sum of the squared errors by updating the parameters of the function in the direction of 

the steepest-descent, while the Gauss-Newton method minimizes the error by assuming 

the function to be locally quadratic and finds the minimum of the quadratic [52]. 

If the fitting function is denoted by ŷ(t;p) and m data points denoted by (ti,yi), then the squared 

error can be written as [52]: 

         𝑥2(𝒑) = ∑ [
y(𝑡𝑖)− ŷ(𝑡𝑖;𝐩)

𝜎𝑦𝑖

]
2

𝑚

𝑖=1

           (26) 

 

                       = (𝑦 −   ŷ(𝑝))𝑇𝑊 (𝑦 −   ŷ(𝑝))            (27) 

 

                       = 𝑦𝑇𝑊𝑦 − 2𝑦𝑇𝑊ŷ + ŷ𝑇𝑊ŷ                (28) 

where the measurement error for y (ti), i.e., σyi is the inverse of the weighting matrix Wii.  

The gradient descent of the squared error function in relation to the n parameters 

can be denoted as [52]: 

∂

∂𝐩
𝑥2 = 2(𝑦 −   ŷ(𝑝))𝑇𝑊 

∂

∂𝐩
 (𝑦 −   ŷ(𝑝))      (29) 

                    = 2(𝑦 −   ŷ(𝑝))𝑇𝑊 [
∂ŷ(𝑝)

∂𝐩
]       (30) 

                                            = 2(𝑦  ŷ)𝑇𝑊 𝐉      (31) 



 
 

53 

             hgd = 𝛼 𝐉𝑇𝑊 (𝑦 −   ŷ)      (32) 

where J is the Jacobian matrix of size m x n used in place of the [∂ŷ/ ∂p], and hgd 

is the update in the direction of the steepest gradient descent. 

The equation for the Gauss-Newton method update (hgn) is as follows [52]: 

[J𝑇WJ]hgn = J𝑇W(𝑦 − ŷ)      (33) 

The Levenberg- Marquardt update [hlm] is generated by combining gradient 

descent and Gauss-Newton methods resulting in the equation below [52]: 

[J𝑇WJ +  λ diag (J𝑇WJ)] hlm = J𝑇W(𝑦 − ŷ)      (34) 

 

2.4.5 Backpropagation Through Time 

Backpropagation through time (BPTT) is the standard method to train the 

recurrent neural network. As shown in Figure 2b, the unrolling of RNN in time makes it 

appears like a feedforward network. But unlike the feedforward network, the unrolled 

RNN has the same exact set of weight values for each layer and represents the training 

process in time domain. The backward pass through this time domain network calculates 

the gradients with respect to specific weights at each layer. It then averages the updates 

for the same weight at different time increments (or layers) and changes them to ensure 

the value of weights at each layer continues to stay uniform.   



 
 

54 

2.4.6 Comparison of Deep Learning Algorithms 

Table 3 provides a summary and comparison of common DL algorithms. The 

advantages and disadvantages are presented along with techniques to address the later. 

Gradient descent-based training is the most common type of training. Backpropagation 

through time is the backpropagation tailored for recurrent neural network. Contrastive 

divergence finds its use in probabilistic models such as RBMs. Evolutionary algorithms 

can be applied to hyperparameter optimizations or training models by optimizing 

weights. Reinforcement learning could be used in game theory, multi-agent systems and 

other problems where both exploitation and exploration need to be optimized. 

Table 3: Deep Learning Algorithm Comparison Table 

Algorithm Advantages Disadvantages 
Techniques to address 

disadvantages 

(Batch) Gradient 

Descent 

Scales well after 

optimizations 

Takes a long time to converge as 

weights are updated after the entire 

dataset pass 

Mini-Batch Gradient Descent 

Local minima Please see Table 4 

Stochastic Gradient 

Descent 

Scales well after 

optimizations 

Noisy error rates since it is calculated 

at every sample; Accuracy requires 

random order 

Mini-Batch Gradient Descent; 

Shuffle data after every epoch 

Local minima Please see Table 4 

Back Propagation 

through Time 

Performs better than 

metaheuristics (e.g., genetic 

algorithm) 

Hard to be used in the application 

where online adaption is required as 

the entire time series must be used 

Truncate part of time instead of 

entire time 

Contrastive 

divergence 

Can create samples that 

appear to come from input 

data distribution; Generative 

models; Pattern completion 

Difficult to train 
Get sampling from Monte Carlo 

Markov Chain 

Evolutionary 

Algorithms 

Is able to explore and exploit 

solutions space effectively 

Takes long time to run as it needs to 

test different combinations 
Utilize cloud and GPUs 

Reinforcement 

Learning (Q-learning) 

Is able to balance exploration 

and exploitation 

In some cases, reward is extremely 

rare 

Work backwards from the reward 

state 
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2.5 Shortcomings of Training Algorithms  

There are several shortcomings with the standard use of training algorithms on 

DNNs. The most common ones are described here. 

2.5.1 Vanishing and Exploding Gradients 

Deep neural networks are prone to vanishing (or exploding) gradients due to the 

inherent way in which gradients (or derivates) are computed layer by layer in a cascading 

manner with each layer contributing to exponentially decreasing or increasing 

derivatives. Weights are increased or decreased based on gradients to reduce the cost 

function or error. Very small gradients can cause the network to take a long time to train, 

whereas large gradients can cause the training to overshoot and diverge. This is made 

worse by the non-linear activation functions like sigmoid and tanh functions that squash 

the outputs to a small range. Since change in weight have nominal effect on the output, 

training could take much longer. This problem can be mitigated using linear activation 

function like ReLu and proper weight initialization. 

2.5.2 Local Minima 

Local minima is always the global minima in a convex function, which makes 

gradient descent based optimization foolproof. Whereas in nonconvex functions, 

backpropagation based gradient descent is particularly vulnerable to premature 

convergence into the local minima. A local minima as shown in Figure 11, can easily be 

mistaken for global absolute minima.  
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Figure 11. Gradient Descent 

2.5.3 Flat Regions 

Just like local minima, flat regions or saddle points (Figure 12) also pose similar 

challenge for gradient descent-based optimization in nonconvex high-dimensional 

functions. The training algorithm could potentially be misled by this area as the gradient 

comes to a halt at this point. 

 

Figure 12. Flat (saddle point marked with black dot) region in a nonconvex function 
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2.5.4 Steep Edges 

Steep edges are another section of the optimization surface area where the steep 

gradient could cause the gradient descent-based weight updates to overshoot and miss a 

potential global minima. 

2.5.5 Training Time 

Training time is an important factor to gauge the efficiency of an algorithm. It is 

not uncommon for graduate students to train their model for days or weeks in the 

computer lab. Most models require exorbitant amount of time and large datasets to train. 

Often many of the samples from the datasets do not add value to the training process and 

in some cases, they introduce noise and adversely affect the training. 

2.5.6 Overfitting 

As we add more neurons to DNN, it can undoubtedly model the network for more 

complex problems. DNN can lend itself to high conformability to training data. But there 

is also a high risk of overfitting to the outliers and noise in the training data as shown in 

Figure 13. This can result in delayed training and testing times and result in the lower 

quality prediction on the actual test data. E.g., in classification or cluster problems, 

overfitting can create a high order polynomial output that separates the decision boundary 

for the training set, which will take longer and result in degraded results for most test data 

set. One way to overcome overfitting is to choose the number of neurons in the hidden 

layer wisely to match the problem size and type. There are some algorithms that can be 
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used to approximate the appropriate number of neurons but there is no magic bullet and 

the best bet is to experiment on each use case to get an optimal value. 

 

Figure 13. Overfitting in Classification 

2.6 Architectures & Algorithms – Implementations 

This section describes different implementations of neural networks using a 

variety of training methods, network architectures and models. It also includes models 

and ideas that have been incorporated into machine learning in general. 

2.6.1 Deep Residual Learning 

The ability to add more layers to DNN has allowed us to solve harder problems. 

Microsoft Research Asia (MSRA) applied a 100/1000 layer deep residual network 

(ResNet) on CIFAR-10 dataset and won 1st place in the ILSVRC 2015 competition with a 

152-layer DNN on the ImageNet dataset [53]. Figure 14 demonstrates a simplified 

version of Microsoft’s winning deep residual learning model. Despite the depth of these 

networks, simply adding more layers to DNN does not improve or guarantee results. To 
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the contrary, it degrades the quality of the solution. This makes training DNN not so 

straight forward. The MSRA team was able to overcome the degradation by making the 

hoping stacked layers match a residual mapping instead of the desired mapping with the 

following function [53]: 

𝐹(𝑥): = 𝐻(𝑥) −  𝑥𝑣               (35) 

Where F(x) is the residual mapping and H(x) is the desired mapping, and then by 

recasting the desired mapping at the end [53]. According to MSRA team, it is much 

easier to optimize the residual mapping. 

 

Figure 14. Deep Residual Learning model by MSRA at Microsoft 

2.6.2 Oddball Stochastic gradient descent 

All training data are not created equal. Some will have higher training error than 

the others. Yet, we assume that they are the same and thus use each training examples the 

same number of times. Andrew Simpson [54] argues that this assumption is invalid and 

makes a case in his paper for the number of times a training examples is used to be 

proportional to its respective training error. So, if a training example has a higher error 

rate, it will be used to train the network higher number of times than the other training 
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example. Andrew Simpson [54] proves his methodology, termed Oddball Stochastic 

Gradient Descent with a training set of 1000 video frames. Simpson [54] created a 

training selection probability distribution for training example based on the error value 

and pegged the frequency of using the training example based on the distribution. 

2.6.3 Deep Belief Network 

Xue-wen Chen et al. [23] highlights the fact that conventional neural network can 

easily get stuck in local minima when the function is non-convex. They propose a DNN 

architecture called large scale deep belief network (DBN) that uses both labeled and 

unlabeled to learn feature representations. DBN are made up of layers of RBM stacked 

together and learn probability distribution of the input vectors. They employ 

unsupervised pre-training and fine-tuned supervised algorithms and techniques to 

mitigate the risk of getting trapped in local minima. Below is the equation [23] for change 

in weights, where c is the momentum factor and α is the learning rate, and v and h are 

visible and hidden units respectively. 

∆𝑤𝑖𝑗(𝑡 + 1) = 𝑐∆𝑤𝑖𝑗(𝑡) +  𝛼(〈𝑣𝑖ℎ𝑗〉𝑑𝑎𝑡𝑎 − 〈𝑣𝑖ℎ𝑗〉𝑚𝑜𝑑𝑒𝑙)           (36) 

 

Equation [23] for probability distribution for hidden and visible inputs. 

𝑝(ℎ𝑗 = 1 |v;W) = σ(∑𝑤𝑖𝑗𝑣𝑖

𝐼

𝑖=1

+ 𝑎𝑗)          (37) 

𝑝(𝑣𝑖 = 1 |h;W) = σ(∑𝑤𝑖𝑗ℎ𝑗

𝐽

𝑗=1

+ 𝑏𝑖)          (38) 

2.6.4 Big Data 

Big data provides tremendous opportunity and challenge for deep learning. Big 

data is known for the 4 Vs (volume, velocity, veracity, variety). Unlike the shallow 
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networks, the huge volume and variety of data can be handled by DNNs and significantly 

improve the training process and the ability to fit more complex models. On the flip side, 

the sheer velocity of data that is generated in real-time can be daunting to process. 

Maryam M Jajafabadi et al. [50] raises similar challenges learning from real-time 

streaming data such as credit cards usage to monitor for fraud detection. They propose 

using parallel and distributed processing with thousands of CPU cores. In addition, we 

should also use cloud providers that support auto-scaling based on usage and workload. 

Not all data represent the same quality. In the case of computer vision, images from 

constrained sources, e.g., studios are much easier to recognize that the ones from 

unconstrained sources like surveillance cameras. [55] proposes a method to utilize 

multiple images of the unconstrained source to enhance the recognition process. 

Deep learning can help mine and extract useful patterns from big data and build 

models for inference, prediction and business decision making. There is massive volumes 

of structured and unstructured data and media files getting generated today making 

information retrieval very challenging. Deep learning can help with semantic indexing to 

enable information to be more readily accessible in search engines [7, 56]. This involves 

building models that provide relationships between documents and keywords the contain 

to make information retrieval more effective.  

2.6.5 Generative Top Down Connection (Generative Model) 

Much of the training is usually implemented with bottom-up approach, where 

discriminatory or recognition models are developed using backpropagation. A bottom-up 

model is one that takes the vector representation of input objects and computes higher 
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level feature representations at subsequent layer with a final discrimination or recognition 

pattern at the output layer. One of the shortcomings of backpropagation is that it requires 

labeled data to train. Geoffrey Hinton proposed a novel way of overcoming this limitation 

in 2007 [57]. He proposed a multi-layer DNN that used generative top-down connection 

as opposed to bottom-up connection to mimic the way we generate visual imagery in our 

dream without the actual sensory input. In top-down generative connection, the high-

level data representation or the outputs of the networks are used to generate the low-level 

raw vector representations of the original inputs, one layer at a time. The layers of feature 

representations learned with this approach can then be further perfected either in 

generative models such as auto-encoders or even standard recognition models [57].  

In the generative model in Figure 15, since the correct upstream cause of the 

events in each layer is known, a comparison between the actual cause and the prediction 

made by the approximate inference procedure can be made, and the recognition weights, 

𝑟𝑖𝑗 can be adjusted to increase the probability of correct prediction.  

 

Figure 15. Learning multiple layers of representation 
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Here is the equation [57] for adjusting the recognition weights 𝑟𝑖𝑗. 

∆𝑟𝑖𝑗  α ℎ𝑖 (ℎ𝑗 − 𝜎(∑ℎ𝑖𝑟𝑖𝑗
𝑖

 ))             (39) 

2.6.6 Pre-training with Unsupervised Deep Boltzmann Machines 

Vast majority of DNN training is based on supervised learning. In real life, our 

learning is based on both supervised and unsupervised learning. In fact, most of our 

learning is unsupervised. Unsupervised learning is more relevant in today’s age of big 

data analytics because most raw data is unlabeled and un-categorized [50]. One way to 

overcome the limitation of backpropagation, where it gets stuck in local minima is to 

incorporate both supervised and unsupervised training. It is quite evident that top-down 

generative unsupervised learning is good for generalization because it is essentially 

adjusting the weights by trying to match or recreate the input data one layer at a time 

[58]. After this effective unsupervised pre-training, we can always fine-tune it with some 

labeled data. Geoffrey Hinton and Ruslan Salakhutdinov describe multiple layers of 

RBMs that are stacked together and trained layer by layer in a greedy, unsupervised way, 

essentially creating what is called the Deep Belief Network. They further modify stacks 

to make them un-directed models with symmetric weights, thus creating the Deep 

Boltzmann Machines (DBM). Four layered deep belief network and deep Boltzmann 

machines are shown in Figure 16. In [58] the DBM layers were pre-trained one at a time 

using unsupervised method and then tweaked using supervised backpropagation on the 

MNIST and NORB datasets as shown in Figure 17. They [58] received favorable results 

validating benefits of combining supervised and unsupervised learning methods. 
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Figure 16. Four-layer DBN & four-layer Deep Boltzmann Machine 

 

Figure 17. Pretraining of stacked & altered RBM to create a DBM [58] 

Here are the equations showing probability distributions over visible and two 

hidden units in DBM (after unsupervised pre-training) [58]. 

𝑝(𝑣𝑖 = 1|h1) = σ(∑𝑊𝑖𝑗
1ℎ𝑗

𝑗

)     (40) 

𝑝(ℎ𝑚
2 = 1|h1) = σ(∑𝑊𝑗𝑚

2 ℎ𝑗
1

𝑗

)     (41) 

 

𝑝(ℎ𝑗
1 = 1|v, h2) = σ(∑ 𝑊𝑖𝑗

1𝑣𝑖 +𝑖 ∑ 𝑊𝑗𝑚
2 ℎ𝑚

2
𝑚 )     (42) 
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Post unsupervised pre-training, the DBM is converted into a deterministic multi-

layer neural network by fine-tuning the network with supervised learning using labeled 

data as demonstrated in Figure 18. The approximate posterior distribution q(h|v) is 

generated for each input vector and the marginals q(h2
j=1|v) are added as an additional 

input for the network as shown in the Figure 18 and subsequently, backpropagation is 

used to fine-tune the network [58]. 

 

Figure 18. DBM getting initialized as deterministic neural network with supervised fine-tuning [58] 

2.6.7 Extreme Learning Machine (ELM) 

There have been other variations of learning methodologies. While more layers 

allow us to extract more complex features and patterns, some problems might be solved 

faster and better with less number of layers. [59] proposed a four-layered CNN termed 

DeepBox that outperformed larger networks in speed and accuracy. ELM is another type 

of neural network with just one hidden layer. Linear models are learnt from the dataset in 

a single iteration by adjusting the weights between the hidden layer and the output, 
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whereas the weights between the input and the hidden layers are randomly initialized and 

fixed [60].  

ELM can obviously converge much faster than backpropagation, but it can only 

be applied to simpler problems of classifications and regression. Since proposing ELM in 

2006, Buang-Bin Huang et al. came up with a multilayer version of ELM in 2016 [61] to 

take on more complex problems. They combined unsupervised multilayer encoding with 

the random initialization of the weights and demonstrate faster convergence or lower 

training time than the state-of-the-art multilayer perceptron training algorithm. 

2.6.8 Multi-objective Sparse Feature Learning Model 

Moaguo et al. [62] developed a multi-objective sparse feature learning (MO-SFL) 

model based on auto encoder, where they used an evolutionary algorithm to optimize two 

competing objectives of sparsity of hidden units and the reconstruction error (input 

vendor of AE). It fairs better than models where the sparsity is determined by human 

intervention or less than optimal methods.   

Since the time complexity of evolutionary algorithms are high, they [62] utilize 

self-adaptive multi-objective differential evolution (DE) based on decomposition (Sa-

MODE/D) to cut down on time and demonstrate it has better results than standard AE 

(auto encoder), SR-RBM (Sparse response RMB) and SESM (sparse encoding symmetric 

machine) by testing with MNIST dataset and comparing the results with other 

implementations. Their learning procedure continuously iterates between evolutionary 
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optimization step and the stochastic gradient descent to optimize the reconstruction error 

[62]. Here are the steps. 

Step 1: Multi-objective optimization to select the most optimal point in the pareto 

frontier for both objectives 

Step 2: Optimize parameters θ and θ’ with stochastic gradient descent in the 

following reconstruction error function (of Auto Encoder), where D is the training data 

set and L (x,y) is the loss function with x representing the input and y representing the 

output, i.e., reconstructed input. 

∑ 𝐿(𝑥, 𝑔
θ′  (𝑓

θ
(x)))𝑥∈𝐷               (43)   

Figure 19 shows a pareto frontier function that can be used to achieve a 

compromise between two competing objectives functions.  

 

Figure 19. Pareto Frontier 



 
 

68 

2.6.9 Multiclass Semi-Supervised Learning Based on Kernel 

Spectral  

Mehrkanoon et al. [63] proposed a multiclass learning algorithm based on Kernel 

Spectral Clustering (KSC) using both labeled and unlabeled data. The novelty of their 

proposal is the introduction of regularization terms added to the cost function of KSC, 

which allows labels or membership to be applied to unlabeled data examples. It is 

achieved in the following way [63]: 

• Unsupervised learning based on kernel spectral clustering (KSC) is used 

as the core model. 

• A regularization term is introduced and labels (from labeled data) are 

added to the model. 

 

Figure 20. Spectral Clustering Representation 
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Figure 20 illustrates data points in a spectral clustering representation. Spectral 

clustering (SC) is an algorithm that divides the data points in a graph using Laplacian or 

double derivative operation, whereas KSC is simply an extension of SC that uses Least 

Squares Support Vector Machines methodology [64]. 

 Since unlabeled data is more abundantly available relative to labeled data, it 

would be beneficial to make the most of it with unsupervised or semi-supervised 

learning. 

2.6.10 Very Deep Convolutional Networks for Natural Language 

Processing 

Deep CNN have mostly been used in computer vision, where it is very effective. 

Conneau et al. [65] used it for the first time to NLP with up to 29 convolution layers. The 

goal is to analyze and extract layers of hierarchical representations from words and 

sentences at the syntactic, semantic and contextual level. One the major setbacks for lack 

of earlier deep CNN for NLP is because of deeper networks tend to cause saturation and 

degradation of accuracy. This is in addition to the processing overhead of more layers. 

Kaiming et al. [53] states that the degradation is not caused by overfitting but because 

deeper systems are difficult to optimize. [53] addressed this issue with shortcut 

connections between the convolution blocks to let the gradients to propagate more freely 

and they, along with [65] were able to validate the benefits of the shortcuts with 

10/101/152-layers and 49 layers respectively. The architecture proposed by Conneau et 

al. [65] consists of series of convolution blocks separated by pooling that halved the 

resolution followed by k-max pooling and classification at the end. 
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2.6.11 Metaheuristics 

Metaheuristics can be used to train neural networks to overcome the limitation of 

backpropagation-based learning. When implementing metaheuristics as training 

algorithm, each weight of the neural network connection is represented by a dimension in 

the multi-dimensional solution search space of the problem we are trying to solve. The 

goal is to come as near as possible to the optimal values of weights, i.e., a location in the 

search space that represents the global best solution. Particle Swarm Optimization (PSO) 

is a type of metaheuristic inspired by the movement of birds in the sky. It  consists of 

particles or candidate solutions that move about in a search space to reach a near optimal 

solution. In their paper [66], N. Krpan and D. Jakobovic ran parallel implementations 

using backpropagation and PSO.  Their results demonstrate that while parallelization 

improves the efficacy of both algorithms, parallel backpropagation is efficient only on 

large networks, whereas parallel PSO has wider influence on various sizes of problems. 

Similarly, W. Dong and M. Zhou [67] complemented PSO with supervised 

learning control module to guide the search for global minima of an optimization 

problem. The supervised learning module provided real-time feedback with back 

diffusion (BD) to retain diversity and social attractor renewal to overcome stagnation 

[67]. Metaheuristics provide high level guidance inspired by nature and applies them to 

solve mathematical problems. In a similar way [68] proposes incorporating the concepts 

of intelligent teacher and privileged information, which is essentially extra information 

available during training but not during evaluation or testing, into the DNN training 

process. 



 
 

71 

2.6.12 Genetic Algorithm 

Genetic Algorithm is a metaheuristic that can be effectively used in training 

DNN. GA mimics the evolutionary processes of selection, crossover and mutation. Each 

population member represents a possible solution with a set of weights. Unlike PSO, 

which includes only one operator for adjusting the solution, evolutionary algorithms like 

GA includes various steps, i.e., selection, crossover and mutation methods [69]. 

Population members undergo several iterations of selection and crossover based on 

known strategies to achieve better solution in the next iteration or generation. GA has 

undergone decades of improvement and refinements since it was first proposed in 1976 

[70]. There are several ways to perform selections, e.g., elite, roulette, rank, tournament 

[71]. There are about dozen ways to perform crossovers as reviewed by Larrañaga et al. 

alone [72]. Selection methodologies represent exploration of the solution space and 

crossovers represent the exploitation of the selected solution candidates. The goal is to 

get better solution with wider exploration and deeper exploitation. Additional tweaking 

can be introduced with mutation. Parallel clusters of GA can be executed independently 

in islands and few members exchanged between the island every so often [73]. In 

addition, we can also utilize local search such as greedy algorithm, Nearest Neighbor or 

K-opt algorithm to further improve the quality of the solution. 

Lin et al. [74] demonstrated a successful incorporation of GA that resulted in 

better classification accuracy and performance of a Polynomial Neural Network. 

Standard GA operations including selection, crossover and mutation were used on 
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parameters that included partial descriptions (PDs) of inputs in the first layer, bias and all 

input features [74]. 

2.6.13 Neural Machine Translation (NMT) 

Neural Machine Translation is a turnkey solution used in translation of sentences. 

While it provides some improvement over the traditional Statistical machine translation 

(SMT), it is not scalable for large models or datasets. It also requires lot of computational 

power for training and translation. It also has difficulty with rare words. For these reason, 

large tech companies like Google and Microsoft have improved NMT with their own 

implementations of NMT, labeled as Google Neural Machine Translation (GNMT) and 

Skype Translator respectively. GMNT as shown in Figure 21 consists of encoder and 

decoder LSTM blocks organized in layers, was presented in 2016 in [75]. It overcomes 

the shortcomings of NMT with enhanced deep LSTM neural network that includes 8 

encoder and 8 decoder layers, and a method to break down rare difficult words to infer 

their meanings. On Conference on Machine Translation in 2014, GNMT received results 

at par with state-of-the-art for English-to-French and English-to-German language 

benchmarks [75]. 
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Figure 21. GNMT Architecture [75] with encoder neural network on the left and decoder neural network on 

the right. 

2.6.14 Multi-Instance Multi-Label Learning 

Images in real life include multiple instances (objects) and need multiple labels to 

describe them. E.g., a picture of an office space could include a laptop computer, a desk, 

a cubicle and a person typing on the computer. Zhang et al. [76] proposed MIML (Multi-

Instance Multi-Label learning) framework and corresponding MIMLBOOST and 

MIMLSVM algorithms for efficient learning of individual object labels in complex high 

level concepts, e.g., like the office space. The goal is to learn 𝑓 ∶  2𝑥 →  2𝑦 from dataset 

{(𝑋1, 𝑌1), (𝑋2, 𝑌2),… , (𝑋𝑚, 𝑌𝑚), where 𝑋𝑖 ⊆ 𝑋 represents a set of instances 

{𝑥𝑖1, 𝑥𝑖2, … 𝑥𝑖,𝑛𝑖,}, 𝑥𝑖𝑗 ∈ 𝑋 (𝑗 = 1, 2, … , 𝑛𝑖 ), and 𝑌𝑖 ⊆ 𝑌 represents a set of instances 

{𝑦𝑖1, 𝑦𝑖2, … 𝑦𝑖,𝑙𝑖,}, 𝑦𝑖𝑘 ∈ 𝑌 (𝑘 = 1, 2, … , 𝑙𝑖 ), where 𝑛𝑖 is the number of instances in 𝑋𝑖 and 

𝑙𝑖 is the number of labels in 𝑌𝑖   [76]. MIMLBOOST uses category-wise decomposition 

into traditional single instance & single label supervised learning, whereas MIMLSVN 

utilizes cluster-based feature transformation. So, instead of trying to learn the idea of 
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complex entities (e.g., office space), [76] took the alternate route and learned the lower 

level individual objects and inferred the higher level concepts. 

2.6.15 Adversarial Training 

Machine learning training and deployment used to be done in isolated computers, 

but now they are increasing being done in a highly interconnected commercial production 

environment. Take a face recognition system where a network could be trained on a fleet 

of servers with a training dataset imported from an external data source, and the trained 

model could be deployed on another server which accepts APIs calls with real time inputs 

(e.g., images of people entering a building) and responds with matches. The 

interconnected architecture exposes the machine learning to a wide attack surface. The 

real-time input or training dataset can be manipulated by an adversary to compromise the 

output (image match by the network) or the entire model respectively.    

Adversarial machine learning is a relatively new field of research that takes into 

account these new threats to machine learning. According to [77] adversaries (e.g., email 

spammer) can exploit the lack of stationary data distribution and manipulate the input 

(e.g., an actual spam email) as a normal email. [77] demonstrates these and other 

vulnerabilities and discusses how application domain, features and data distribution can 

be used to reduce the risk and impact of such adversarial attacks. 

2.6.16 Gaussian Mixture Model 

Gaussian mixture model (GMM) is a statistical probabilistic model used to 

represent multiple normal gaussian distributions within a larger distribution using an EM 
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(estimation maximization) algorithm in an unsupervised setting. E.g., a GMM could be 

used to represent the height distribution for a large population group with two gaussian 

distributions, for male and female sub-groups. Figure 22 below demonstrates a GMM 

with three gaussian distributions within itself. 

 

Figure 22. GMM example with three components 

GMM has been used primarily in speech recognition and tracking objects in video 

sequences. GMM are very effective in extracting speech features and modeling the 

probability density function to a desired level of accuracy as long as we have sufficient 

components, and the estimation maximization makes it easy to fit the model [78]. The 

probability density function for the GMM is given by the following [78]: 

𝑝(𝑥) = ∑ 𝑐𝑚Ɲ

𝑀

𝑚=1

(𝑥; µ𝑚 , Σ𝑚),              (𝑐𝑚 >  0)              (44) 

Where 𝑀 is the number of number of gaussian components, 𝑐𝑚 is the weight of 

the 𝑀-th gaussian, and (𝑥; µ𝑚, Σ𝑚) represents the random variable 𝑥, which following the 

mean vector µ𝑚. 
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2.6.17 Siamese Networks 

The purpose of siamese network is to determine the degree of similarity between 

two images. As shown in Figure 23 below, siamese network consists of two identical 

CNN networks with identical weights and parameters. The two images to be compared 

are passed separately through the two twin CNNs and the respective vector 

representations outputs are evaluated using contrastive divergence loss function. The 

function is defined as following [79]: 

𝐿(𝑊, 𝑌, 𝑋1
⃗⃗⃗⃗ , 𝑋1

⃗⃗⃗⃗ ) =  (1 − 𝑌)
1

2
(𝐷𝑤)2 + (𝑌)

1

2
(𝑚𝑎𝑥(0,𝑚 − 𝐷𝑤))2     

 (45) 

𝐷𝑤 represents the Euclidean distance between the two output vectors as shown in 

Figure 27. The output of the contrastive divergence loss function, 𝑌 is either 1 (indicates 

images are not the same) or 0 (indicates images are the same). 𝑚 represents a margin 

value greater than 0. The idea of siamese networks has been extended to come up with 

triplet networks, which includes three identical networks and is used to assess the 

similarity of a given image with two other images. 

Since the softmax layer outputs must match the number of classes, a standard 

CNN becomes impractical for problems that have large number of classes. This issue 

doesn’t apply to siamese network as the number of outputs of the softmax in the twin 

networks doesn’t have the requirement to match the number of classes [80]. This ability 

to scale to many more classes for classification extends the use of siamese networks 

beyond what a traditional CNN is used for. Siamese network can be used for handwritten 

check recognition, signature verification, text similarity, etc.  
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Figure 23. Siamese network 

2.6.18 Variational Autoencoders 

As the name suggests, variational autoencoder (VAE), are a type of autoencoder 

and consists of encoder and decoder parts as shown in Figure 24. It falls under the 

generative model class of neural networks and are used in unsupervised learning. VAEs 

learn a low dimensional representation (latent variable) that model the original high 

dimensional dataset into a gaussian distribution. Kullback–Leibler (KL) divergence 

method is a good way to compare distributions. Therefore, the loss function in VAE is a 

combination of cross entropy (or mean squared error) to minimize reconstruction error 

and KL divergence to make the compressed latent variable follow a gaussian distribution. 

We then sample from the probability distribution to generate new dataset samples that are 

representative of the original dataset. It has found various applications including 

generating images in video games to de-noising pictures. 
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Figure 24. Variational Autoencoder 

In Figure 24, 𝑥 is the input and 𝑧 is the encoded output (latent variable). 𝑃(𝑥) 

represents the distribution associated with 𝑥. 𝑃(𝑧) represents the distribution associated 

with 𝑧. The goal is to infer 𝑃(𝑧) based on 𝑃(𝑧|𝑥) that follows a certain distribution. The 

mathematical derivation for VAEs were originally proposed in [81]. Suppose we wanted 

to infer 𝑃(𝑧|𝑥) based on some 𝑄(𝑧|𝑥), then we can try to minimize the KL divergence 

between the two: 

𝐷𝐾𝐿[𝑄(𝑧|𝑥)||𝑃(𝑧|𝑥)] = ∑Q(z|x) log[
Q(z|x)

P(z|x)
]

 

𝑧

       (46) 

                         = E [log[
Q(z|x)

P(z|x)
]]       (47) 

                                                = E log[ Q(z|x) − 𝑙𝑜𝑔P(z|x)]            (48) 

Where 𝐷𝐾𝐿 is the Kullback–Leibler (KL) divergence and E represents expectation. 

Using Baye’s rule: 

                    𝑃(𝑧|𝑥)     =
𝑃(𝑥|𝑧)𝑃(𝑧)

𝑃(𝑥)
       (49) 

𝐷𝐾𝐿[𝑄(𝑧|𝑥)||𝑃(𝑧|𝑥)]  = 𝐸 [log 𝑄 (𝑧|𝑥) − 𝐿𝑜𝑔
𝑃(𝑥|𝑧)𝑃(𝑧)

𝑃(𝑥)
]                               (50) 

= 𝐸 [log𝑄 (𝑧|𝑥) − log 𝑃 (𝑥|𝑧) − log 𝑃 (𝑧)] + log 𝑃 (𝑥)                                              (51) 

 

To allow us to easily sample 𝑃(𝑧) and generate new data, we set 𝑃(𝑧) to normal 

distribution, i.e., 𝑁(0,1). If 𝑄(𝑧|𝑥) is represented as gaussian with parameters 𝜇(x) and 
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∑(𝑥), then the KL divergence between 𝑄(𝑧|𝑥) and 𝑃(𝑧) can be derived in closed form 

as: 

𝐷𝐾𝐿[𝑁(𝜇(x), Σ(x)) | |𝑁(0,1)] = 

(1/2)∑ (exp(Σ(x)) + 𝜇2(𝑥) − 1 −  Σ(x))
𝑘

       (52) 

2.6.19 Deep Reinforcement Learning 

The primary idea about reinforcement learning is about making an agent learn 

from the environment with the help of random experimentation (exploration) and defined 

reward (exploitation). It consists of finite number of states (𝑠𝑖, representing agent and 

environment), actions (𝑎𝑖) by the agent, probability (𝑃𝑎) of moving from one state to 

another based on action 𝑎𝑖, and reward 𝑅𝑎(𝑠𝑖, 𝑠𝑖+1) associated with moving to the next 

state with action 𝑎. The goal is to balance and maximize the current reward (𝑅) and 

future reward (𝛾.max [𝑄(𝑠′, 𝑎′)]) by predicting the best action as defined by this 

function 𝑄(𝑠, 𝑎). 𝛾 in the equation represent a fixed discount factor. 𝑄(𝑠, 𝑎) is 

represented as the summation of current reward (𝑅) and future reward 

(𝛾.max [𝑄(𝑠′, 𝑎′)]) as shown below. 

𝑄(𝑠, 𝑎) = 𝑅 +  𝛾.max [𝑄(𝑠′, 𝑎′)]       (53)  

Reinforcement learning is specifically suited for problems that consists of both 

short-term and long-term rewards, e.g., games like chess, go, etc. AlphaGo, Google’s 

program that beat the human go champion also uses reinforcement learning[82]. When 

we combine deep network architecture with reinforcement learning, we get deep 

reinforcement learning (DRL), which can extend the use of reinforcement to even more 
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complex games and areas such as robotics, smart grids, healthcare, finance etc. [83]. With 

DRL, problems that were intractable with reinforcement learning can now be solved with 

higher number of hidden layers of deep networks and reinforcement learning based Q-

learning algorithm that maximizes the reward for actions taken by the agent [6].           

2.6.20 Generative Adversarial Network (GAN) 

GANs consists of generative and discriminative neural networks. The generative 

network generates completely new (fake) data based on input data (unsupervised 

learning) and the discriminative network attempts to distinguish whether the data is real 

(i.e., from training set) or generated (fake). The generative network is trained to increase 

the probability of deceiving the discriminative network, i.e., to make the generated data 

indistinguishable from the original. GANs were proposed by Goodfellow et al., [84] in 

2014. It has been very popular as it has many applications both good and bad. E.g., [85] 

were able to successfully synthesize realistic images from text.  

2.6.21 Multi-approach Method for Enhancing Deep Learning 

Deep learning can be optimized at different areas. We discussed training 

algorithm enhancements, parallel processing, parameter optimizations and various 

architectures. All these areas can be simultaneously implemented in a framework to get 

the best results for specific problems. The training algorithms can be fine-tuned at 

different levels by incorporating heuristics, e.g., for hyperparameter optimization. The 

time to train a deep learning network model is a major factor to gauge the performance of 

an algorithm or network. Instead of training the network with all the data set, we can pre-
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select a smaller but representative data set from the full training distribution set using 

instance selection methods [86] or Monte Carlo sampling [51]. An effective sampling 

method can result in preventing overfitting, improving accuracy and speeding up of the 

learning process without compromising on the quality of the training dataset. Albelwi and 

Mahmood [87] designed a framework that combined dataset reduction, deconvolution 

network, correlation coefficient and an updated objective function. Nelder-Mead method 

was used in optimizing the parameters of the objective function and the results were 

comparable to latest known results on the MNIST dataset [87]. Thus, combining 

optimizations at multiple levels and using multiple methods is a promising field of 

research and can lead to further advancement in machine learning.   

  



 
 

CHATPER 3: RESEARCH & RELATED WORK 

The research section gets more specific about the topics pertaining to the 

implementation of ideas in the dissertation. It describes the concept of mitochondrial 

DNA and how it can extend the genetic algorithm. It takes a deeper dive into the training 

algorithm optimization and dataset optimization. Finally, it describes how cloud can be 

used to complement ML training.  

3.1 Genetic Algorithm & mtDNA 

There has been considerable amount of research to improve the GA operators to 

solve combinatorial optimization problems such as TSP. The development of several 

selection strategies mentioned earlier, i.e., elite, roulette, rank and tournament are a 

testimony of that effort. These strategies have been implemented and run against TSPLIB 

benchmarks[88] by different researchers. These selection operators each have their own 

characteristics, benefits and shortcomings. Razali et al. [89] concluded in the paper that 

rank based selection strategy yielded better results but took more computation time, while 

tour method is faster for small sized problems [89]. Selection methods represent only one 

side of the TSP problem. The other major side is crossover functions, which contributes 

significantly to the success of the algorithm. There are about eleven crossover operators 

reviewed by Larrañaga et al. [72] in their paper. Majority of them are based on specific 

patterns of information mixing and interchange between the parents, e.g., order crossover 
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(OXI), introduces several uniform length cut points in the path of the parents and 

produces offspring with several sub paths from the parents intact and assimilated in the 

children [90]. Another crossover operator, i.e., genetic edge recombination crossover add 

more meaningful logic in its workings by assuming the edges of the tour are important 

and attempts to preserve them in the offspring [91].  

There are published literatures on restrictive crossover. Galan et al. [92] proposed 

a mating strategy that balances between exploration (selection criteria) and exploitation 

(fitness criteria) by developing a parameter called mating index, which controls the 

degree of exploration (or diversity) of parents based on the hardness of the problem. 

Strategies like incest prevention [93] prevents mating between similar individuals. 

Assortative Mating is another strategy used to improve GA results. Ochoa et al. [94] 

demonstrates the relation between mutation rates and assoratative mating choices, i.e., 

higher mutation rates work well with assortative mating whereas lower mutation rates 

work well with dissortative mating to confer better fitness. The idea behind these 

strategies is based on the principle that offspring of similar individuals do not result in 

higher fitness. Introducing controlled mating based on similarity of genes does yield 

better results but they are also computationally costly as the lengthy chromosomes have 

to be compared. 

The dissertation presents a further optimized idea of restrictive mating to 

complement the standard crossover operators. The idea is based on the premise that it 

would not be beneficial to select the offspring of the same parents (or close lineage) as 

new parents to crossover with each other. In fact, it could be detrimental to maintaining 
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diversity and exploring greater search space. As an alternate to exhaustive comparison of 

the genes to determine genetic diversity between the parents, we present an algorithm that 

is computationally lean. We exploit the concept of mtDNA to enhance the GA.  

3.1.1 Mitochondrial DNA (mtDNA) 

Humans have 23 pairs of chromosomes with one copy of each pair inherited 

separately from each parent [89]. The DNA in these chromosomes is referred to as 

nuclear DNA [95]. In addition, humans also have mtDNA [95], which consists of only 

1% of the total DNA [96], thus coding for far less genes. Though insignificant by orders 

of magnitude when compared to the nuclear DNA in their contribution to inheritable 

traits (genes), mtDNA's unique characteristic in inheritance can play an important role in 

guiding the search for optimal solution. The DNA sequence in the 23 pairs of 

chromosomes is inherited equally into the offspring from both the parents during 

reproduction, whereas the sequence in mtDNA is inherited only from the maternal side 

[96]. This allows us to keep track of population members with similar genetic traits and 

common inheritance via maternal lineage. Diversity is the key to preventing premature 

convergence and achieving near optimal solution. Crossovers between similar population 

members with close DNA proximity will not yield results better than the prior generation 

in most cases. The idea in this paper is to create a data structure to tag and track the 

mtDNA in every population member and restrict the crossover between population 

members with similar mtDNA. mtDNA is widely used in evolutionary genetics and 

population study [97], and its concept could potentially be beneficial  to GA search 

exploration. 
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3.1.2 Using mtDNA GA 

The primary objectives of GA are to help get us better solution after every 

iteration and to prevent from prematurely converging into local minima. The primary 

way to address the later goal is to introduce the right amount of diversity in the parents.  

Most of the crossover operators tend to be very refined and granular at the node 

information level and seems to overlook the bigger picture. As the GA undergoes several 

iterations of crossover, the risk of convergence increases too and, in some cases, 

crossovers between the similar population members' offspring will not yield results any 

better than the previous generation because their parents would have similar genetic 

information to begin with. With less genetic variance in the parents, we cannot expect 

better or different results in the offspring. It is self-evident that genetic variability sows 

the seed for evolution and newer offspring [98]. One way to track genetic similarity is by 

tracking the family lineage. And the most effective way to track inheritance in the real 

world is through mtDNA [99]. 

The concept of mtDNA (Mitochondrial DNA) is implemented in this paper to 

control the crossover function to prevent population members with same mtDNA from 

reproducing for n number of generations. To avoid the overreaching consequences of this 

condition, this requirement is dictated only on a percentage of crossovers. mtDNA is 

defined as a separate attribute of the population member class. Since mtDNA gets 

inherited solely from the female parent, it doesn't alter as it is passed down to the 

offspring. This attribute was exploited to guide and control crossovers.  Algorithm 2 

presents a high-level overview of the mtDNA algorithm and its pseudo code. 
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Algorithm 2:  mtDNA pseudo code and Algorithm 

1. 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 

 𝐴𝑠𝑠𝑖𝑔𝑛 𝑚𝑡𝐷𝑁𝐴 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 𝑡𝑜 𝑒𝑎𝑐ℎ 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛  𝑚𝑒𝑚𝑏𝑒𝑟 

   𝑰𝒇 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 =  𝑖𝑛𝑖𝑡𝑖𝑎𝑙       𝒕𝒉𝒆𝒏 𝑚𝑡𝐷𝑁𝐴 
←  𝑟𝑎𝑛𝑑𝑜𝑚 𝑢𝑛𝑖𝑞𝑢𝑒 𝑣𝑎𝑙𝑢𝑒 

   𝑰𝒇 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 =  𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 𝑜𝑓 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟  
𝒕𝒉𝒆𝒏 𝑚𝑡𝐷𝑁𝐴 ←  𝑚𝑡𝐷𝑁𝐴 𝑜𝑓 𝑓𝑒𝑚𝑎𝑙𝑒 (2𝑛𝑑 𝑝𝑎𝑟𝑒𝑛𝑡) 

2. 𝒇𝒐𝒓 𝑖 ← 1 𝑡𝑜 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 

 𝑎. 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 

  𝐶ℎ𝑒𝑐𝑘 𝑚𝑡𝐷𝑁𝐴 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 𝑜𝑓 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 𝑝𝑎𝑖𝑟𝑠 𝑎𝑡   
(𝑡𝑜𝑡𝑎𝑙 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 % 100) <  𝑁 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠, 𝑤ℎ𝑒𝑟𝑒 𝑁 < 100 

   𝑰𝒇 𝑝𝑎𝑟𝑒𝑛𝑡1 𝑚𝑡𝐷𝑁𝐴 =  𝑝𝑎𝑟𝑒𝑛𝑡2 𝑚𝑡𝐷𝑁𝐴  
𝒕𝒉𝒆𝒏 𝑎𝑏𝑜𝑟𝑡 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 & 𝑓𝑖𝑛𝑑 𝑎𝑛𝑜𝑡ℎ𝑒𝑟 𝑝𝑎𝑖𝑟 

   𝑰𝒇 𝑝𝑎𝑟𝑒𝑛𝑡1 𝑚𝑡𝐷𝑁𝐴 ≠  𝑝𝑎𝑟𝑒𝑛𝑡2 𝑚𝑡𝐷𝑁𝐴  
𝒕𝒉𝒆𝒏 𝑎𝑙𝑙𝑜𝑤 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 

   𝑹𝒆𝒔𝒆𝒕 𝑚𝑡𝐷𝑁𝐴 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 𝑜𝑓 𝑎𝑙𝑙 𝑚𝑒𝑚𝑏𝑒𝑟𝑠 𝑡𝑜 𝑢𝑛𝑖𝑞𝑢𝑒  
            𝑣𝑎𝑙𝑢𝑒𝑠 𝑎𝑓𝑡𝑒𝑟 𝑋 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠. 

   𝑋 <  log2 𝑃 ,𝑤ℎ𝑒𝑟𝑒 𝑃 =  𝑡𝑜𝑡𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 

 𝑏. 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 & 𝑚𝑡𝐷𝑁𝐴 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 

𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛′𝑠 𝑚𝑡𝐷𝑁𝐴 ←  𝑚𝑡𝐷𝑁𝐴 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑒𝑚𝑎𝑙𝑒 𝑝𝑎𝑟𝑒𝑛𝑡   

 

All four selection methods (tour, elite, roulette and rank) described earlier were 

utilized during the implementation. To transfer genes to children during crossover, 1/4 to 

3/4 tour cut was made on parent one and transmitted to the children. The rest was 

transferred in cyclic order from the second parent, skipping any cities that were already 

derived from the first parent, thus ensuring every city is represented in the child with no 

repetition. In addition to leveraging mtDNA in the implementation, various selection 

methods, Island Model, 2-Opt and distributed processing using multiple servers 

(Continental Model) were also utilized. 
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Figure 25 provides a high-level workflow of the GA implementation in this paper. 

Custom versions of GA were run on each of the four threads on each server. 

Island Model was implemented with multi-core processors in server by running 

multiple threads in parallel. Each thread ran its own version of GA. Periodically after 

every X number of iterations/generations on each of the threads running the GA, a 

handful of randomly selected population members were exchanged between the threads. 

This process not only added more computing resources and improved the execution time 

of GA but also increased diversity and reduced initial sampling bias. 

2-Opt was implemented by reviewing the best member (best solution so far) every X 

iterations/generations for local optimization. Two links/edges of the best member were 

swapped exhaustively to check if it improves the solution. 

Island Model was further scaled with distributed processing by executing the above-

mentioned implementation on several servers using Web Services (Service Oriented 

Architecture - SOA). We aptly named it Continental Model. Population members were 

randomly exchanged between these independently run Island Model GA implementations 

in different servers after a fixed number of iterations to achieve diversity and to reduce 

the likelihood of premature convergence. 



 
 

88 

 

Figure 25: Continental Model GA with mtDNA 
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3.2 Optimization of Training Algorithms 

The goal of the DNN training is to improve the accuracy of the model on test data 

and subsequently on real time data. Training algorithms aims to achieve the end goal by 

reducing the cost function. The common root cause of three out of five shortcomings 

mentioned above is primarily because the training algorithms assume the problem area to 

be a convex function. The other problems is high number of nodes and the sheer possible 

combinations of weight values they can have. While weights are learned by training on 

the dataset, there are additional crucial parameters referred to as hyperparameters that 

aren’t directly learnt from training dataset. These hyperparameters can take on a wide 

range of values and add complexity of finding the optimal architecture and model. There 

is significant room for improvement to the standard training algorithms. Here are some of 

the popular ways to enhance the accuracy of the DNN algorithms. 

3.2.1. Parameter Initialization Techniques 

Since the solution space is so huge, the initial parameters have an outsized 

influence on how fast or slow the training converges, if at all or if it prematurely 

converges to a suboptimal point. Initialization strategies tend to be heuristic in nature. 

[100] proposed normalized initialization where weights are initialized in the following 

manner.  

𝑊 ~ 𝑈 [− 
√6

√𝑛𝑗 + 𝑛𝑗+1

,
√6

√𝑛𝑗 + 𝑛𝑗+1

]          (54) 
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𝑊 represents the weight and 𝑈 represents the uniform distribution in the interval, 

whereas 𝑛 is the size of the previous layer. 

[101] proposed another technique called sparse initialization, where the number of 

non-zero incoming weights were capped at a certain limit causing them to retain high 

diversity and reduce chances of saturation.  

3.2.2 Hyperparameter Optimization 

The learning rate and regularization parameters constitutes the commonly used 

hyperparameters in DNN. Learning rate determines the rate at which the weights are 

updated. The purpose of regularization is the prevent overfitting, and regularization 

parameter affects the degree of influence on the loss function. CNN’s have additional 

hyperparameters i.e., number of filters, filter shapes, number of dropouts and max 

pooling shapes at each convolution layer and number of nodes in the fully connected 

layer. These parameters are very important for training and modeling a DNN. Coming up 

with an optimal set of parameter values is a challenging feat. Exhaustively iterating 

through each combination of hyperparameter values is computationally very expensive. 

Hyperparameter can be optimized with different metaheuristics. Metaheuristics are nature 

inspired guiding principles that can help in traversing the search space more intelligently 

yet much faster than the exhaustive method.  

Particle Swarm Optimization (PSO) is another type of metaheuristic that can be 

used for hyperparameter optimization. PSO is modeled around the how birds fly around 

in search of food or during migration. The velocity and location of birds (or particles) are 
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adjusted to steer the swarm towards better solution in the vast search space. Escalante et 

al. used PSO for hyperparameter optimization to build a competitive model that ranked 

among the top relative to other comparable methods [69]. 

 

Figure 26. Genetic Algorithm 

Genetic algorithm (GA) is a metaheuristic that is commonly used to solve 

combinatorial optimization problems. It mimics the selection and crossover processes of 

species reproduction and how that contributes to evolution and improvement of the 

species prospect of survival. Figure 26 shows a high-level diagram of the GA. Figure 27 

illustrates the crossover process where parts of the respective genetic sequence are 

merged from both the parents to form the new genetic sequence in the children. The goal 

is to find a population member (a sequence of numbers resembling DNA nucleotides) 

that meets the fitness requirement. Each population member represents a potential 
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solution. Population members are selected based on different methods, e.g., elite, roulette, 

rank and tournament. 

 

Figure 27. Crossover in Genetic Algorithm 

Elite method ranks population members by fitness and only uses high fitness 

members for the crossover process. The mutation process then makes random changes to 

the number sequence and the entire process continues until a desired fitness or maximum 

number of iterations are reached. [102, 103] propose parallelization and hybridization of 

GA to achieve better and faster results. Parallelization provide both speedup and better 

results as we can periodically exchange population members between the distributed and 

parallel operations of genetic algorithms on different set of population members. 

Hybridization is the process of mixing the primary algorithm (GA in this case) with other 

operations, like local search. We incorporated 2-Opt local search method into GA to 

improve the search for optimal solution. [104] postulates that correctly performed 

exchanges (e.g., in GA) breeds innovation and results in creation solutions to hard 

problems just like in real life where collaboration and exchanges between individuals, 

organizations and societies lead to new breakthroughs. In additional to GA, other 

variations of evolution-based metaheuristics have also been used to evolve and optimize 

deep learning architectures and hyperparameters. E.g., [105] proposed CoDeepNEAT 
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framework based on deep neuro-evolution technique for finding an optimized 

architecture to match the task at hand.   

3.2.3 Adaptive Learning Rates 

Learning rates have a huge impact on training DNN. It can speed up the training 

time, help navigate flat surfaces better and overcome pitfalls of non-convex functions. 

Adaptive learning rates allow us to change the learning rates for parameters in response 

to gradient and momentum. Several innovative methods have been proposed. [51] 

describes the following: 

1. Delta-bar Algorithm 

2. AdaGrad 

3. RMSProp 

4. Adam 

In Delta-bar algorithm, the learning rate of the parameter is increased if the partial 

derivative with respect to it stays in the same sign and decreased if the sign changes. 

AdaGrad is more sophisticated [106] and prescribes an inversely proportional scaling of 

the learning rates to the square root of the cumulative squared gradient. AdaGrad is not 

effective for all DNN training. Since the change in the learning rate is a function of the 

historical gradient, AdaGrad becomes susceptible to convergence. 

RMSProp algorithm is a modification of AdaGrad algorithm to make it effective 

in a nonconvex problem space. RMSProd replaces the summation of squared gradient in 

AdaGrad with exponentially decaying moving average of the gradient, effectively 
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dropping the impact of historical gradient [51]. Adam which denotes adaptive moment 

estimation is the latest evolution of the adaptive learning algorithms that integrates the 

ideas from AdaGrad, RMSProp and momentum [107]. Just like AdaGrad and RMSProd, 

Adam provides an individual learning rate for each parameter. Adam includes the 

benefits of both the earlier methods and does a better job handling non-stationary 

objectives, and both noisy and sparse gradients problems [107]. Adam uses first moment 

(i.e., mean as used in RMSProp) as well as second moments of the gradients (uncentered 

variance) utilizing the exponential moving average of squared gradient [107]. 

Figure 28. Multilayer network training cost on MNIST dataset using different adaptive learning 

algorithms  [107] 

Figure 28 shows the relative performance of the various adaptive learning rate 

mechanisms where Adam outperform the rest.  

3.2.4 Batch Normalization 

As the network is getting trained with variations to weights and parameters, the 

distribution of actual data inputs at each layer of DNN changes too, often making them 
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all too large or too small and thus making them difficult to train on networks, especially 

with activation functions that implement saturating nonlinearities, e.g., sigmoid and tanh 

functions. Iofee and Szegedy [108] proposed the idea of batch normalization in 2015. It 

has made a huge difference in improving the training time and accuracy of DNN. It 

updates the inputs to have a unit variance and zero mean at each mini-batch. 

3.2.5 Supervised Pretraining 

Supervised pretraining constitutes breaking down complex problems into smaller 

parts and then training the simpler models and later combining them to solve the larger 

model. Greedy algorithms are commonly used in supervised pretraining of DNN.  

3.2.6 Dropout 

There are few commonly used methods to lower the risk of overfitting. In the 

dropout technique, we randomly choose units and nullify their weights and outputs so 

that they do not influence the forward pass or the backpropagation. Figure 29 shows a 

fully connected DNN on the left and a DNN with dropout to the right. The other methods 

include the use of regularization and simply enlarging the training dataset using label 

preserving techniques. Dropout works better than regularization to reduces the risk of 

overfitting and also speeds up the training process. [109] proposed the dropout technique 

and demonstrated significant improvement on supervised learning based DNN for 

computer vision, computational biology, speech recognition and document classification.  
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Figure 29. DNN with and without Dropout 

3.2.7 Summary of DL Algorithms Shortcomings and Resolutions  

Table 4 provides a summary of deep learning algorithm shortcomings and 

resolutions techniques. The table also lists the cause and effect[s] of the shortcomings.  

Table 4: DL Algorithm Shortcomings & Resolution Techniques 

Shortcomings Cause Effect Optimizations to address Shortcomings 

Vanishing and 

Exploding 

Gradients 

Propagation of derivatives 

Long training time; 

Overshoot global 

minima; Halts training 

ReLu activation function; Weight initialization; 

Connection between the forget gate activations and the 

gradients computation in LSTM (RNN); Skipping 

connections (ResNet); Faster hardware (GPUs) 

Local Minima / 

Flat regions 

Gradient descent of non-

convex problem space 

Convergence into 

local minima 

Adaptive learning rates; Parameter Re-initialization / 

initialization techniques;  

Steep Edges 

Gradient descent of non-

convex problem & steep 

spaces 

Overshoot to miss 

global minima 
Adaptive learning rates 

Overfitting 

Oversized nodes (network) 

relative to dataset; poor 

dataset 

Poor accuracy of the 

model 

Regularization; Dropout; Choosing correct size of 

network; Better training data 

High Training 

Time 

Large network (weights & 

hyperparameters), high 

dimensional data, others 

Poor use of compute 

resources; wasted 

time 

Adaptive learning rates; Using Cloud and GPUs 

Hyperparameter 

selection 

Extremely large solution space 

(NP-hard problem) for high 

dimensional problems 

Convergence into 

local minima 

Metaheuristics  (e.g., Genetic Algorithm) for 

hyperparameter optimization; Random search; 

Sequential Model-based Algorithm Configuration 
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3.3 Dataset Optimization 

Dataset or training data is a key contributor to the success of ML. It also provides 

an opportunity for optimization. The availability of data along with enhancements in 

training algorithms and commoditization of compute resources in the form of cloud and 

GPUs have been the driving force behind the exponential rise of artificial intelligence and 

machine learning. While data is everywhere nowadays, thanks to bigdata, not all data is 

good data from a training standpoint. In most cases they must be normalized and 

sanitized before they can be used in any training. The following attributes of the dataset 

can be reviewed and optimized: size, noise, dimensions, co-variance, variance, quality 

and distribution of the dataset, based on the problem we are trying to solve. E.g., as the 

dimensions become very high, finding the nearest neighbor instances become practically 

impossible compute-wise and we have to settle for sub-par approximates [110]. We need 

to reduce dimensions on large sized (dimension-wise) dataset otherwise they become 

intractable to work with. Principle component analysis (PCA) and auto-encoders are 

commonly used in dimensionality reduction. Even in the standard datasets like MNIST, 

CIFAR10, etc., not all samples have the same level of contribution to the training. E.g., a 

basic CNN can achieve high accuracy in a single epoch. There is diminishing returns for 

repetitive uniform training on the same/entire dataset for multiple epochs. Here are the 

commonly employed dataset optimization methods. Optimizing datasets can help us 

achieve significant speed up in the training process without compromising on the 

accuracy. 
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3.3.1. Instance Selection 

Instance selection is a dataset reduction method used to decrease the training time 

and improve the accuracy of the model. The number of samples in the dataset puts a huge 

burden on training time of supervised training. Instance selection reduces the number of 

samples (instances) in the dataset using different approaches based on the goal. It can 

also help to remove noisy samples from the dataset that do not add any value to or in 

some cases mislead the training. 

According to [111], instance selection can be divided into two groups: Wrapper 

and Filter. The wrapper method (e.g., k-NN classifier) discards instances that do not 

improve the accuracy of the model, whereas filter methods selects instances based on 

desired location, i.e., instances around decision boundary or interior instances. Instances 

around boundary could be noise or outliers and dropping them can smoothen the decision 

boundary and improve accuracy. Dropping boundary instances could also lead to over 

generalization. On the other hand, retaining all interior instances with similar attributes 

might not contribute to training accuracy. 

There is a directly proportional relationship between retention rate of instances (of 

instance selection method) and the accuracy of the model and an inversely proportional 

relationship with training time. [112] proposes RDI (Remove Dense Instances) method 

that balance the two competing constraints, such that we remove instances from denser 

regions, which does not impact the accuracy much while significantly reducing the 

training time. Instance selection itself can be an optimization problem as selecting each 
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instance is a binary decision problem, thus giving rise to 2𝑥 potential subsets from 𝑥 

sample instances [113]. Therefore, it could be solved using metaheuristics. 

3.3.2. Variable Selection & Dimension Reduction 

MNIST dataset includes 60k 28x28 pixel images. Each image is a vector of 784 

(28x28) variables or dimensions. While 784 is large, it is miniscule compared to 60k 

variables in gene selection problem, where models are trained to classify whether gene 

expression profiles of patients mRNA sample are cancerous or healthy [114]. Consider 

another example where blood pressure forecasting needs to be done based on over 500k 

dimensions, i.e., the number of single nucleotide polymorphisms or individual DNA 

mutations common in a population [115]. This can be looked at as a dimensionality 

reduction problem. [115] reports that once the dimensions (or features) becomes larger 

than the number of samples (or observations), the least square method doesn’t work 

because the mean squared error reduces to zero even when the features are not related. 

Several ranking methods based on the contributing factor of the variable both at 

individual variable level and at a collective subset level have been proposed to select the 

variables in [114]. Principal component analysis (PCA) is another statistical approach to 

reduce the dimensions. Here are three methods described in [115]. 

a) Best Subset Selection Method 

This method explores whether to include all possible combinations of the 

dimensions, thus resulting in 2𝑛 potential subsets. Each combination has to fit on 

individual run of least squares regression, making it computationally very expensive. 



 
 

100 

There have been other alternatives that propose only exploring a small portion of all 

possible combinations of the subsets. 

b) Shrinkage Method 

This method attempts shrink or constraint the coefficient estimates toward zero to 

fit a model with all features. Before fitting a model, all predictors (features) are 

standardized to have one standard deviation. 

c) Partial Least Square (PLS) 

PLS selects a new set of features using least squares method in a supervised way 

by utilizing the labeled outputs as well as the original predictors. 

3.3.3. Monte Carlo Method 

Monte Carlo method constitutes a set of algorithms used in optimization, bayesian 

inference and drawing representative samples from a probability distribution in very high 

dimensional space. It is used is several different disciplines including engineering, 

design, finance, law, business, etc. In machine learning, it can be used to approximate 

computationally expensive sums and integrals in training, and in sampling instances from 

large datasets. Marcov Chain Monte Carlo (MCMC) and Importance sampling (IS) are 

very popular implementation of Monte Carlo method for sampling complex distributions. 

Bayes’ theorem states the following about posterior distribution: 

𝑃 (𝑋 | 𝑌) =   
P (Y | 𝑋) 𝑃(𝑋)

𝑃 (𝑌)
      (55) 

Where P(X | Y) is the probability of X occurring provided Y is true and the 

opposite for P(Y | X). 
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MCMC constructs a Markov chain with a stationary distribution 𝜋 as the target 

distribution and the samples produced 𝑋𝑖 are revised as 𝑋𝑖
′ [116].  

3.3.4. Importance Sampling 

Importance sampling is a variance reduction method where the goal is to sample 

more often from the instances that help improve the accuracy of the model than others. 

This is done by sampling from a different distribution than the original distribution that 

reduces the variance of the gradient estimation. Importance sampling provides good 

representation of the dataset. It also helps with convergence as it reduces major 

fluctuations in the gradient estimates. The new distribution maintains the original 

expectation value. Below is the mathematic explanation [117]. 

   𝔼 𝑓(𝑥) =   ∫𝑓(𝑥) 𝑝(𝑥)  𝑑𝑥                       (56) 

Where 𝔼𝑓(𝑥)is the expectation for function of 𝑥. 𝑝(𝑥) is the original probability 

distribution of 𝑥. 

𝔼𝑝(𝑥) [𝑓(𝑥)] = ∫ [𝑓(𝑥)
p(x)

q(x)
q(x)] 𝑑𝑥                     (57) 

Where 𝑞(𝑥) is the proposed distribution of 𝑥 that maintains the original 

expectation value. 

   𝔼𝑝(𝑥) [𝑓(𝑥)] = 𝔼𝑞(𝑥)[𝑓(𝑥) 𝑤(𝑥)] 𝑑𝑥                   (58) 

Where 𝑤(𝑥) =
p(x)

q(x)
  is referred to as importance weight function. 

 

[118] proves the advantages of importance sampling over another popular 

sampling method (Bernoulli), where 50 points sampled from 1000 points using 
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importance sampling represented all 10 clusters whereas Bernoulli sampling failed the 

same test. In addition to sampling a good representation of the original dataset, 

importance sampling also improves the convergence of the training process by limiting 

large swings in the gradient estimates [47, 48, 119]. This validates the use of importance 

sampling to improve the training time and cluster quality. 

3.4 Training Speed up with Cloud and GPU processing 

GPUs have been the workhorse of machine learning and compute resources have 

been further commoditized by cloud. We can leverage the massive scaling power of 

cloud providers in a cost-effective manner. Combining the power of cloud and GPUs can 

extend the outcome of deep learning. Training time is one of the key performance 

indicators of machine learning. Cloud computing and GPUs lend themselves very well to 

speeding up the training process. In addition to helping us train and build ML models 

faster, Cloud can also help us explore better architectures with its massive computational 

power. All major cloud vendors include GPU powered servers that can easily be 

provisioned and used for training DNNs on demand at competitive prices. We can 

leverage the parallel and distributed processing power of cloud to not only reduce the 

training time but also deploy machine learning models to live systems and respond to 

real-time test input at a much faster rate than traditionally possible. Cloud vendor 

Amazon Web Services’ (AWS) P2 instances provides up to 40 thousand parallel GPU 

cores and its P3 GPU instances are further optimized for machine learning [120].  



 
 

CHAPTER 4: IMPLEMENTATION 

This section presents that actual implementation of the dissertation topic and 

contribution of the work. There are three ideas implemented here. First, the mtDNA 

enhanced genetic algorithm is implemented on a neural network to solve for function 

approximation problem. Then the value-add of importance sampling is verified on a 

siamese network. Next, we combine both these ideas with hyperparameter and 

architecture optimization for designing better CNN model. We also fine-tune the training 

with importance sampling and finally achieve training speed up with GPUs in the cloud. 

4.1 mtDNA GA in Artificial Neural Network  

We used GA to train the Neural Network for function approximation. A multi-

layer feedforward ANN (artificial neural network), with 1 node in the input layer, 26 

nodes in the first hidden layer, 26 nodes in the second hidden layer and 1 node in the 

output layer was chosen. The GA implementation for Neural Network is similar to the 

GA implementation for TSP. In place of the city numbers (in TSP), the values of the 

weights are randomly initialized in a solution set and crossed over with another set of 

weights in the case of Neural Network. But unlike in TSP, the values of the weights do 

not need to be unique within a solution set. 

mtDNA was introduced in GA here just like in TSP. The resulting children from 

crossovers were tagged with the same mtDNA attribute of the female parent for X 
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iterations as defined in Algorithm 2 and crossovers prevented between those with same 

mtDNA. mtDNA value was reset after X iterations to ensure crossovers weren’t too 

restrictive. We used mtDNA implementation of GA to train the Neural Network for 

function approximation for functions show in Figure 30.  

 

Here are the details from the implementation: 

1. Population size = 200 

2. Selection Ratio = 20 

3. Mutation Ratio = 4 

4. mtDNA reset every X iterations, where X = 15 

5. Nodes: 1 (input layer): 26 (hidden layer1): 26 (hidden layer2): 1 (output layer) 

GA was used to train ANN for the following functions with and without the 

mtDNA logic (Algorithm 2). 

 

Function A: 𝑓(𝑥) =
𝑥 sin(50 𝑥)

𝑒2  

Function B: 𝑓(𝑥) = 250 sin(2𝑥) sin(𝑥) 

Function C: 1D version of Schewefel function 

𝑓(𝑥, 𝑦) = −𝑥 sin (√|x|)− y sin (√|y|)  

Function D: 1D version of 𝑓(𝑥, 𝑦) =

                              (16 𝑥 (1 − 𝑥) 𝑦(1 − 𝑦) sin(9 π 𝑥) sin(9 π 𝑦))2  
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Function A 

 

Function B 

 

Function C  

Function D 

Figure 30: Four functions used for training Neural Network 

4.2  Siamese – Importance Sampling Implementation 

We implemented importance sampling on siamese networks using TensorFlow 

[121, 122] ML framework. Since the goal was to test the validity of employing 

importance sampling on siamese network, we did not optimize the network for best 

performance to compete with published accuracy results on the dataset. Rather the focus 

was on demonstrating relative difference between siamese network that uses importance 

sampling versus one that doesn’t.  
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We started with a standard 3-layer CNN. We trained it on MNIST dataset, both 

with full/uniform dataset and then with importance sampling. We confirmed that the 

training and testing accuracy were better when importance sampling was used. Next, we 

saved the instances/values of the sampled dataset for the next phase.  

We built a siamese network. The twin networks were setup with three fully 

connected layers with 784 x 1024 x 1024 x 400 nodes. The instances of the 

samples/values selected by importance sampling were used to complement the training. 

The testing errors were compared with results from siamese network that used the full 

dataset without any importance sampling. A mini-batch of 64 samples were used for 80 

epochs. 

The siamese network was trained and tested on MNIST dataset. The dataset was 

shuffled at every time a mini-batch was selected for training. The trained network was 

evaluated on the full test dataset.  

Algorithm 3: Pseudocode for implementing importance sampling on siamese networks 

1. Importance Sampling on Standard CNN 

 Build CNN network and load dataset (MNIST) 

   Start importance sampling   

   Train 10 epochs ← original dataset 

   Train 10 epochs ←  importance sampling instances 

2. Siamese Networks with Importance Sampling 

 Build siamese network and load importance sampled instances 

  Train siamese network 

   a. Fine − tune training with instances from importance sampling 

   b. Train with original dataset 

3 Test trained models on Test data on full dataset training and importance sampling training 



 
 

107 

We also used another way of picking the samples for training and testing. The 

training of siamese network differs from traditional training of CNN. A trained siamese 

network is used to indicate whether the two images passed through the twin networks are 

same or different. Therefore, we trained the network alternately with similar and 

differently labelled input samples as well. Each mini-batch consisted of 50% similar and 

50% differing label samples. The testing results were captured. Algorithm 3 shows the 

flow used in the implementation.   

4.3 mtDNA Based Genetic Algorithm to Optimize Hyperparameters 

and Build CNN 

In this section we incorporated the idea of mtDNA based genetic algorithm to 

build a robust CNN to maximize accuracy of the model. We came up with the concept 

and used it for learning the weights for function approximation and solving TSP. We 

extended it to hyperparameter optimization. Table 5 lists the hyperparameters that will be 

optimized. 

Table 5: Implementation plan table 

Layer Hyperparameter Value 

Convolution Layer 

 

 

 

 

Enabled 0 or 1 

Number of Layers 6 (Max) 

Batch Normalization 0 or 1 

Activation Function Relu (1), Sigmoid (2) 

Dropout 0-10 

Number of Kernels 256 (Max) 

Fully Connected 

Layer 

 

 

 

 

Enabled 0 or 1 

Number of Nodes 1024 (Max) 

Batch Normalization 0 or 1 

Activation Function Relu (1), Sigmoid (2) 

Dropout 0-10 

Optimizer Adadelta, Adagrad, Adam, RMSProp 
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Here are the steps that were followed (visually represented in Figure 31): 

1. Define each network setup as a specific combination of above 

hyperparameters (Table 5). 

2. The specific combination of hyperparameters is represented as a genetic 

sequence of a population member that is being optimized in the context of 

genetic algorithm. 

3. Each member (would-be parent) is tagged with a mtDNA data structure 

(attribute).  

4. Population members are selected for crossover but two partners with the same 

mtDNA value are restricted from crossover operation. 

5. The crossover between population members are conducted to derive a new 

genetic sequence (children).  

6. Mutation is also introduced 

7. The crossover is iterated over number of generations. mtDNA values are reset 

after X number of generations to prevent over-restrictive crossover as defined 

in Algorithm 2 above. 

8. The whole process is repeated for number of epochs. 

 

Figure 31: Child after cross-over 
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4.4 Putting the Plan Together 

The proposed plan for enhancing deep CNN is summarized in Table 6 below. 

Table 6: Implementation plan table 

Method Goal & Benefits How Specifics 

1. 
Architecture 

Optimization 
Improve Accuracy Using Genetic Algorithm 

mtDNA (Mitochondrial 

DNA) based fine-tuning 

2. Dataset Optimization 
Improve Accuracy, 

Reduce Overfitting 
Monte Carlo method Importance Sampling 

3. 
Computation 

Optimization 
Reduce Training Time 

Scalable, Distributed & 

Paralleling Processing 
Use of Cloud and GPUs 

 

These approaches and specific implementations were chosen for their uniqueness 

and potential for significant contributions. Individually these approaches have proven 

effective and they complement each other when combined as well. 

4.5 Implementation Steps 

1. Setup machine learning environment with applicable Keras and TensorFlow 

libraries/framework [121, 122]. 

2. Choose Dataset: MNIST / CIFAR10 

3. Choose Network to optimize: CNN 

a. Identify/set architecture parameters (Table 5) values/ranges. 

b. Choose optimization method:  

i. Genetic Algorithm with mtDNA logic 

c. Set training constraints 

i. Number of generations 

ii. Population size 

iii. Number of epochs 
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4. Choose Cloud service: AWS (Amazon Web Services) 

5. Run multiple epochs of training 

a. Sample dataset using importance sampling. 

b. Optimize hyperparameters with mtDNA GA 

c. Run training on server with GPU (p2.xlarge) with 2500 cores. 

i. P2 instances provides up to 40 thousand parallel GPU cores [120] 

6. Collect accuracy from the runs above with and without mtDNA implementation 

 

  



 
 

CHAPTER 5: RESULTS 

This section reports the results from the implementation presented in Chapter 4 

above. There are results from implementing mtDNA GA, importance sampling, 

hyperparameter and architecture optimization using cloud/GPUs to improve neural 

network training. 

5.1 mtDNA GA in Artificial Neural Networks 

The ANN was trained separately using mtDNA implementation of GA and GA by 

itself. After the weights were set, the ANN was used to approximate the four functions 

(Figure 30) and the square error was computed. The results from the mtDNA 

implementation of GA as listed in Algorithm 2 were better than the results when GA was 

used by itself across all four functions.  

Table 7: RMS for different functions, with and without mtDNA GA training 

Function 
Training  

Algorithm 

RMS Error per Iteration 

100 200 300 500 1000 5000 

A  
Standard GA 1.

84 

1.78 1.78 1.77 1.75 0.232 

mtDNA GA 1.

79 

1.77 1.77 1.76 0.92 0.203 

B  
Standard GA 2.

94 

2.92 2.90 2.87 2.82 2.666 

mtDNA GA 2.

93 

2.91 2.90 2.87 2.80 2.610 

C  
Standard GA 0.

48 

0.46 0.42 0.37 0.29 0.282 

mtDNA GA 0.

47 

0.41 0.35 0.30 0.21 0.121 

D  
Standard GA 0.

64 

0.59 0.59 0.59 0.58 0.371 

mtDNA GA 0.

61 

0.58 0.58 0.58 0.53 0.314 
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Table 7 shows the results from the several (100, 200, 300, 500, 1000 and 5000) 

iterations/executions using both the training methods. Figure 32 represents the data from 

the Table 4 in graphical form. 

 

Function A 

 

Function B 

 

Function C 

 

Function D 

Figure 32: Graph shows Error with GA mtDNA and standard GA 
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The results from mtDNA incorporated GA trained ANN consistently outperforms 

the GA-only trained ANN for the given four function approximations. 

5.2 Siamese Network Training with Importance Sampling 

 

 

Figure 33: Training loss and testing accuracy on CNN 

We were able to achieve improvement on both training and testing data when the 

network was fine-tuned with importance sampling. Since our goal was to provide 

evidence of relative positive impact of using importance sampling, we did not 

intentionally compare our results to state of the art. 

Figure 33 shows the training and testing accuracy of using importance sampling 

vs using the full dataset with no sampling on standard CNN. This provided us validation 

that importance sampling improves accuracy and gave us more confidence in using 

0.9848

0.976

0.9969

0.9895

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

Training Accuracy Test Accuracy

3 layer CNN

No Sampling Importance Sampling



 
 

114 

sampled instances for siamese network as well. Figure 34 shows the testing loss on 

siamese networks with and without importance sampling fine-tuning on regular dataset 

and dataset that includes 50% similar (labels) samples. The results demonstrate the 

efficacy of using importance sampling in getting better accuracy of the trained model. 

 

Figure 34: Testing loss on siamese Networks 

5.3 Build CNN with mtDNA GA and Importance Sampling 

Here are results from implementing mtDNA GA and importance sampling for 

hyperparameter and architecture optimization with cloud computing. We compared the 

results of constructing the deep CNN with the following two ways.  

• With standard Genetic Algorithm 

• With mtDNA based Genetic Algorithm and Importance Sampling 

Figure 35 displays the testing accuracy on the models trained with these two 

options. Table 8 provides the CNN architecture details (hyperparameters and size) of the 

models trained on the two options. 
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Table 8: CNN architecture trained with Standard GA vs mtDNA GA w/ Importance Sampling (on MNIST) 

CNN Architecture Hyperparameter Standard GA mtDNA GA and IS 

Convolution Layer 1 

 

 

 

 

Enabled 1 1 

Number of Kernels 128 256 

Batch Normalization 0 0 

Activation Function 0 0 

Dropout 3 2 

Max Pooling 1 1 

Convolution Layer 2 

 

 

 

 

Enabled 0 1 

Number of Kernels 64 64 

Batch Normalization 0 0 

Activation Function 0 1 

Dropout 10 8 

Max Pooling 2 0 

Convolution Layer 3 

 

 

 

 

Enabled 1 0 

Number of Kernels 32 8 

Batch Normalization 1 1 

Activation Function 1 0 

Dropout 3 7 

Max Pooling 0 2 
Convolution Layer 4 

 

 

 

 

Enabled 0 1 

Number of Kernels 8 128 

Batch Normalization 1 1 

Activation Function 1 0 

Dropout 1 5 

Max Pooling 0 0 

Convolution Layer 5 

 

 

 

 

Enabled 1 1 

Number of Kernels 128 16 

Batch Normalization 1 0 

Activation Function 0 1 

Dropout 5 7 

Max Pooling 0 0 

Convolution Layer 6 

 

 

 

 

Enabled 0 0 

Number of Kernels 8 16 

Batch Normalization 0 0 

Activation Function 0 1 

Dropout 3 2 

Max Pooling 0 0 
Fully Connected Layer 

 

 

 

 

Enabled 1 1 

Number of Nodes 32 512 

Batch Normalization 0 1 

Activation Function 1 0 

Dropout 6 7 

Optimizer Adadelta RMSProp 

Testing 
Loss 0.0335 0.0188 

Accuracy 0.9901 0.994 
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The accuracy of the model when mtDNA GA and importance sampling were used 

on MNIST was 99.4%. When those additions were not used, the accuracy was 99%. 

Thus, adding mtDNA and importance sampling contributed to improvement of .4% to 

make the total accuracy of 99.4%, which is significant in the context of MNIST dataset. 

We also able to get better results with our implementation on CIFAR10 dataset, i.e., 73% 

accuracy vs 67%, when mtDNA GA and importance sampling were not used.  

 

Figure 35: Testing accuracy on CNN  



 
 

CHAPTER 6: CONCLUSION 

In first half of this paper covered thorough overview of the neural networks and 

deep neural networks. We took a deeper dive into the well-known training algorithms and 

architectures. We highlighted their shortcomings, e.g., getting stuck in the local minima, 

overfitting and training time for large problem sets. We examined several state-of-the-art 

ways to overcome these challenges with different optimization methods. We investigated 

adaptive learning rates and hyperparameter optimization as effective methods to improve 

the accuracy of the network. We surveyed and reviewed several recent papers, studied 

them and presented their implementations and improvements to the training process. 

We have presented two important ideas of mtDNA based Genetic Algorithm and 

the use of importance sampling to optimize the deep neural network training and design. 

The mtDNA logic introduced in the paper is a novel idea and is inspired by nature 

just like many of the optimization algorithms, e.g., genetic algorithm, swarm intelligence, 

ant colony optimization, neural network, etc. Like these nature inspired algorithms and 

systems, the concept of mtDNA is not very complex but can be instrumental in 

improving outcomes of genetic algorithm. Maintaining diversity is the key to preventing 

premature convergence into local minima. The characteristics of mtDNA can be 

exploited to track diversity and restrict crossover between parents of same genetic traits, 

thus yielding better fitness value in the offspring. The mtDNA concept articulated and 
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implemented here mimics the natural order where it is an established fact that 

biodiversity favors evolution and produces more adaptable offspring. We were able to 

use the concept of mtDNA in GA to improve the outcome of neural network training. We 

validated the efficacy of mtDNA enhanced genetic algorithm for optimizing the deep 

neural network hyperparameters by getting better results on MNIST and CIFAR10 

datasets when compared to standard GA. They hyperparameter space is huge and the 

parameters themselves display non-linear and interactive influence on performance. 

Solving it with expert knowledge, fixed formula or manually exhaustive methods is not 

feasible. Our implementation of mtDNA GA provide a heuristic based guided navigation 

of the solution space and results in better outcome. It is grounded on the premise that the 

right amount of diversity can improve the fitness in the next generation after crossover 

operations. It helps improve both exploration and exploitation of the solution space.   

We were able to demonstrate that importance sampling, a variance reduction 

method can successfully improve the training and testing accuracy of the siamese 

network and CNN. This the first known attempt to combine importance sampling with 

siamese network. We have empirically demonstrated the validity of using importance 

sampling to fine-tune the training. 

Finally, we were able to incorporate both mtDNA based genetic algorithm and 

importance sampling to build and train deep CNN and leverage the power of the cloud to 

achieve differentiable improvement in model accuracy.  
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