32 research outputs found

    On some intriguing problems in Hamiltonian graph theory -- A survey

    Get PDF
    We survey results and open problems in Hamiltonian graph theory centred around three themes: regular graphs, tt-tough graphs, and claw-free graphs

    How tough is toughness?

    Get PDF
    The concept of toughness was introduced by Chvátal [34] more than forty years ago. Toughness resembles vertex connectivity, but is different in the sense that it takes into account what the effect of deleting a vertex cut is on the number of resulting components. As we will see, this difference has major consequences in terms of computational complexity and on the implications with respect to cycle structure, in particular the existence of Hamilton cycles and k-factors

    Neighborhood intersections and Hamiltonicity in almost claw-free graphs

    Get PDF
    AbstractLet G be a graph. The partially square graph G∗ of G is a graph obtained from G by adding edges uv satisfying the conditions uv∉E(G), and there is some w∈N(u)∩N(v), such that N(w)⊆N(u)∪N(v)∪{u,v}. Let t>1 be an integer and Y⊆V(G), denote n(Y)=|{v∈V(G)|miny∈Y{distG(v,y)}⩽2}|,It(G)={Z|Z is an independent set of G,|Z|=t}. In this paper, we show that a k-connected almost claw-free graph with k⩾2 is hamiltonian if ∑z∈Zd(z)⩾n(Z)−k in G for each Z∈Ik+1(G∗), thereby solving a conjecture proposed by Broersma, Ryjác̆ek and Schiermeyer. Zhang's result is also generalized by the new result

    Hamiltonian chordal graphs are not cycle extendible

    Full text link
    In 1990, Hendry conjectured that every Hamiltonian chordal graph is cycle extendible; that is, the vertices of any non-Hamiltonian cycle are contained in a cycle of length one greater. We disprove this conjecture by constructing counterexamples on nn vertices for any n≥15n \geq 15. Furthermore, we show that there exist counterexamples where the ratio of the length of a non-extendible cycle to the total number of vertices can be made arbitrarily small. We then consider cycle extendibility in Hamiltonian chordal graphs where certain induced subgraphs are forbidden, notably PnP_n and the bull.Comment: Some results from Section 3 were incorrect and have been removed. To appear in SIAM Journal on Discrete Mathematic

    Hamilton cycles in graphs and hypergraphs: an extremal perspective

    Full text link
    As one of the most fundamental and well-known NP-complete problems, the Hamilton cycle problem has been the subject of intensive research. Recent developments in the area have highlighted the crucial role played by the notions of expansion and quasi-randomness. These concepts and other recent techniques have led to the solution of several long-standing problems in the area. New aspects have also emerged, such as resilience, robustness and the study of Hamilton cycles in hypergraphs. We survey these developments and highlight open problems, with an emphasis on extremal and probabilistic approaches.Comment: to appear in the Proceedings of the ICM 2014; due to given page limits, this final version is slightly shorter than the previous arxiv versio

    Graphs and subgraphs with bounded degree

    Get PDF
    "The topology of a network (such as a telecommunications, multiprocessor, or local area network, to name just a few) is usually modelled by a graph in which vertices represent 'nodes' (stations or processors) while undirected or directed edges stand for 'links' or other types of connections, physical or virtual. A cycle that contains every vertex of a graph is called a hamiltonian cycle and a graph which contains a hamiltonian cycle is called a hamiltonian graph. The problem of the existence of a hamiltonian cycle is closely related to the well known problem of a travelling salesman. These problems are NP-complete and NP-hard, respectively. While some necessary and sufficient conditions are known, to date, no practical characterization of hamiltonian graphs has been found. There are several ways to generalize the notion of a hamiltonian cycle. In this thesis we make original contributions in two of them, namely k-walks and r-trestles." --Abstract.Doctor of Philosoph

    Master index of volumes 161–170

    Get PDF

    Connected factors in graphs - a survey

    Get PDF
    corecore