

Discrete Mathematics 243 (2002) 171-185

DISCRETE MATHEMATICS

www.elsevier.com/locate/disc

Neighborhood intersections and Hamiltonicity in almost claw-free graphs

Mingquan Zhan

Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA

Received 20 October 1997; revised 9 June 2000; accepted 9 October 2000

Abstract

Let *G* be a graph. The partially square graph G^* of *G* is a graph obtained from *G* by adding edges uv satisfying the conditions $uv \notin E(G)$, and there is some $w \in N(u) \cap N(v)$, such that $N(w) \subseteq N(u) \cup N(v) \cup \{u, v\}$. Let t > 1 be an integer and $Y \subseteq V(G)$, denote $n(Y) = |\{v \in V(G)| \min_{y \in Y} \{ \text{dist}_G(v, y) \} \leq 2 \}|$, $I_t(G) = \{Z \mid Z \text{ is an independent set of } G, |Z| = t \}$. In this paper, we show that a *k*-connected almost claw-free graph with $k \ge 2$ is *hamiltonian* if $\sum_{z \in Z} d(z) \ge n(Z) - k$ in *G* for each $Z \in I_{k+1}(G^*)$, thereby solving a conjecture proposed by Broersma, Ryjáček and Schiermeyer. Zhang's result is also generalized by the new result. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Hamiltonian graphs; Almost claw-free graphs; Claw center; The global insertion

1. Introduction

In this paper, we consider only finite, undirected graphs G = (V, E) of order n without loops or multiple edges. We use the notations and terminology in [4]. The independence number of G and its subgraph induced by $A \subseteq V(G)$ are, respectively, denoted by $\alpha(G)$ and G[A]. G + H denotes the union of vertex-disjoint graphs G and H. The join of vertex-disjoint graphs G and H is denoted by $G \vee H$. If A, H are subsets of V(G) or subgraphs of G, we denote by $N_H(A)$ the set of vertices in H which are adjacent to some vertex in A. For simplicity, we adopt N(A) if H = G. The open neighborhood, the closed neighborhood and the degree of vertex v are, respectively, denoted by $N(v) = \{u \in V(G) \mid uv \in E(G)\}, N[v] = N(v) \cup \{v\}$ and d(v) = |N(v)|. $\delta(G)$ denotes the minimum degree of G. A dominating set of G is a subset S of V(G)such that every vertex of G belongs to S or is adjacent to a vertex of S. The domination number, denoted $\gamma(G)$, is the minimum cardinality of a dominating set of G. To each pair (u, v) of vertices at distance 2, we associate the set $J(u, v) = \{w \in N(u) \cap$ $N(v) | N(w) \subseteq N[u] \cup N[v] \}$. Let $Z \subseteq V(G), |Z| = p$, and t > 1 be an integer. Put,

$$S_i(Z) = \{v \in V(G) \mid |N(v) \cap Z| = i\}, \quad s_i(Z) = |S_i(Z)| \quad \text{for } i = 0, 1, \dots, p$$

0012-365X/02/\$ - see front matter © 2002 Elsevier Science B.V. All rights reserved. PII: S0012-365X(00)00469-6

and

 $I_t(G) = \{Y \mid Y \text{ is an independent set of } G, |Y| = t\}.$

Let G be connected and $Z \subseteq V(G)$. Denote

$$N_i(Z) = \left\{ v \in V(G) \mid \min_{z \in Z} \{ \operatorname{dist}_G(v, z) \} = i \right\} \ (i = 0, 1, 2, \dots)$$

and

$$n(Z) = |N_0(Z) \cup N_1(Z) \cup N_2(Z)| = \left| \left\{ v \in V(G) | \min_{z \in Z} \{ \operatorname{dist}_G(v, z) \} \leq 2 \right\} \right|,$$

where $dist_G(v,z)$ stands for the distance between v and z in G.

A claw in a graph is an induced subgraph $G[\{u, x, y, z\}]$ isomorphic to $K_{1,3}$ in which the vertex u of degree 3 is called claw-center. A graph is claw-free if it does not contain a claw as an induced subgraph.

Definition 1.1 (*Ryjáček* [10]). A graph G is almost claw-free if there exists an independent set $A \subseteq V(G)$ such that $\alpha(G[N(v)]) \leq 2$ for every $v \notin A$ and $\gamma(G[N(v)]) \leq 2 < \alpha(G[N(v)])$ for every $v \in A$.

Definition 1.2 (*Ainouche and Kouider* [3]). The partially square graph G^* of G is a graph satisfying $V(G^*) = V(G)$ and $E(G^*) = E(G) \cup \{uv \mid uv \notin E(G), \text{ and } J(u, v) \neq \emptyset\}$.

Definition 1.3. The square graph G^2 of G is a graph satisfying $V(G^2) = V(G)$ and $E(G^2) = E(G) \cup \{uv \mid \text{dist}_G(u, v) = 2\}.$

2. Properties

Property 2.1 (Ryjáček [10]). Every almost claw-free graph is $K_{1,5}$ -free and $K_{1,1,3}$ -free.

Property 2.2. Let G be an almost claw-free graph and G^* its partially square graph. Then $s_3(Z) = 0$ in G for each $Z \in I_3(G^*)$.

Proof. By contradiction. Suppose that $Z = \{u_1, u_2, u_3\}$ is an independent set of G^* , and $uu_i \in E(G)$ (i = 1, 2, 3). Clearly, $\{u_1, u_2, u_3\}$ is independent in G and u is a claw center. Note that G is almost claw-free. There exists some vertex $w \in N(u) \setminus \{u_1, u_2, u_3\}$ dominating two vertices of $\{u_1, u_2, u_3\}$. We assume w dominates u_1 and u_2 . By the definition of G^* and $u_1u_2 \notin E(G^*)$, we have $J(u_1, u_2) = \emptyset$. Then there must exist some vertex $u_4(\notin \{u_1, u_2, u\})$ in N(w) such that $u_4 \notin N[u_1] \cup N[u_2]$. Thus, $G[\{w, u_1, u_2, u_4\}] \cong$ $K_{1,3}$. However, $wu \in E(G)$ and u is a claw center, a contradiction.

Clearly, Property 2.2 is equivalent to saying that G^* is claw-free if G is almost claw-free.

Property 2.3. Let G be an almost claw-free graph and G^* its partially square graph. Then $s_2(Z) \leq 2$ in G for each $Z \in I_2(G^*)$. Moreover, if $S_2(Z) = \{u_1, u_2\}$, we have $u_1u_2 \notin E(G)$.

172

Proof. By contradiction. Suppose that $Z = \{w_1, w_2\}$ is independent in G^* and $\{u_1, u_2, u_3\} \subseteq S_2(Z)$. By the definition of G^* and $w_1w_2 \notin E(G^*)$, it is easy to see that u_1, u_2, u_3 are claw centers in G. Then, $\{u_1, u_2, u_3\}$ is independent in G and $G[\{w_1, u_1, u_2, u_3\}] \cong K_{1,3}$, a contradiction. Hence $s_2(Z) \leq 2$ in G for each $Z \in I_2(G^*)$. Moreover, if $S_2(Z) = \{u_1, u_2\}$, it is not difficult to get $u_1u_2 \notin E(G)$.

3. Hamiltonicity

The following results on claw-free graphs are known.

Theorem 3.1 (Matthews and Sumner [9]). A 2-connected claw-free graph G is hamiltonian if $\delta(G) \ge \frac{1}{3}(n-2)$.

Theorem 3.2 (Broersma [5], Liu and Tian [8]). Let G be a 2-connected claw-free graph. If $\sum_{z \in Z} d(z) \ge n - 2$ for each $Z \in I_3(G)$, then G is hamiltonian.

Zhang generalized Theorem 3.2 to k-connected claw-free graphs for any positive integer $k \ge 2$ as follows.

Theorem 3.3 (Zhang [12]). Let G be a k-connected claw-free graph with $k \ge 2$. If $\sum_{z \in Z} d(z) \ge n - k$ for each $Z \in I_{k+1}(G)$, then G is hamiltonian.

Theorem 3.3 was extended by the following Theorem.

Theorem 3.4 (Ainouche and Broersma [1]). If G is a k-connected claw-free graph $(k \ge 2)$ with $\alpha(G^2) \le k$, then G is hamiltonian.

Ainouche and Kouider in [3], considered the independence number of partially square graphs and proved the following.

Theorem 3.5 (Ainouche and Kouider [3]). Let G be a k-connected graph with $k \ge 2$ and G^* its partially square graph. If $\alpha(G^*) \le k$, then G is hamiltonian.

Our objective is to generalize results on claw-free graphs to almost claw-free graphs. Following are some results on hamiltonicity in almost claw-free graphs.

Theorem 3.6 (Broersma et al. [6]). A 2-connected almost claw-free graph G is hamiltonian if $\delta(G) \ge \frac{1}{3}(n-2)$.

Theorem 3.7 (Broersma et al. [6]). Let G be a 2-connected almost claw-free graph. If $\sum_{z \in Z} d(z) \ge n$ for each $Z \in I_3(G)$, then G is hamiltonian.

Broersma et al. in [6] conjectured that $\sum_{z \in Z} d(z) \ge n-2$ for each $Z \in I_3(G)$ implies hamiltonicity in 2-connected almost claw-free graphs. This conjecture was verified for

Fig. 1. A k-connected almost claw-free hamiltonian graph.

 $n \ge 79$ by Li and Tian [7], and proved in [2] for another class containing the class of almost claw-free graphs.

In this paper, we will prove the following result.

Theorem 3.8. Let G be a k-connected almost claw-free graph with $k \ge 2$, and G^* its partially square graph. If $\sum_{z \in Z} d(z) \ge n(Z) - k$ in G for each $Z \in I_{k+1}(G^*)$, then G is hamiltonian.

Clearly, Theorem 3.8 is best possible, it modifies and generalizes Theorems 3.3, 3.6 and 3.7. Of course, it solves the conjecture proposed by Broersma et al. [6].

Now, for $k \ge 2$, we construct a graph G_k as follows (see Fig. 1). Let $H_j^i \cong K_k$, $H_5^i \cong K_1$, where i = 1, 2, ..., k, j = 1, 2, 3, 4. Let $H^i = (((H_1^i + H_2^i) \lor H_3^i) + H_4^i) \lor H_5^i$, and $V(H^1)$, $V(H^2), ..., V(H^k)$ be pairwise vertex-disjoint. Set

$$V(G_k) = \bigcup_{i=1}^k V(H^i),$$

$$E(G_k) = \bigcup_{i=1}^k E(H^i) \cup \left(\bigcup_{t=1}^{k-1} E(H_1^t \vee H_2^{t+1}) \cup E(H_1^k \vee H_2^1)\right)$$

$$\cup E(H_4^1 \vee H_4^2 \vee H_4^3 \vee \dots \vee H_4^k).$$

Obviously, G_k is a k-connected almost claw-free hamiltonian graph which is not claw-free, and $\sum_{z \in Z} d(z) = 4k^2 = n(Z) - k$ in G for each $Z \in I_{k+1}(G^*)$. G_k shows

that it is meaningful to find the sufficient condition for the hamiltonicity of almost claw-free graphs. On the other hand, for $G = G_k(k \ge 2)$, we have $n = 4k^2 + k$, and $\delta(G) < (n-2)/3$, therefore G_k doesn't satisfy the condition of Theorem 3.6.

To prove Theorem 3.8, we will relate in Section 4 the concept of global insertion introduced in [2], and use the global insertion Lemma 4.1 to prove some new lemmas. The proof of Theorem 3.8 is given in Section 5.

4. The global insertion concept

Let *G* be a *k*-connected non-hamiltonian graph and *C* its a maximal cycle of *G* (that is, there is no cycle *C'* in *G* such that $V(C) \subset V(C')$), in the sense of the vertex inclusion, in which an orientation is fixed. For simplicity, we use the same notation to mean a subgraph, its vertex set or its edge set. If $x \in V(C)$, denote by x^+ and x^- the successor and the predecessor of *x* along the orientation of *C*, respectively. Set $x^{++} = (x^+)^+$, $x^- = (x^-)^-$. If $u, v \in V(C)$, then C[u, v] denotes the consecutive vertices on *C* from *u* to *v* in the chosen direction of *C*, and $C(u, v] = C[u, v] - \{u\}, C[u, v] = C[u, v] - \{v\}, C(u, v) = C[u, v] - \{u, v\}$. The same vertices, in the reverse order, are, respectively, denoted by $\overline{C}[v, u]$, $\overline{C}[v, u)$, $\overline{C}(v, u]$ and $\overline{C}(v, u)$. Let *H* be a component of G - V(C). Assume, $N_C(H) = \{v'_1, v'_2, \ldots, v'_m\}$ with $m \ge k \ge 2$, and v'_1, v'_2, \ldots, v'_m occur on *C* in the order of their indices. The subscripts will be taken modulo *m*. Let $\{x, y\} \subseteq N_C(H)$. We denote by xHy one of the longest (x, y)-paths with all its internal vertices in *H*.

In [2], a relation \sim on V(C) is defined by the condition $u \sim v$ if there exists a path with endpoints u, v and no internal vertex in C. Such a path is called a connecting path between u and v and is denoted by uRv, where $R:=V\setminus V(C)$. Note that if one of u or v is not a vertex v'_i , any connecting path uRv is disjoint from H. If x, y, t, zare distinct vertices of C such that $z \in \{t^+, t^-\}$, $x \sim t$, $y \sim z$, then the paths xRt and yRz are said to be crossing at x, y if either $(z = t^+ \text{ and } t \in C[y^+, x^{--}])$ or $(z = t^- \text{ and} t \in C[x^{++}, y^-])$.

Definition 4.1 (*Ainouche et al.* [2]). For all $i \in \{1, 2, ..., m\}$, a vertex $u \in C(v'_i, v'_{i+1})$ is called globally path insertible (GPI for short) if

- (i) each vertex in $C(v'_i, u)$ is GPI or $u = (v'_i)^+$;
- (ii) there exist $w, w^+ \in C[v'_{i+1}, v'_i]$ and $v \in C(v'_i, u]$ (possibly v = u) such that either $(u \sim w, v \sim w^+)$ or $(u \sim w^+, v \sim w)$.

Note that $u \sim v$ if $uv \in E(G)$. By replacing the connecting path with the edge in (ii), Wu et al. independently introduced the *T*-insertion concept in [11]. Clearly, *T*-insertion concept is a special case of the global edge insertion.

Let u be a GPI vertex in $C(v'_i, v'_{i+1})$ $(i \in \{1, 2, ..., m\})$. By the technique in [2] we can insert the vertices of $C(v'_i, u]$ into the path $C[v'_{i+1}, v'_i]$. Consider that $u_1 = u, v_{u_1}$

and the insertion edge $w_{u_1}w_{u_1}^+$; $u_2 = v_{u_1}^-$, v_{u_2} and the insertion edge $w_{u_2}w_{u_2}^+$; \cdots ; $u_s = v_{u_{s-1}}^-$, $v_{u_s} = (v'_i)^+$ and the insertion edge $w_{u_s}w_{u_s}^+$, where for $j \in \{1, 2, \dots, s\}$, v_{u_j} is the first vertex in $C(v'_i, u_j]$ such that (ii) holds, and based on this, $w_{u_j}w_{u_j}^+$ is the first edge in $C[v'_{i+1}, v'_i]$ such that (ii) holds. By the choice above, $w_{u_1}w_{u_1}^+$, $w_{u_2}w_{u_2}^+$, \dots , $w_{u_s}w_{u_s}^+$ are different from each other. Similarly, the paths connecting the vertices w_{u_j} and $w_{u_j}^+$ to the vertices u_j and v_{u_j} are all pairwise internally disjoint by the choice of the v_{u_j} 's and the maximality of C. Thus, in the path $C[v'_{i+1}, v'_i]$, replace the edge $w_{u_j}w_{u_j}^+$ ($j \in \{1, 2, \dots, s\}$) by the path $C[v_{u_j}, u_j]$ or $\overline{C}[u_j, v_{u_j}]$, for the resulting (v'_{i+1}, v'_i) -path P_u , we have $V(P_u) = C[v'_{i+1}, u]$. $C(v'_i, u]$ is therefore inserted into the path $C[v'_{i+1}, v'_i]$. Denote $E(u) = \{w_{u_1}w_{u_1}^+, w_{u_2}w_{u_2}^+, \dots, w_{u_s}w_{u_s}^+\}$, and call it the inserted edge set of $C(v'_i, u]$.

Lemma 4.1 (Ainouche et al. [2]). For all $i \in \{1, 2, ..., m\}$, let x'_i be the first vertex on $C(v'_i, v'_{i+1})$ along C which is not globally path insertible. Then

- (a) For each i, x'_i exists. Set $X' = \{x'_0, x'_1, \dots, x'_m\}$ with $x'_0 \in V(H)$.
- (b) For $1 \le i \ne j \le m$ and for any $u_i \in C(v'_i, x'_i]$ and $u_j \in C(v'_j, x'_j]$, $u_i \nsim u_j$ and there are no crossing paths at u_i , u_j .
- (c) X is independent.
- (d) For $0 \le i \ne j \le m$, $J(x'_i, x'_j) = \emptyset$. In particular any common neighbor of at least two vertices of X' must be a claw-center.

In the rest of this paper, we pick up $\{v_1, v_2, ..., v_k\} \subseteq \{v'_1, v'_2, ..., v'_m\}$. The subscripts of $(v_i)'s$ will be taken modulo k. For each $i \in \{1, 2, ..., k\}$, let x_i be the first non-GPI in $C(v_i, v_{i+1})$. Set $X = \{x_0, x_1, ..., x_k\}$, where $x_0 \in V(H)$. Denote $J_X = \bigcup_{i=1}^k C[x_i, v_{i+1}]$, $K_X = V(G) \setminus J_X$. For $X = \{x_0, x_1, ..., x_k\}$, let $C[z_1, z_2) \subseteq C[x_t, v_{t+1}]$ ($t \in \{1, 2, ..., k\}$). If $C(z_1, z_2) \cap S_0(X) = \emptyset$, and $z_1 \in N_2(X) \cup X$, $z_2 \in S_0(X) \cup \{v_{t+1}^+\}$, then $C[z_1, z_2)$ is called a CX-segment. A CX-segment $C[z_1, z_2)$ is called simple if $C(z_1, z_2) \subseteq S_1(X)$. By Lemmas 4.1(b)–(d) and the maximality of C, the following Lemma holds.

Lemma 4.2 (Wu et al. [11]). (a) If u is a GPI, then $u^+ \notin N_C(H)$.

- (b) $X \in I_{k+1}(G^*)$, $K_X \subseteq S_0(X) \cup S_1(X)$, $K_X \cap N_0(X) = \{x_0\}$.
- (c) If $u \in N_C(H) \setminus \{v_1, v_2, ..., v_k\}, y \in \bigcup_{i=1}^k C(v_i, x_i], then u^+ y \notin E(G).$

(d) Let, $C[z_1, z_2) (\subseteq C[x_t, v_{t+1}], t \in \{1, 2, ..., k\})$ be a CX-segment, and $M_i = N(x_i) \cap C(z_1, z_2)$ ($i \in \{0, 1, ..., k\}$). Then $M_t, M_{t-1}, ..., M_1, M_k, M_{k-1}, ..., M_{t+1}, M_0$ (some of them may be empty) form consecutive subpaths of $C(z_1, z_2)$ which can have only their end-vertices in common, and $|M_i| \leq 1$, $i \in \{0, 1, 2, ..., k\} \setminus \{t\}$.

Lemma 4.3.

$$\sum_{i=0}^{k} |N(x_i) \cap K_X| \leq |K_X| - 1 - \sum_{l>2} |N_l(X) \cap K_X|.$$

Proof. By Lemma 4.2(b), we have $K_X \subseteq S_0(X) \cup S_1(X)$, and $K_X \cap N_0(X) = \{x_0\}$. Then

$$\sum_{i=0}^{k} |N(x_i) \cap K_X| = |S_1(X) \cap K_X| = |N_1(X) \cap K_X|$$
$$= |K_X| - |N_0(X) \cap K_X| - \sum_{l>2} |N_l(X) \cap K_X| - |N_2(X) \cap K_X|$$
$$\leqslant |K_X| - 1 - \sum_{l>2} |N_l(X) \cap K_X|.$$

Lemma 4.4. If $C[z_1, z_2)$ is a simple CX-segment, then $\sum_{i=0}^{k} |N(x_i) \cap C[z_1, z_2)| = |C[z_1, z_2)| - 1$.

Proof. By the definition of a simple CX-segment, it is easy to see that

$$\sum_{i=0}^{n} |N(x_i) \cap C[z_1, z_2)| = |S_1(X) \cap C[z_1, z_2)| = |C(z_1, z_2)| = |C[z_1, z_2)| - 1$$

Now, we assume that G is almost claw-free, and A is the set of all claw centers. By the definition of an almost claw-free graph, A is independent. By Lemma 4.1(d), we have the following:

Lemma 4.5. For any $\{i, j\} \subseteq \{0, 1, ..., k\}$, we have $N(x_i) \cap N(x_j) \subseteq A$. Therefore, for any $i \in \{1, 2, ..., k\}$, $N(x_i) \cap N_C(H) \subseteq A$.

Lemma 4.6. For any $t \in \{3, 4, ..., k+1\}$, we have $S_t(X) = \emptyset$. Therefore, for any $\{i, j\} \subseteq \{1, 2, ..., k\}$, $N(x_i) \cap N(x_j) \cap N_C(H) = \emptyset$.

Proof. By Lemma 4.2(b), $X \in I_{k+1}(G^*)$. Then the result directly follows from Property 2.2.

Lemma 4.7. For any $i \in \{1, 2, ..., k\}$, $N(x_0) \cap N(x_i) \subseteq \{v_i\}$.

Proof. By contradiction. Suppose that there exists some vertex $w \in N(x_0) \cap N(x_i) \setminus \{v_i\}$. Then we have $w \in A$ by Lemma 4.5, and $w \in C(x_i, v_i^-)$ by Lemma 4.2(a), (b) and the definition of x_i . Consider $\{w^-, w^+, x_0\} \cup \{x_i\} (\subseteq N(w))$. It is clear that x_0 and x_i have no common neighbor in N(w). Suppose first that x_0 and w^+ have a common neighbor v in N(w). By the maximality of C, it is easy to see that $v \in V(C)$, $v \notin \{w^+, w^-\}$ and $v^+x_0, v^-x_0 \notin E(G)$. By $w \in A$, we have $v \notin A$, then $v^+v^- \in E(G)$. Thus, the cycle $C_1 = C[w^+, v^-]C[v^+, w)wHvw^+$ in G contains C, a contradiction. Hence x_0 and w^+ have no common neighbor in N(w). By symmetry, x_0 and w^- have no common neighbor in N(w).

Since G is almost claw-free and $w \in A$, we have $\gamma(G[N(w)]) \leq 2$. Then there exists some vertex $u \in N(w)$ dominating $\{w^+, w^-\} \cup \{x_i\}$. Clearly, $u \in V(C)$. By Lemmas 4.1(b), 4.2(c), we have $u \in C(x_i, v_i] \setminus \{w\}$. By $w \in A$ and $uw \in E(G), u \notin A$. We will consider three cases. Case 1: $u = v_i$.

Note that $u \in N(x_i) \cap N_C(H)$. By Lemma 4.5, we have $u \in A$, a contradiction. Case 2: $u \in C(x_i, w)$.

In fact, $u^+x_i \notin E(G)$ (Otherwise, suppose that $u^+x_i \in E(G)$. Note that since $\{w, u\} \subset \{w, u\}$ $N(x_i)$, we have $\{uu^+, ww^+\} \cap E(x_i^-) = \emptyset$, that is all the inserted edges of vertices in $C(v_i, x_i)$ are not in $\{uu^+, ww^+\}$. Then the vertices of $C(v_i, x_i)$ can be inserted into the cycle $C[u^+, w) w Hv_i \bar{C}(v_i, w^+] \bar{C}[u, x_i] u^+$. Denote by C_2 the resulting cycle. Clearly, $V(C) \subset V(C_2)$, a contradiction). Thus $u \neq w^-$. Moreover, $u^+ w^+ \in E(G)$ (Otherwise $u^+w^+ \notin E(G)$. By Lemmas 4.1(b) and 4.2(c), $x_iw^+ \notin E(G)$. Then $G[\{u, u^+, w^+, x_i\}] \cong$ $K_{1,3}$, a contradiction). It is easy to see that $\{ww^+, ww^-, uu^+\} \cap E(x_i^-) = \emptyset$ by the definition of x_i and $wx_i, ux_i \in E(G)$. Then the vertices of $C(v_i, x_i)$ can be inserted into the cycle $C[x_i, u]\bar{C}[w^-, u^+]C[w^+, v_i)v_iHwx_i$. Let C_3 denote the resulting cycle, we have $V(C) \subset V(C_3)$, a contradiction.

Case 3: $u \in C(w, v_i)$.

In fact, $u^+w^+ \notin E(G)$ (If not, we assume $u^+w^+ \in E(G)$). Note that $\{u, w\} \subseteq N(x_i)$, we have $\{ww^+, uu^+\} \cap E(x_i^-) = \emptyset$. Then the vertices of $C(v_i, x_i)$ can be inserted into the cycle $C[w^+, u]C[x_i, w) wHv_i \overline{C}(v_i, u^+]w^+$. Denote by C_4 the resulting cycle, we have $V(C) \subset V(C_4)$, a contradiction). Moreover, $x_i u^+ \notin E(G)$ (Otherwise, it is easy to see that the vertices of $C(v_i, x_i)$ can be inserted into the cycle $C[x_i, w^-]\bar{C}[u, w) w H v_i$ $\overline{C}[v_i, u^+]x_i$. Let C_5 denote the resulting cycle. Clearly, $V(C) \subset V(C_5)$, a contradiction). By Lemmas 4.1(b) and 4.2(c), we have $x_i w^+ \notin E(G)$. Thus, $G[\{u, u^+, w^+, x_i\}] \cong K_{1,3}$, a contradiction.

Lemma 4.8. Let, $C[z_1, z_2) \subseteq C[x_t, v_{t+1}], t \in \{1, 2, ..., k\}$ be a CX-segment. Then the following statements hold.

- (1) For any $i \in \{3, 4, \dots, k\}, |C[z_1, z_2) \cap S_i(X)| = 0.$
- (2) If $u \in S_2(X) \cap C(z_1, z_2)$, $y \in C(u, z_2)$, then $yu \in E(G)$. Therefore, $y \notin A$ and $|C(z_1, z_2) \cap S_2(X)| \leq 1.$ (3) $\sum_{i=0}^{k} |N(x_i) \cap C[z_1, z_2)| \leq |C[z_1, z_2)|.$

Proof. (1) It is easy to see that (1) holds by Lemma 4.6.

(2) By contradiction. Suppose that y is the first vertex in $C(u,z_2)$ nonadjacent to u. Then $yu \notin E(G)$, $y \neq u^+$ and $y^-u \in E(G)$. Note that $u \in S_2(X) \cap C(z_1, z_2)$. By the definition of CX-segment, we set $y^- \in N(x_i)$ $(j \neq t)$. It is clear that $x_i \notin N(u) \cup N(y)$ by Lemma 4.2(d). Thus $G[\{y^-, y, x_i, u\}] \cong K_{1,3}, y^- \in A$. By Lemma 4.5, $u \in A$. This contradicts $y^-u \in E(G)$. Hence $yu \in E(G)$.

(3) By (1) and (2), we have

$$\sum_{i=0}^{k} |N(x_i) \cap C[z_1, z_2)| = |S_1(X) \cap C(z_1, z_2)| + 2|S_2(X) \cap C(z_1, z_2)|$$
$$= |C(z_1, z_2)| + |S_2(X) \cap C(z_1, z_2)| \le |C[z_1, z_2)|.$$

Lemma 4.8 holds.

178

For $t \in \{1, 2, ..., k\}$, $C[x_t, v_{t+1}] \setminus \bigcup_{l>2} N_l(X)$ can be divided into some disjoint *CX*-segments. Assume that all these *CX*-segments are $C[z_{11}, z_{12})$, $C[z_{21}, z_{22})$,..., $C[z_{m1}, z_{m2})$, occurring consecutively along the direction of the path $C[x_t, v_{t+1}]$. It is possible to have $z_{j2} = z_{j+1,1}$ for some *j*.

Lemma 4.9. If $v_{t+1} \notin S_2(X)$, then $C[z_{m1}, z_{m2})$ is simple.

Proof. Suppose, to the contrary, that $C[z_{m1}, z_{m2})$ is not simple. By Lemma 4.8(2), $|C(z_{m1}, z_{m2}) \cap S_2(X)| = 1$. Let $w \in C(z_{m1}, z_{m2}) \cap S_2(X)$. Then $w \neq v_{t+1}$. By Lemma 4.5, $w \in A$. To get the contradiction, we first show two claims.

Claim 1. $v_{t+1} \in C[z_{m1}, z_{m2})$, and $v_{t+1}x_0, wv_{t+1}^+ \in E(G)$.

Suppose that $v_{t+1} \notin C[z_{m1}, z_{m2})$. By the definition of *CX*-segment and $|C(z_{m1}, z_{m2}) \cap S_2(X)| = 1$, we have $z_{m2} \in N_2(X)$. Then $C[z_{m2}, v_{t+1}]$ still has some other *CX*-segments. This contradicts the assumption.

By $v_{t+1} \notin S_2(X)$, $w \in C(z_{m1}, z_{m2}^-) \cap S_2(X)$. By Lemma 4.8(2), $wv_{t+1} \in E(G)$ and $v_{t+1} \notin A$. Then $v_{t+1}x_0 \in E(G)$ (Otherwise, suppose that $v_{t+1}x_0 \notin E(G)$. Since $v_{t+1} \in S_1(X)$, we set $v_{t+1}x_j \in E(G)$, where $j \in \{1, 2, ..., k\}$. By Lemma 4.5, $v_{t+1} \in A$, a contradiction). Moreover, $wv_{t+1}^+ \in E(G)$. (If not, we assume $wv_{t+1}^+ \notin E(G)$. By $v_{t+1} \in N(x_0)$ and Lemma 4.2(d), $x_0w \notin E(G)$. By the maximality of C, $v_{t+1}^+x_0 \notin E(G)$. Then $G[\{v_{t+1}, x_0, w, v_{t+1}^+\}] \cong K_{1,3}$, a contradiction.)

Claim 2. Let $w \in N(x_i) \cap S_2(X) \cap C[z_{m1}, z_{m2})$. Then the following statements hold.

- (1) $\{w^+, w^-, v_{t+1}^+\} \cup \{x_i\} \subseteq N(w) \ (i \neq 0, t+1).$
- (2) Let $u \in N_C(w)$. If u dominates $\{x_i\} \cup \{w^+, w^-\}$, then $u \in C(v_{t+1}^+, v_i] \cup C(x_i, w)$; If u dominates $\{x_i, v_{t+1}^+\}$, then $u \in C(x_i, w)$.
- (3) There is no vertex in N(w) dominating $\{x_i\} \cup \{w^+, w^-\}$.
- (4) There is no vertex in N(w) dominating $\{x_i, v_{t+1}^+, w^+\}$.
- (5) There is no vertex in N(w) dominating $\{x_i\} \cup \{v_{t+1}^+, w^-\}$.

Now, we show these statements one by one.

(1) By Claim 1, wv_{t+1}^+ , $v_{t+1}x_0 \in E(G)$. By $wv_{t+1}^+ \in E(G)$, we have $\{w^+, w^-, v_{t+1}^+\} \cup \{x_i\} \subseteq N(w)$. By $v_{t+1}x_0 \in E(G)$, Lemma 4.2(d) and $w \neq v_{t+1}$, we have $x_i \neq x_0$. If $x_i = x_{t+1}$, then $w = v_{t+1}^-$ by Lemma 4.2(d). This contradicts the definition of x_{t+1} . Hence $x_i \neq x_{t+1}$. (1) holds.

(2) In fact, $C[z_{m1}, z_{m2}) = C[z_{m1}, v_{t+1}]$ by Claim 1. Clearly, $u \neq w$. By Lemma 4.2(d), $w \in N(x_i) \cap S_2(X)$ and $u \in N(x_i)$, we have $u \notin C(w, v_{t+1}]$.

If *u* dominates $\{x_i\} \cup \{w^+, w^-\}$, then we have $u \neq v_{t+1}^+$ by Lemma 4.1(b) and $i \neq t + 1$. Moreover, we have $u \notin C(v_i, x_i]$ by Lemma 4.2(d), $w \in S_2(X)$ and $\{w^+, w^-\} \subseteq N(u)$. Thus, $u \in C(v_{t+1}^+, v_i] \cup C(x_i, w)$.

If u dominates $\{x_i, v_{t+1}^+\}$, then we have $u \notin \{v_{t+1}^+\} \cup C(v_i, x_i]$ by Lemma 4.1(b) and $i \neq t + 1$. Moreover, $u \notin C(v_{t+1}^+, v_i]$ (Suppose that $u \in C(v_{t+1}^+, v_i]$. By Lemma 4.1(b),

we have $u^+v_{t+1}^+, v_{t+1}^+x_i \notin E(G)$. By Lemma 4.5 and $u \notin A$, we have $u \neq v_i$. By the definition of x_i , $u^+x_i \notin E(G)$. Then, $G[\{u, u^+, x_i, v_{t+1}^+\} \cong K_{1,3}]$, a contradiction.) Thus, $u \in C(x_i, w)$.

(3) Suppose, to the contrary, that there exists a vertex $u \in N(w)$ dominating $\{x_i\} \cup \{w^+, w^-\}$. By the maximality of *C*, $u \in V(C)$. By (2), $u \in C(v_{t+1}^+, v_i] \cup C(x_i, w)$. By $w \in A$, we have $u \notin A$.

If $u \in C(v_{t+1}^+, v_i]$, then we have $u^-x_i \notin E(G)$ as x_i is not GPI. By Lemma 4.1(b) and $wv_{t+1}^+ \in E(G)$, $x_iw^+ \notin E(G)$. Thus, $u^-w^+ \in E(G)$. (Otherwise, $G[\{u, u^-, x_i, w^+\} \cong K_{1,3},$ a contradiction.) Note that $\{u, w\} \subseteq N(x_i)$, we have $\{uu^-, ww^+, v_{t+1}^+v_{t+1}\} \cap E(x_i^-) = \emptyset$ by Lemma 4.1(b) and the definition of x_i . The vertices of $C(v_i, x_i)$ can be inserted into the cycle $C[x_i, w]C[v_{t+1}^+, u^-] C[w^+, v_{t+1}) v_{t+1}Hv_i\bar{C}(v_i, u]x_i$. Denote by C_1 the resulting cycle, we have $V(C) \subset V(C_1)$, a contradiction.

If $u \in C(x_i, w)$, then $u^+x_i \notin E(G)$ (If not, we assume $u^+x_i \in E(G)$. By Claim 1, $wv_{t+1}^+ \in E(G)$. Note that $\{uu^+, ww^+, v_{t+1}v_{t+1}^+\} \cap E(x_i^-) = \emptyset$. The vertices of $C(v_i, x_i)$ can be inserted into the cycle $C[x_i, u] C[w^+, v_{t+1}) v_{t+1}Hv_i \overline{C}(v_i, v_{t+1}^+] \overline{C}[w, u^+]x_i$. Let C_2 denote the resulting cycle. Clearly, $V(C) \subset V(C_2)$, a contradiction). Thus, $u \neq w^-$. By $wv_{t+1}^+ \in E(G)$ and Lemma 4.1(b), we have $x_iw^+ \notin E(G)$. Then $w^+u^+ \in E(G)$ (Otherwise, $G[\{u, x_i, w^+, u^+\}] \cong K_{1,3}$, a contradiction). Note that $\{uu^+, ww^+, ww^-, v_{t+1}v_{t+1}^+\} \cap E(x_i^-) = \emptyset$ and $\{x_i, v_{t+1}^+\} \subseteq N(w)$, the vertices of $C(v_i, x_i)$ can be inserted into the cycle $C[x_i, u] \overline{C}[w^-, u^+] C[w^+, v_{t+1}) v_{t+1}Hv_i \overline{C}(v_i, v_{t+1}^+]wx_i$. Denote by C_3 the resulting cycle, we have $V(C) \subset V(C_3)$, a contradiction.

(4) Suppose, to the contrary, that there exists a vertex $u \in N(w)$ dominating $\{x_i, v_{t+1}^+, w^+\}$. By the maximality of $C, u \in V(C)$. By (2), $u \in C(x_i, w)$. Then we have $x_iu^+, x_iv_{t+1}^+ \notin E(G)$ by Lemma 4.1(b). Thus, $u^+v_{t+1}^+ \in E(G)$. (Otherwise, $G[\{u, v_{t+1}^+, x_i, u^+\}] \cong K_{1,3}$, a contradiction.) Note that $\{uu^+, ww^+, v_{t+1}v_{t+1}^+\} \cap E(x_i^-) = \emptyset$. By inserting the vertices of $C(v_i, x_i)$ into the cycle $C[x_i, u] C[w^+, v_{t+1})$ $v_{t+1}Hv_i \bar{C}(v_i, v_{t+1}^+] C[u^+, w]x_i$, we get a cycle which contains C, a contradiction.

(5) Suppose, to the contrary, that there is a vertex $u \in N(w)$ dominating $\{x_i\} \cup \{v_{t+1}^+, w^-\}$. By the maximality of C, $u \in V(C)$. By Lemma 4.1(b), $u \neq w^-$. Then we have $u \in C(x_i, w^-)$ by (2). By Lemma 4.1(b), $v_{t+1}^+x_i$, $x_iu^+ \notin E(G)$. Thus, $v_{t+1}^+u^+ \in E(G)$. (Otherwise, $G[\{u, u^+, x_i, v_{t+1}^+\}] \cong K_{1,3}$, a contradiction.) Note that $\{uu^+, ww^-, v_{t+1}v_{t+1}^+\} \cap E(x_i^-) = \emptyset$, the vertices of $C(v_i, x_i)$ can be inserted into the cycle $C[x_i, u] \ \overline{C}[w^-, u^+] C[v_{t+1}^+, v_i) v_i H v_{t+1} \ \overline{C}(v_{t+1}, w] x_i$. Denote by C_4 the resulting cycle. Clearly, $V(C) \subset V(C_4)$, a contradiction.

The proof of Claim 2 is over.

Now we prove Lemma 4.9. By Claim 2(1) and $w \in S_2(X)$, we have $\{w^+, w^-, v_{t+1}^+\} \cup \{x_i, x_j\} \subseteq N(w)$, where $\{i, j\} \subseteq \{1, 2, ..., k\} \setminus \{t + 1\}$. By Lemma 4.5 and since *A* is independent, it is easy to see that there is no vertex in N(w) dominating $\{x_i, x_j\}$. Then $\gamma(G[N(w)]) > 2$ by Claims 2(3)–(5), a contradiction. Hence Lemma 4.9 holds.

For given C and its $\{v_1, v_2, ..., v_k\}$, set $\mathscr{C} = \{C' | C' \text{ is a cycle in } G, V(C') = V(C)$, and $v_1, v_2, ..., v_k$ occur on C' in the order of the indices $\}$. \mathscr{C} is the set of some cycles in G. Clearly, C' is a maximal cycle in G for each $C' \in \mathscr{C}$. **Lemma 4.10.** Let $C \in \mathscr{C}$ be a cycle having maximum number of globally path insertible vertices in \mathscr{C} . If $v_t \in S_2(X)$, then $m \ge 2$, and there exists some $j \in \{1, 2, ..., m-1\}$, such that $C[z_{i1}, z_{i2})$ is simple.

Proof. In fact, $v_t \in S_2(X) \cap N_C(H)$. Then we have $v_t \in N(x_0) \cap N(x_t)$ by Lemmas 4.6, 4.7, and $v_t \in A$ by Lemma 4.5. Therefore, we have $u \notin A$ if $u \in N(v_t)$. By the definition of x_t , $x_tv_t^-, v_t^+v_t^- \notin E(G)$. By the maximality of C, $x_0v_t^+, x_0v_t^- \notin E(G)$. Considering $N(v_t)$, we have $\{v_t^+, v_t^-, x_0\} \cup \{x_t\} \subseteq N(v_t)$. (It is possible to have $x_t = v_t^+$.) It is clear that x_0 and x_t have no common neighbor in $N(v_t)$. Suppose, to the contrary, that Lemma 4.10 does not hold.

Claim 1. There is no vertex in $N(v_t)$ dominating $\{x_0, v_t^+\}$.

Suppose that there exists a vertex $u \in N(v_t)$ dominating $\{x_0, v_t^+\}$. By the maximality of *C*, we have $u \in V(C)$, $u \neq v_t^+$ and $u^+, u^- \notin N(x_0)$. Note that $u \in N_C(x_0)$ and $u \notin A$, we have $u^+u^- \in E(G)$. Then the cycle $C[v_t^+, u^-]C[u^+, v_t)v_tHuv_t^+$ in *G* contains *C*, a contradiction.

Claim 2. There is no vertex in $N(v_t)$ dominating $\{x_0, v_t^-\}$.

Suppose that there exists a vertex $u \in N(v_t)$ dominating $\{x_0, v_t^-\}$. By the maximality of *C*, we have $u \in V(C)$, $u \neq v_t^-$ and $u^-, u^+ \notin N(x_0)$. Then $u^+u^- \in E(G)$. Thus, the cycle $C[v_t, u^-]C[u^+, v_t^-]uHv_t$ in *G* contains *C*, a contradiction. Claim 2 holds.

Since G is almost claw-free, we have $\gamma(G[N(v_t)]) \leq 2$. Then there exists a vertex $u \in N(v_t)$ dominating $\{x_t\} \cup \{v_t^+, v_t^-\}$ by Claims 1, 2. It is easy to see that $u \in V(C)$. By $v_t^- x_t, v_t^- v_t^+ \notin E(G)$, we have $u \notin \{v_t^+, v_t^-\} \cup \{x_t\}$. By $u \notin A$ and Lemma 4.5, $u \notin N_C(H)$.

Claim 3. $u \in C(x_t, v_{t+1}), u^+u^- \notin E(G).$

Suppose that $u \notin C(x_t, v_{t+1})$. Since $v_t x_t, uv_t^- \in E(G)$, we have $u \notin C(v_t, x_t]$ by the definition of x_t . By $u \notin N_C(H)$, we have $u \in C(v_{t+1}, v_t)$. Thus, we may let $u \in C(v_p, v_{p+1})$ ($\subseteq C(v_{t+1}, v_t)$). By $ux_t \in E(G)$ and Lemma 4.1(b), $u \in C(x_p, v_{p+1})$. By $x_t u \in E(G)$ and the definition of x_t , we have $u^+ x_t, u^- x_t \notin E(G)$ and $uu^+, uu^- \notin E(x_t^-)$. Consider $G[\{u, u^+, u^-, x_t\}]$. It is clear that $u^+u^- \in E(G)$. For each $i \in \{t+1, t+2, \ldots, p-1\}$, we have $uu^+, uu^- \notin E(x_t^-)$. (Otherwise, there exists some $j \in \{t+1, t+2, \ldots, p-1\}$, such that $\{uu^+, uu^-\} \cap E(x_j^-) \neq \emptyset$. Then there is a vertex $v \in C(v_j, x_j)$ satisfying $uv \in E(G)$. By Lemma 4.1(b), $x_t v, u^+ v \notin E(G)$. Thus, $G[\{u, u^+, v, x_t\}] \cong K_{1,3}$, a contradiction.) By symmetry, $u^+u, uu^- \notin E(x_t^-)$ for each $i \in \{p+1, p+2, \ldots, t-1\}$. Hence there is a cycle $C_1 = C[v_t^+, u^-]C[u^+, v_t]uv_t^+$ satisfying $V(C) = V(C_1)$, however C_1 has more globally path insertible vertices than C. This contradicts the choice of C. So $u \in C(x_t, v_{t+1})$.

Suppose $u^+u^- \in E(G)$. First we will prove $uu^-, uu^+ \notin E(x_i^-)$ for each $i \in \{1, 2, ..., k\} \setminus \{t\}$. We proceed by contradiction. Suppose that there exists some $i_0 \in \{1, 2, ..., k\} \setminus \{t\}$, such that $\{uu^-, uu^+\} \cap E(x_{i_0}^-) \neq \emptyset$. Let g be the first vertex in

 $C(v_{i_0}, x_{i_0})$ adjacent to u. Then $uu^+ \notin E(g^-)$. If $v_t v_t^- \notin E(g^-)$, then we have $gx_t, u^+ x_t \notin E(G)$ by Lemma 4.1(b). Thus $gu^+ \in E(G)$ as $u \notin A$. Hence the vertices of $C(v_{i_0}, g)$ can be inserted into the cycle $C[u^+, v_{i_0}) v_{i_0} H v_t C(v_t, u] \tilde{C}[v_t^-, g]u^+$. Denote by C_2 the resulting cycle. Clearly, $V(C) \subset V(C_2)$, a contradiction. If $v_t v_t^- \in E(g^-)$, we let h the first vertex in $C(v_{i_0}, g)$ adjacent to v_t . Then $v_t v_t^- \notin E(h^-)$. By Lemma 4.1(b) and the choices of h, g, we have $uu^+, uu^-, v_t v_t^+ \notin E(h^-)$. Thus we can insert all vertices of $C(v_{i_0}, h)$ into the cycle $C[u^+, v_{i_0}) v_{i_0} H v_t C[h, v_t^-] u C[v_t^+, u^-]u^+$. Denote by C_3 the resulting cycle. Then we have $V(C) \subset V(C_3)$, a contradiction.

Thus, we have $uu^+, uu^- \notin E(x_i^-)$ for each $i \in \{1, 2, ..., k\} \setminus \{t\}$. Considering the cycle $C_4 = C[v_t^+, u^-] C[u^+, v_t] uv_t^+$ in G, we have $V(C) = V(C_4)$, however C_4 has more globally path insertible vertices than C. This contradicts the choice of C too. So $u^+u^- \notin E(G)$.

Claim 4. $u \in S_1(X)$, $u^+ \notin N_C(H)$. Therefore $u \neq v_{t+1}^-$.

In fact, note that $ux_t \in E(G)$, we have $u \in S_1(X)$ by Lemma 4.5 and $u \notin A$. Moreover $u^+ \notin N_C(H)$, otherwise the cycle $\overline{C}[u, v_t)v_tHu^+C(u^+, v_t^-]u$ in G contains C, a contradiction.

Claim 5. $u^+ \in N(x_t)$.

Suppose, to the contrary, that $u^+ \notin N(x_t)$. By Claim 4, we have $u^+, u^{++} \in C(x_t, v_{t+1}]$ and $u^+ \notin N(x_0)$. We distinguish three cases.

Case 1: $u^+ \in S_0(X)$.

Let *a* be the first vertex in $\overline{C}[u, x_t]$ nonadjacent to x_t . Then $C[a, u^+)$ is simple by Lemma 4.2(d) and Claim 4. Since $u^+ \in N_2(X)$ and $u^+ \in C[x_t, v_{t+1}]$, there must exist some other *CX*-segments in $C[u^+, v_{t+1}]$. This contradicts the assumption.

Case 2: $u^+ \in S_l(X)$ $(l \ge 2)$.

Set $u^+ \in N(x_i) \cap N(x_j)$. Clearly, $i, j \neq 0, t$. By Lemma 4.1(b), $E(x_i^-) \cap E(x_j^-) = \emptyset$. Then we have either $v_t v_t^- \notin E(x_i^-)$ or $v_t v_t^- \notin E(x_j^-)$. Without loss of generality, we may assume that $v_t v_t^- \notin E(x_i^-)$. By $x_i u^+ \in E(G)$ and the definition of x_i , $uu^+ \notin E(x_i^-)$. Thus, the vertices of $C(v_i, x_i)$ can be inserted into the cycle $C[v_t, u]\bar{C}[v_t^-, x_i]C[u^+, v_i) v_i H v_t$. Denote by C_1 the resulting cycle, we have $V(C) \subset V(C_1)$, a contradiction.

Case 3: $u^+ \in S_1(X)$.

Suppose $u^+ \in N(x_i)$, where $i \neq 0, t$. Then $v_t v_t^- \in E(x_i^-)$. (Otherwise, the cycle C_1 which is mentioned in Case 2 contains C, a contradiction). Consider $G[\{u, u^+, v_t^-, x_t\}]$. Since $x_t v_t^-, x_t u^+ \notin E(G)$ and $u \notin A$, we have $u^+ v_t^- \in E(G)$. For $u^{++} (\in C[x_t, v_{t+1}])$, we assume that there exists some $j \in \{0, 1, 2, \dots, k\}$ such that $u^{++} \in N(x_j)$. By Lemma 4.2(d), we have either $x_j \in C(v_{t+1}, v_i)$ or j = 0. If j = 0, then the cycle $C[u^{++}, v_t^-]$ $\overline{C}[u^+, v_t) v_t H u^{++}$ contains C, a contradiction. If $j \neq 0$, then we have $v_t v_t^- \notin E(x_j^-)$ since $v_t v_t^- \in E(x_i^-)$. Thus, the vertices of $C(v_j, x_j)$ can be inserted into the cycle $C[v_t, u^+]$ $\overline{C}[v_t^-, x_j] C[u^{++}, v_j] v_j H v_t$. Denote by C_2 the resulting cycle. It is clear that $V(C) \subset V(C_2)$, a contradiction. So $u^{++} \in S_0(X)$. Let a be the first vertex in $\overline{C}[u, x_t]$ nonadjacent to x_t . Then $C[a, u^{++})$ is simple by Lemma 4.2(d). Since $u^{++} \in N_2(X)$ and $u^{++} \in C[x_t, v_{t+1}]$, there exist some other *CX*-segments in $C[x_t, v_{t+1}]$. This contradicts the assumption too.

Claim 6. For any $i \in \{1, 2, ..., k\}$, $v_t v_t^- \notin E(x_i^-)$.

If $i \in \{t, t-1\}$, it is clear that Claim 6 holds. Then we should prove $v_t v_t^- \notin E(x_i^-)$ for any $i \in \{1, 2, ..., k\} \setminus \{t, t-1\}$.

Suppose, to the contrary, that there exists some $i_0 \in \{1, 2, ..., k\} \setminus \{t, t - 1\}$, such that $v_t v_t^- \in E(x_{i_0}^-)$. Let f be first vertex in $C(v_{i_0}, x_{i_0})$ adjacent to v_t . Then we have $v_t v_t^- \notin E(f^-)$. Considering $E(f^-)$ and $E(x_t^-)$, we have $E(f^-) \cap E(x_t^-) = \emptyset$ by Lemma 4.1(b). By Claim 5, $x_t u^+ \in E(G)$. Thus, $u u^+ \notin E(f^-)$ by Lemma 4.1(b). Note that $\{u u^+, v_t v_t^-\} \cap E(x_t^-) = \emptyset$, the vertices in $C(v_{i_0}, f) \cup C(v_t, x_t)$ can be inserted into the cycle $C[x_t, u] \ \overline{C}[v_t^-, f] \ v_t H v_{i_0} \ \overline{C}(v_{i_0}, u^+] x_t$. Denote by C_1 the resulting cycle. It is obvious that $V(C) \subset V(C_1)$, a contradiction.

Claim 7. $v_{t+1}^- \notin N(x_t)$.

Suppose, to the contrary, that $x_t v_{t+1}^- \in E(G)$. By Claim 3, $u^+ u^- \notin E(G)$. Considering $G[\{u, u^+, u^-, v_t\}]$, we have either $u^+ v_t \in E(G)$ or $u^- v_t \in E(G)$ as $uv_t \in E(G)$. If $u^+ v_t \in E(G)$, then the vertices of $C(v_t, x_t)$ can be inserted into the cycle $C[x_t, u]$ $\overline{C}[v_t^-, v_{t+1}) v_{t+1} H v_t C[u^+, v_{t+1}^-] x_t$ as $u \neq v_{t+1}^-$ by Claim 4. Thus, we get the cycle that contains *C*, a contradiction. If $u^- v_t \in E(G)$, note that $u \neq x_t$, we can extend *C* by inserting the vertices of $C(v_t, x_t)$ into the cycle $C[x_t, u^-] v_t H v_{t+1} C(v_{t+1}, v_t^-] C[u, v_{t+1}^-] x_t$, a contradiction. Hence $v_{t+1}^- \notin N(x_t)$.

Claim 8. Let, $C[u,w) \subseteq N(x_t)$. Then we have $w \notin N(x_i)$ for each $i \in \{0,1,\ldots,k\} \setminus \{t\}$.

In fact, by Claim 7, $w \in C[u^+, v_{t+1}^-]$. First we will prove that there exists a (v_t^-, v_t) path *P* containing the vertices of $C[x_t, w)$. By Claim 3, $u^+u^- \notin E(G)$. Then we have
either $v_t u^+ \in E(G)$ or $v_t u^- \in E(G)$ since $u \notin A$. If $v_t u^- \in E(G)$, then $P = v_t^- C[u, w^-]$ $C[x_t, u^-]v_t$ is a (v_t^-, v_t) -path which contains all vertices of $C[x_t, w)$. If $v_t u^+ \in E(G)$,
then we put $P = v_t^- \overline{C}[u, x_t]\overline{C}[w^-, u^+]v_t$ when $w \neq u^+$, and put $P = v_t^- \overline{C}[u, x_t]v_t$ when $w = u^+$. Thus *P* contains the vertices of $C[x_t, w)$.

Suppose, to the contrary, that there exists some $i \in \{0, 1, ..., k\} \setminus \{t\}$ such that $w \in N(x_i)$. If i = 0, then the vertices of $C(v_t, x_t)$ can be inserted into the cycle $P[v_t^-, v_t)v_tHwC(w, v_t^-)$. Denote by C_1 the resulting cycle. Then we have $V(C) \subset V(C_1)$, a contradiction. If $i \in \{1, 2, ..., k\} \setminus \{t\}$, by inserting the vertices of $C(v_t, x_t) \cup C(v_i, x_i)$ into the cycle $P[v_t^-, v_t)v_tHv_i\bar{C}(x_i, w]C[x_i, v_t^-)$, we get a cycle which contains C, a contradiction. Claim 8 holds.

By Claim 7, let w_0^+ be the first vertex in $C[u, v_{t+1})$ nonadjacent to x_t . Then $C[u, w_0] \subseteq N(x_t)$. By Claim 8, $w_0 \in S_1(X)$, $w_0^+ \in S_0(X)$. Let *a* be the first vertex in $\overline{C}[u, x_t]$ nonadjacent to x_t . Then $C[a, w_0^+)$ is simple by Lemma 4.2(d). By Claim 7, we

have $w_0^+ \in C[x_t, v_{t+1}]$. Note that $w_0^+ \in N_2(X)$, there exist some other *CX*-segments in $C[w_0^+, v_{t+1}]$. It contradicts the assumption. The proof of Lemma 4.10 is over.

Lemma 4.11. $\sum_{i=0}^{k} d(x_i) \leq n(X) - k - 1.$

Proof. Suppose that $|\{v_1, v_2, ..., v_k\} \cap S_2(X)| = p$. By Lemmas 4.9 and 4.10, there are at least (k - p) + p = k simple *CX*-segments in $J_X \setminus \bigcup_{l>2} N_l(X)$. Thus, by Lemmas 4.4 and 4.8(3), we have

$$\begin{split} \sum_{i=0}^{k} |J_X \cap N(x_i)| &= \sum_{t=1}^{k} \sum_{i=0}^{k} |C[x_t, v_{t+1}] \cap N(x_i)| \\ &= \sum_{t=1}^{k} \sum_{j=1}^{m} \sum_{i=0}^{k} |C[z_{j1}, z_{j2}) \cap N(x_i)| \leq \sum_{t=1}^{k} \sum_{j=1}^{m} |C[z_{j1}, z_{j2})| - k \\ &= \sum_{t=1}^{k} \left(|C[x_t, v_{t+1}]| - \sum_{l>2} |N_l(X) \cap C[x_t, v_{t+1}]| \right) - k \\ &= |J_X| - \sum_{l>2} |N_l(X) \cap J_X| - k. \end{split}$$

Note that $V(G) = J_X \cup K_X$. By Lemma 4.3, we have

$$\sum_{i=0}^{k} d(x_i) = \sum_{i=0}^{k} |J_X \cap N(x_i)| + \sum_{i=0}^{k} |K_X \cap N(x_i)|$$

$$\leqslant |J_X| - k - \sum_{l>2} |N_l(X) \cap J_X| + |K_X| - 1 - \sum_{l>2} |N_l(X) \cap K_X|$$

$$= n - k - 1 - \sum_{l>2} |N_l(X)| = n(X) - k - 1.$$

5. Proof of Theorem 3.8

Proof of Theorem 3.8. Suppose, to the contrary, that *G* is non-hamiltonian. Let *C* be a longest cycle in *G*. Then *C* is clearly a maximal cycle of *G*, and $G \setminus V(C)$ has at least a component *H*. Since *G* is a *k*-connected graph with $k \ge 2$, we may suppose $\{v_1, v_2, \ldots, v_k\} \subseteq N_C(H)$, and v_1, v_2, \ldots, v_k occur on *C* in the order of their indices. For the cycle *C* above and its $\{v_1, v_2, \ldots, v_k\}$, set $\mathscr{C} = \{C' \mid C' \text{ is a cycle in } G, V(C') = V(C), \text{ and } v_1, v_2, \ldots, v_k$ occur on *C'* in the order of the indices}. Let $C \in \mathscr{C}$ be a cycle having maximum number of globally path insertible vertices. By Lemma 4.1(a), for each $i \in \{1, 2, \ldots, k\}$, denote by x_i the first non-GPI vertex in $C(v_i, v_{i+1})$. Pick up an $x_0 \in V(H)$ and let $X = \{x_0, x_1, x_2, \ldots, x_k\}$. By Lemma 4.11, $\sum_{i=0}^k d(x_i) \le n(X) - k - 1$. On the other hand, by Lemma 4.2(b), $X \in I_{k+1}(G^*)$, a contradiction.

Acknowledgements

I would like to thank Professor Wu Zhengsheng for his help.

References

- [1] A. Ainouche, H.J. Broersma, H.J. Veldman, Remarks on hamiltonian properties of claw-free graphs, Ars Combin. 29C (1990) 110–121.
- [2] A. Ainouche, O. Favaron, H. Li, Global insertion and hamiltonicity in DCT-graphs, Discrete Math. 184 (1998) 1–13.
- [3] A. Ainouche, M. Kouider, Hamiltonism and partially square graphs, Graphs Combin. 15 (1999) 257-265.
- [4] J.A. Bondy, U.S.R. Murty, Graph theory with applications, Macmillan, London and Elsevier, New York, 1976.
- [5] H.J. Broersma, Sufficient conditions for hamiltonicity and traceability of $K_{1,3}$ -free graphs, preprint, 1986, unpublished.
- [6] H.J. Broersma, Z. Ryjáček, I. Schiermeyer, Toughness and hamiltonicity in almost claw-free graphs, J. Graph Theory 21 (1996) 431–439.
- [7] Hao Li, F. Tian, Degree sums, claws and hamiltonicity, Rapport de Recherche n⁰886, University de Paris Sud, center d'Orsay Laboratoire de Recherche en Informatique, Bat.490, 91405 Orsay.
- [8] Yiping Liu, Feng Tian, Zhengsheng Wu, Some results on longest paths and cycles in K_{1,3}-free graphs, J.Changsha Railway Inst. 4 (1986) 105–106.
- [9] M.M. Matthews, D.P. Sumner, Longest paths and cycles in K_{1,3}-free graphs, J. Graph Theory 9 (1985) 269–277.
- [10] Z. Ryjáček, Almost claw-free graphs, J. Graph Theory 18 (1994) 469-477.
- [11] Z. Wu, X. Xu, X. Zhou, The neighborhood intersections of essential sets and hamiltonicity of graphs, J. Systems Sci. Math. Sci. 3 (1998) 230–237.
- [12] C.Q. Zhang, Hamilton cycle in claw-free graphs, J. Graph Theory 10 (1988) 209-216.