7 research outputs found

    Online Fault Classification in HPC Systems through Machine Learning

    Full text link
    As High-Performance Computing (HPC) systems strive towards the exascale goal, studies suggest that they will experience excessive failure rates. For this reason, detecting and classifying faults in HPC systems as they occur and initiating corrective actions before they can transform into failures will be essential for continued operation. In this paper, we propose a fault classification method for HPC systems based on machine learning that has been designed specifically to operate with live streamed data. We cast the problem and its solution within realistic operating constraints of online use. Our results show that almost perfect classification accuracy can be reached for different fault types with low computational overhead and minimal delay. We have based our study on a local dataset, which we make publicly available, that was acquired by injecting faults to an in-house experimental HPC system.Comment: Accepted for publication at the Euro-Par 2019 conferenc

    Identifying recovery patterns from resource usage data of cluster systems

    Get PDF
    Failure of Cluster Systems has proven to be of adverse effect and it can be costly. System administrators have employed divide and conquer approach to diagnosing the root-cause of such failure in order to take corrective or preventive measures. Most times, event logs are the source of the information about the failures. Events that characterized failures are then noted and categorized as causes of failure. However, not all the ’causative’ events lead to eventual failure, as some faults sequence experience recovery. Such sequences or patterns constitute challenge to system administrators and failure prediction tools as they add to false positives. Their presence are always predicted as “failure causing“, while in reality, they will not. In order to detect such recovery patterns of events from failure patterns, we proposed a novel approach that utilizes resource usage data of cluster systems to identify recovery and failure sequences. We further propose an online detection approach to the same problem. We experiment our approach on data from Ranger Supercomputer System and the results are positive.Keywords: Change point detection; resource usage data; recovery sequence; detection; large-scale HPC system

    Improving efficiency and resilience in large-scale computing systems through analytics and data-driven management

    Full text link
    Applications running in large-scale computing systems such as high performance computing (HPC) or cloud data centers are essential to many aspects of modern society, from weather forecasting to financial services. As the number and size of data centers increase with the growing computing demand, scalable and efficient management becomes crucial. However, data center management is a challenging task due to the complex interactions between applications, middleware, and hardware layers such as processors, network, and cooling units. This thesis claims that to improve robustness and efficiency of large-scale computing systems, significantly higher levels of automated support than what is available in today's systems are needed, and this automation should leverage the data continuously collected from various system layers. Towards this claim, we propose novel methodologies to automatically diagnose the root causes of performance and configuration problems and to improve efficiency through data-driven system management. We first propose a framework to diagnose software and hardware anomalies that cause undesired performance variations in large-scale computing systems. We show that by training machine learning models on resource usage and performance data collected from servers, our approach successfully diagnoses 98% of the injected anomalies at runtime in real-world HPC clusters with negligible computational overhead. We then introduce an analytics framework to address another major source of performance anomalies in cloud data centers: software misconfigurations. Our framework discovers and extracts configuration information from cloud instances such as containers or virtual machines. This is the first framework to provide comprehensive visibility into software configurations in multi-tenant cloud platforms, enabling systematic analysis for validating the correctness of software configurations. This thesis also contributes to the design of robust and efficient system management methods that leverage continuously monitored resource usage data. To improve performance under power constraints, we propose a workload- and cooling-aware power budgeting algorithm that distributes the available power among servers and cooling units in a data center, achieving up to 21% improvement in throughput per Watt compared to the state-of-the-art. Additionally, we design a network- and communication-aware HPC workload placement policy that reduces communication overhead by up to 30% in terms of hop-bytes compared to existing policies.2019-07-02T00:00:00

    Towards efficient error detection in large-scale HPC systems

    Get PDF
    The need for computer systems to be reliable has increasingly become important as the dependence on their accurate functioning by users increases. The failure of these systems could very costly in terms of time and money. In as much as system's designers try to design fault-free systems, it is practically impossible to have such systems as different factors could affect them. In order to achieve system's reliability, fault tolerance methods are usually deployed; these methods help the system to produce acceptable results even in the presence of faults. Root cause analysis, a dependability method for which the causes of failures are diagnosed for the purpose of correction or prevention of future occurrence is less efficient. It is reactive and would not prevent the first failure from occurring. For this reason, methods with predictive capabilities are preferred; failure prediction methods are employed to predict the potential failures to enable preventive measures to be applied. Most of the predictive methods have been supervised, requiring accurate knowledge of the system's failures, errors and faults. However, with changing system components and system updates, supervised methods are ineffective. Error detection methods allows error patterns to be detected early to enable preventive methods to be applied. Performing this detection in an unsupervised way could be more effective as changes to systems or updates would less affect such a solution. In this thesis, we introduced an unsupervised approach to detecting error patterns in a system using its data. More specifically, the thesis investigates the use of both event logs and resource utilization data to detect error patterns. It addresses both the spatial and temporal aspects of achieving system dependability. The proposed unsupervised error detection method has been applied on real data from two different production systems. The results are positive; showing average detection F-measure of about 75%
    corecore