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Abstract

Let G be a graph. The partially square graph G* of G is a graph obtained from G by adding
edges uv satisfying the conditions uv € E(G), and there is some w & N(u) N N(v), such that
NW)CN@)UN(@w)U{u,v}. Let > 1 be an integer and ¥ C V(G), denote n(Y)=|{v € V(G)|
min,, ¢ y{diste(v, y)} <2}|, I,(G)={Z|Z is an independent set of G, |Z|=t¢}. In this paper, we
show that a k-connected almost claw-free graph with k >2 is hamiltonian if ZZ czd(z)=n(Z)—
k in G for each Z € I;1(G™), thereby solving a conjecture proposed by Broersma, Ryjacek and
Schiermeyer. Zhang’s result is also generalized by the new result. (©) 2002 Elsevier Science B.V.
All rights reserved.
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1. Introduction

In this paper, we consider only finite, undirected graphs G = (¥, E) of order n without
loops or multiple edges. We use the notations and terminology in [4]. The indepen-
dence number of G and its subgraph induced by 4 C V(G) are, respectively, denoted
by a(G) and G[4]. G + H denotes the union of vertex-disjoint graphs G and H. The
join of vertex-disjoint graphs G and H is denoted by GV H. If A, H are subsets of
V(G) or subgraphs of G, we denote by Ny(4) the set of vertices in H which are
adjacent to some vertex in A. For simplicity, we adopt N(4) if H=G. The open
neighborhood, the closed neighborhood and the degree of vertex v are, respectively,
denoted by N(v)={u€V(G)|uv € E(G)}, N[v]=N(v)U{v} and d(v)=|N(v)|. I(G)
denotes the minimum degree of G. A dominating set of G is a subset S of V(G)
such that every vertex of G belongs to S or is adjacent to a vertex of S. The dom-
ination number, denoted y(G), is the minimum cardinality of a dominating set of G.
To each pair (u,v) of vertices at distance 2, we associate the set J(u,v)={w € N(u)N
N(@)|N(w) CN[u] UN[v]}. Let ZCV(G), |Z| = p, and ¢ > 1 be an integer. Put,

S(Z)={veV(G)|IN(v)NZ|=i}, s(Z)=I|S(Z)| fori=0,1,...,p
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and

I,(G)={Y | Y is an independent set of G,|Y|=t¢}.
Let G be connected and Z C V(G). Denote

Ni(Z)= {ve V(G)] gréir}{distg(v,z)} :i} (i=0,1,2,...)
and

b

n(Z)=|No(Z) UN\(Z) UN»(Z)| = Hv € V(G)| min{dist(v,2)} <2}

where distg(v,z) stands for the distance between v and z in G.

A claw in a graph is an induced subgraph G[{u,x, y,z}] isomorphic to K; 3 in which
the vertex u of degree 3 is called claw-center. A graph is claw-free if it does not contain
a claw as an induced subgraph.

Definition 1.1 (Ryjacek [10]). A graph G is almost claw-free if there exists an in-
dependent set A C V(G) such that a(G[N(v)])<2 for every v A and y(G[N(v)])<2
< a(G[N(v)]) for every ve A.

Definition 1.2 (Ainouche and Kouider [3]). The partially square graph G* of G is a
graph satisfying V(G*)=V(G) and E(G*)=E(G)U {uv |uv € E(G), and J(u,v)# 0}.

Definition 1.3. The square graph G?> of G is a graph satisfying V(G?*)=V(G) and
E(G?)=E(G) U {uv| diste(u, v) = 2}.

2. Properties

Property 2.1 (Ryjacek [10]). Every almost claw-free graph is K s-free and K | 3-free.

Property 2.2. Let G be an almost claw-free graph and G* its partially square graph.
Then 53(Z)=0 in G for each Z € Is(G*).

Proof. By contradiction. Suppose that Z = {uj,u,u3} is an independent set of G*,
and uu; € E(G) (i=1,2,3). Clearly, {u;,uz,u3} is independent in G and u is a claw
center. Note that G is almost claw-free. There exists some vertex w € N(u)\{u1, uz,u3}
dominating two vertices of {u,us,u3}. We assume w dominates u; and u,. By the
definition of G* and uju, € E(G*), we have J(u1,u;) = (). Then there must exist some
vertex uq(&{ur,up,u}) in N(w) such that uy & N[u;]JUN[uy]. Thus, G[{w, u1,up,us}] =
K 3. However, wu € E(G) and u is a claw center, a contradiction.

Clearly, Property 2.2 is equivalent to saying that G* is claw-free if G is almost
claw-free.

Property 2.3. Let G be an almost claw-free graph and G* its partially square graph.
Then $,(Z)<2 in G for each Z € L(G*). Moreover, if S;(Z)={uj,ur}, we have
uuy € E(G).
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Proof. By contradiction. Suppose that Z={w;,w,} is independent in G* and
{uy,up,u3} CS(Z). By the definition of G* and wyw, € E(G*), it is easy to see that
ui,up,us are claw centers in G. Then, {uj,up,us} is independent in G and
G[{w1,u1,uz,u3}] = K 3, a contradiction. Hence s2(Z)<2 in G for each Z € L(G*).
Moreover, if Sp(Z)={u1,u}, it is not difficult to get u u, & E(G).

3. Hamiltonicity
The following results on claw-free graphs are known.

Theorem 3.1 (Matthews and Sumner [9]). A 2-connected claw-free graph G is hamil-
tonian if §(G)=1(n—2).

Theorem 3.2 (Broersma [5], Liu and Tian [8]). Let G be a 2-connected claw-free
graph. If Y. ,d(z)=n—2 for each Z € I;(G), then G is hamiltonian.

Zhang generalized Theorem 3.2 to k-connected claw-free graphs for any positive
integer k>2 as follows.

Theorem 3.3 (Zhang [12]). Let G be a k-connected claw-free graph with k=2. If
> .czd(@)=n—k for each Z € It 11(G), then G is hamiltonian.

Theorem 3.3 was extended by the following Theorem.

Theorem 3.4 (Ainouche and Broersma [1]). If G is a k-connected claw-free graph
(k=2) with o(G?*)<k, then G is hamiltonian.

Ainouche and Kouider in [3], considered the independence number of partially square
graphs and proved the following.

Theorem 3.5 (Ainouche and Kouider [3]). Let G be a k-connected graph with k=2
and G* its partially square graph. If o(G*)<k, then G is hamiltonian.

Our objective is to generalize results on claw-free graphs to almost claw-free graphs.
Following are some results on hamiltonicity in almost claw-free graphs.

Theorem 3.6 (Broersma et al. [6]). A 2-connected almost claw-free graph G is hamil-
tonian if 6(G)= %(n - 2).

Theorem 3.7 (Broersma et al. [6]). Let G be a 2-connected almost claw-free graph.
If 3. c,d(z)=n for each Z € I3(G), then G is hamiltonian.

Broersma et al. in [6] conjectured that ), d(z)>n—2 for each Z € I3(G) implies
hamiltonicity in 2-connected almost claw-free graphs. This conjecture was verified for
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Fig. 1. A k-connected almost claw-free hamiltonian graph.

n>=79 by Li and Tian [7], and proved in [2] for another class containing the class of

almost claw-free graphs.
In this paper, we will prove the following result.

Theorem 3.8. Let G be a k-connected almost claw-free graph with k=2, and G* its
partially square graph. If Y __,d(z)=n(Z) —k in G for each Z € I;1(G*), then G
is hamiltonian.

Clearly, Theorem 3.8 is best possible, it modifies and generalizes Theorems 3.3, 3.6
and 3.7. Of course, it solves the conjecture proposed by Broersma et al. [6].

Now, for k>2, we construct a graph G as follows (see Fig. 1). Let H]’ ~ Ky, Hi
Ky, where i=1,2,...,k, j=1,2,3,4. Let H' = (((H{ +H3i)VHi)+H})VH., and V(H"),
V(H?),...,V(H") be pairwise vertex-disjoint. Set

k

V(G = J v,

i=1
k k—1
E(Gy)= | JEHNHU (U E(H{ vV HS™ YU E(H} \/H21)>
i=1 t=1
1 2 3 k
U E(H} VH}VH}V -V HF).

Obviously, Gy is a k-connected almost claw-free hamiltonian graph which is not
claw-free, and Zzezd(z):4k2:n(2) —k in G for each Z €l 1(G*). Gy shows
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that it is meaningful to find the sufficient condition for the hamiltonicity of almost
claw-free graphs. On the other hand, for G=Gi(k>2), we have n=4k> + k, and
0(G) < (n—2)/3, therefore G; doesn’t satisfy the condition of Theorem 3.6.

To prove Theorem 3.8, we will relate in Section 4 the concept of global insertion
introduced in [2], and use the global insertion Lemma 4.1 to prove some new lemmas.
The proof of Theorem 3.8 is given in Section 5.

4. The global insertion concept

Let G be a k-connected non-hamiltonian graph and C its a maximal cycle of G
(that is, there is no cycle C’ in G such that V(C)C V(C")), in the sense of the
vertex inclusion, in which an orientation is fixed. For simplicity, we use the same
notation to mean a subgraph, its vertex set or its edge set. If x € V' (C), denote by
x™ and x~ the successor and the predecessor of x along the orientation of C, respec-
tively. Set x* " =)™, x =(x7)". If u,v€ V(C), then C[u,v] denotes the consecu-
tive vertices on C from u to v in the chosen direction of C, and C(u,v]= Clu,v] —
{u}, Clu,v)=Clu,v] — {v}, C(u,v)=Cl[u,v] — {u,v}. The same vertices, in the re-
verse order, are, respectively, denoted by C[v,u], C[v,u), C(v,u] and C(v,u). Let H
be a component of G — V(C). Assume, Nc(H)={v{,v},...,v},} with m>k>2, and
v}, 05, ..., 0, occur on C in the order of their indices. The subscripts will be taken
modulo m. Let {x, y} CNc(H). We denote by xHy one of the longest (x, y)-paths
with all its internal vertices in H.

In [2], a relation ~ on V(C) is defined by the condition u ~ v if there exists a path
with endpoints u,v and no internal vertex in C. Such a path is called a connecting
path between u and v and is denoted by uRv, where R:=V\V(C). Note that if one
of u or v is not a vertex v, any connecting path uRv is disjoint from H. If x, y,1,z
are distinct vertices of C such that ze {¢*,r~}, x ~ ¢, y ~ z, then the paths xR¢ and
YRz are said to be crossing at x, y if either (z=¢" and r€ C[y",x~ ~]) or (z=¢" and
teClx™,y7 ).

Definition 4.1 (Ainouche et al. [2]). For all i€ {1,2,...,m}, a vertex uc C(v;,v},,)
is called globally path insertible (GPI for short) if

(i) each vertex in C(v,u) is GPI or u=(v))*;
(ii) there exist w,w* € C[v], ,v]] and ve C(vj,u] (possibly v=u) such that either
(u~wo~wh)or (u~who~w).

Note that u ~ v if uv € E(G). By replacing the connecting path with the edge in (ii),
Wau et al. independently introduced the T-insertion concept in [11]. Clearly, T-insertion
concept is a special case of the global edge insertion.

Let u be a GPI vertex in C(vj,v}, ) (i€{l,2,...,m} ). By the technique in [2] we

/ /

can insert the vertices of C(v},u] into the path Clvi,,,v;]. Consider that u; =u,v,,
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v,, and the insertion edge w,,w,

iy EEEN

and the insertion edge w, w, ;up=v

us=v, _,v,, =(v})" and the insertion edge w, w;", where for je€{1,2,...,s},0, is

Uy
the first vertex in C(v},u;] such that (ii) holds, and based on this, wu,w,j/ is the first
edge in C[v/,;,v] such that (ii) holds. By the choice above, w,,w;., w,w; *

are different from each other. Similarly, the paths connecting the vertices Zw,,j and Wi,
to the vertices u; and v, are all pairwise internally disjoint by the choice of the
v,,’s and the maximality of C. Thus, in the path C[v},,,v;], replace the edge wu/wu*j
(j€{1,2,...,s}) by the path C[v,,,u;] or C_’[uj,vu,.], for the resulting (v, , v})-path P,,
we have V(P,)=C[uv],,u]. C(Uﬁ,u] is therefore inserted into the path Clv},,v/]. De-
note E(u)={wy,w, ,w,w!,...,w,wl}, and call it the inserted edge set of

e
C(v!,ul.

up?

C Wy W

Lemma 4.1 (Ainouche et al. [2]). For all i€ {1,2,...,m}, let x! be the first vertex
on C(v},v},,) along C which is not globally path insertible. Then

(a) For each i, x| exists.
Set X' ={x{,x1,...,x5,} with x{ € V(H).

(b) For 1<i#j<m and for any u; € C(v},x;] and u; € C(v},x}], u; = u; and there
are no crossing paths at u;, uj.

(¢) X is independent.

(d) For 0<i#j<m, J(x;,x;)=0. In particular any common neighbor of at least two
vertices of X' must be a claw-center.

In the rest of this paper, we pick up {vy,vs,..., 0} C{v},0},...,0,,}. The subscripts
of (v;)'s will be taken modulo k. For each i € {1,2,...,k}, let x; be the first non-GPI
in C(v;,v;41). Set X ={xo,x1,...,x;}, where xo € V(H). Denote Jy = Ule Clxi, viv1],
KX = V(G)\JX For X = {X(),xl, . ,xk}, let C[Zl,Zz) - C[xt,vtﬂ] (l c {1,2, .. ,k}) If
C(z1,22)NSo(X ) =0, and z; € N2(X)UX , 2 € So(X)U{v;, }, then C[zy,2) is called a
CX-segment. A CX-segment C[z},z;) is called simple if C(z1,z,) CS;(X). By Lemmas
4.1(b)—(d) and the maximality of C, the following Lemma holds.

Lemma 4.2 (Wu et al. [11]). (a) If u is a GPI, then u" € Nc(H).

(b) X €L1(G*), Kx CSo(X)US1(X), Ky NNo(X)={x0}.

(©) If ue Ne(H\{v1. 02,0}, y € Us_ | C(uyox;], then u* y ¢ E(G).

(d) Let, Clz1,22)(C C[xs, 04111, 6 €{1,2,...,k}) be a CX-segment, and M; =N (x;)N
C(z1,22)(i€{0,1,...,k}). Then My, M,_1,...,My,My,My_1,...,M 11, My (some of them
may be empty) form consecutive subpaths of C(z1,z2) which can have only their end-
vertices in common, and |M;| <1, i€{0,1,2,...,k}\{¢}.

Lemma 4.3.

k
> ING) N Ky| < [Ky| = 1= [Ni(X) N K.

i=0 1>2
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Proof. By Lemma 4.2(b), we have Ky CSp(X)US|(X), and Ky N"Ny(X)={xo}. Then
k
> ING) N Ky = [S1(X) N Ky | = [Ni(X) N Ky|
i=0
= [Kx| = [No(X) N Kx| = > INi(X) N Kx| = [Na(X) N K|
1>2
< Ky = 1= INiX) N K.
1>2

Lemma 4.4. If Clzi,z;) is a simple CX-segment, then Zfzo IN(x:) N Clz1,22)| =
|C[Zl,22)| — 1

Proof. By the definition of a simple CX-segment, it is easy to see that
k

STING) N Clzrz)| = 10 N Clz,z2)| = [Cz)| = [Clznz)] — 1.
i=0

Now, we assume that G is almost claw-free, and A4 is the set of all claw centers.
By the definition of an almost claw-free graph, 4 is independent. By Lemma 4.1(d),
we have the following:

Lemma 4.5. For any {i,j} C{0,1,...,k}, we have N(x;) N N(x;) CA. Therefore, for
any i€{1,2,....k}, N(x;) N Nc(H) C A.

Lemma 4.6. For any t € {3,4,...,k+1}, we have S{(X)= 0. Therefore, for any {i,j} C
{1,2,....k}, N(x) NN (x;) N Ne(H) = 0.

Proof. By Lemma 4.2(b), X €/;11(G*). Then the result directly follows from
Property 2.2.

Lemma 4.7. For any i €{1,2,...,k}, N(x0) N N(x;) C{v;:}.

Proof. By contradiction. Suppose that there exists some vertex w € N (xo) NN (x;)\{v: }-
Then we have w €4 by Lemma 4.5, and w € C(x;,v; ) by Lemma 4.2(a), (b) and the
definition of x;. Consider {w—,w,xo} U {x;}(CN(w)). It is clear that x, and x; have
no common neighbor in N(w). Suppose first that xy and w* have a common neighbor
v in N(w). By the maximality of C, it is easy to see that ve V(C), v {wt,w™}
and v xp, v xg € E(G). By we A, we have v A4, then vv™ € E(G). Thus, the cy-
cle C;=C[w",v"]C[v",w)wHuvw™ in G contains C, a contradiction. Hence x, and
wT have no common neighbor in N(w). By symmetry, xo and w~ have no common
neighbor in N(w).

Since G is almost claw-free and w € 4, we have P(G[N(w)])<2. Then there exists
some vertex u € N(w) dominating {w*,w~} U {x;}. Clearly, u€ V(C). By Lemmas
4.1(b), 4.2(c), we have ue C(x;,v;]\{w}. By we4d and uwc E(G),u¢A. We will
consider three cases.
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Case 1: u=v;.

Note that u € N(x;) N Nc(H). By Lemma 4.5, we have u € 4, a contradiction.

Case 2: ue C(x;,w).

In fact, u™x; € E(G) (Otherwise, suppose that u™x; € E(G). Note that since {w,u} C
N(x;), we have {uu™,ww™} N E(x; )=, that is all the inserted edges of vertices in
C(v;,x;) are not in {uut,ww"}. Then the vertices of C(v;,x;) can be inserted into the
cycle Clut,w)wHuv; C(v;,w"]Clu,x;Ju*. Denote by C, the resulting cycle. Clearly,
V(C)C V(C,), a contradiction). Thus u#w~. Moreover, utw' € E(G) (Otherwise
utw™ € E(G). By Lemmas 4.1(b) and 4.2(¢c), x;wt € E(G). Then G[{u,u®,wt,x;}] =
K3, a contradiction). It is easy to see that {ww™,ww™,uu™} NE(x; )=0 by the defi-
nition of x; and wx;, ux; € E(G). Then the vertices of C(v;,x;) can be inserted into the
cycle Clx;,u]C[w—,ut]C[w™,v;)v;Hwx;. Let C; denote the resulting cycle, we have
V(C)C V(Cs), a contradiction.

Case 3: uc C(w,v;).

In fact, u™wt € E(G) (If not, we assume u"w' € E(G). Note that {u,w} C N(x;), we
have {wwt,uu™} N E(x;)=0. Then the vertices of C(v;,x;) can be inserted into the
cycle C[w™,u]Clx;,w)wHv; C(v;,ut]wt. Denote by C4 the resulting cycle, we have
V(C)C V(Cy), a contradiction). Moreover, x;u* & E(G) (Otherwise, it is easy to see
that the vertices of C(v;,x;) can be inserted into the cycle C [x,-,w’]C_’[u,w) wHv;
Clv;,ut]x;. Let Cs denote the resulting cycle. Clearly, V(C) C V(Cs), a contradiction).
By Lemmas 4.1(b) and 4.2(c), we have x;w™ € E(G). Thus, G[{u,u®,wt,x;}] = K, 3,
a contradiction.

Lemma 4.8. Let, Clz1,22) (C Clxs, v41), ¢ €4{1,2,...,k}) be a CX-segment. Then the
following statements hold.

(1) For any i€ {3,4,...,k}, |Clz1,22) N Si(X)| =0.

2) If ueSH(X) N C(z1,z2), y€C(u,z3), then yucE(G). Therefore, y¢A and
|C(Z],Zz)ﬂSz(X)|<1.

(3) ¥i_ ING) N Clz1,22)| <[Clz1,22)]-

Proof. (1) It is easy to see that (1) holds by Lemma 4.6.

(2) By contradiction. Suppose that y is the first vertex in C(u,z;) nonadjacent to
u. Then yu € E(G), y#ut and y~u € E(G). Note that u € S>(X) N C(z1,22). By the
definition of CX-segment, we set ¥y~ € N(x;)(j #¢). It is clear that x; € N(u) UN(»)
by Lemma 4.2(d). Thus G[{y~, y,x;,u}] = K3, y~ €A4. By Lemma 4.5, u € A. This
contradicts y~u € E(G). Hence yu € E(G).

(3) By (1) and (2), we have

k
Z IN(x;) N Clz1,22)| = |S1(X) N C(21,22)] + 2|S2(X) N C(z1,22)]
=0

= |C(z1,22)| + [S20X) N C(z1,22)[ < [Clz1,22)].

Lemma 4.8 holds.
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For te{1,2,...,k}, Clx;,v41]\U,~, Ni(X) can be divided into some disjoint
CX-segments. Assume that all these CX-segments are C[zi1,z12), Clz21,222),.--,
Clzm1,2zm2), occurring consecutively along the direction of the path Clx;,v,11]. It is
possible to have zj; =z;1;; for some j.

Lemma 4.9. If v, 1 €S2(X), then Clzp1,zm2) is simple.

Proof. Suppose, to the contrary, that C[z,,z,) is not simple. By Lemma 4.8(2),
|C(Zm1,Zm2) n Sz(X)| =1. Let we€ C(zp1,2m2) N S2(X). Then w=#£v,14. By Lemma 4.5,
weA. To get the contradiction, we first show two claims.

Claim 1. v,y € Clzp1,2m), and v xo, W,y € E(G).

Suppose that v,41 &€ C[zu1,Zm2). By the definition of CX-segment and |C(z1,2Zm2) N
S(X)| =1, we have z,, € N,(X). Then C[z,,v,+1] still has some other CX-segments.
This contradicts the assumption.

By vi41 €5(X), we C(zm,z,,) N S2(X). By Lemma 4.8(2), wv,p1 €E(G) and
v;11 € A. Then v,y 1x9 € E(G)(Otherwise, suppose that v, 1xg &€ E(G). Since v;41 € S1(X),
we set v4.1x; € E(G), where j € {1,2,...,k}. By Lemma 4.5, v,,1 € 4, a contradiction).
Moreover, WU;L+1 € E(G). (If not, we assume wv;jrl Z E(G). By v;41 € N(x9) and Lemma
4.2(d), xow € E(G). By the maximality of C, v, xo & E(G). Then G[{vi11,X0,w, v, }]
= K3, a contradiction.)

Claim 2. Let we N(x;) N S2(X) N Clzmi,zmz). Then the following statements hold.

() {wr,w, v U {xn} SN(w) (i#0,141).

(2) Let ue Nc(w). If u dominates {x;} U{w*,w™}, then ue C(v}, |, v;]U C(x;,w);
If u dominates {x;,v;,,}, then ue C(x;,w).

(3) There is no vertex in N(w) dominating {x;} U {w",w™}.

(4) There is no vertex in N(w) dominating {x;, v, ;,w"}.

(5) There is no vertex in N(w) dominating {x;} U {v/,,w™}.

Now, we show these statements one by one.

(1) By Claim 1, wv/",, v1x0 € E(G). By wu/, € E(G), we have {w", w™, v/, }U

{x;} CN(w). By uv,41x0 €E(G), Lemma 4.2(d) and w#uv,.;, we have x;#x.
If x;=x,,1, then w=v,_, by Lemma 4.2(d). This contradicts the definition of x,..
Hence x; # x;11. (1) holds.

(2) In fact, Clzy1,2m2) = Clzm1, Vr41] by Claim 1. Clearly, u # w. By Lemma 4.2(d),
weN(x)NSH(X) and u € N(x;), we have u & C(w,v,41].

If u dominates {x;} U {w*,w™}, then we have u#uv;, by Lemma 4.1(b)
and i#t + 1. Moreover, we have u¢ C(v;,x;] by Lemma 4.2(d), we Sp(X) and
{wr,w™} CN(u). Thus, uc C(v,,,v:]U C(x;,w).

If u dominates {x;,v;,}, then we have u ¢ {v,",} U C(v;,x;] by Lemma 4.1(b) and

i#t+ 1. Moreover, u¢& C(v],,v;] (Suppose that ue C(v/,,,v;]. By Lemma 4.1(b),
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we have u'v, |, v/ xi @E(G). By Lemma 4.5 and u @A, we have u#uv;. By the
definition of x;, utx; € E(G). Then, G[{u,u",x;, v,i]} = K3, a contradiction.) Thus,
ue Clx;,w).

(3) Suppose, to the contrary, that there exists a vertex u € N(w) dominating
{xi}U{w*,w™}. By the maximality of C, ue V(C). By (2), uc C(v,,;,0:]U C(x;,w).
By we A4, we have u& A4.

Ifue C(vttrl,v,»], then we have u~x; € E(G) as x; is not GPI. By Lemma 4.1(b) and
wu € E(G), xw™ € E(G). Thus, u~w' € E(G). (Otherwise, G[{u,u™,x;,w"} = K 3,
a contradiction.) Note that {u,w} C N(x;), we have {uu—,ww™, v/ v} NE(x;)=0
by Lemma 4.1(b) and the definition of x;. The vertices of C(v;,x;) can be inserted into
the cycle C[xi,w]C[vttLl,u‘] Clw™,v41) Vi1 Hv;C (v;, ulx;. Denote by C, the resulting
cycle, we have V(C)C V(Cy), a contradiction.

If ue C(x;,w), then utx; ZE(G) (If not, we assume u'tx; € E(G). By Claim 1,
wu € E(G). Note that {uu®,ww*, v, 0} N E(x7)=0. The vertices of C(v;,x;)
can be inserted into the cycle Clx;,u] C[w",v.41) v Ho; C(ug, 0,1 Clw,utlx;. Let
C, denote the resulting cycle. Clearly, V(C) C V(C,), a contradiction). Thus, u#w™.
By wu}", | € E(G) and Lemma 4.1(b), we have x,w" € E(G). Then w'u* € E(G) (Other-
wise, G[{u,x;,w",ut}] = K 3, a contradiction). Note that {uu™, wwt, ww™, v,Hv;fH}ﬂ
E(x7)=10 and {x,—,vtil} C N(w), the vertices of C(v;,x;) can be inserted into the cy-
cle Clx;,u] C’[w’,u*] Clw™,vi41) v Hy; (j'(v[, vlil]wx,-. Denote by Cj the resulting
cycle, we have V(C)C V(C3), a contradiction.

(4) Suppose, to the contrary, that there exists a vertex u &€ N(w) dominating
{xi, v,il, wt}. By the maximality of C, ue V(C). By (2), u€C(x;,w). Then
we have xu't, xju | €E(G) by Lemma 4.1(b). Thus, u"v/, € E(G). (Otherwise,
G[{u,v/,x,u™}] = K3, a contradiction.) Note that {uu™, ww', v 1v/7,} N
E(x; )=0. By inserting the vertices of C(v;,x;) into the cycle Clx;,u] C[w*t,v.41)
v Ho; C(vi, v,il] Clut,w]x;, we get a cycle which contains C, a contradiction.

(5) Suppose, to the contrary, that there is a vertex u € N(w) dominating {x;} U
{vf.,,w™}. By the maximality of C, u€ V(C). By Lemma 4.1(b), u#w~. Then we
have ue C(x;,w™) by (2). By Lemma 4.1(b), v;', ,x;, x;u™ ¢ E(G). Thus, v, ,u™ € E(G).
(Otherwise, G[{u,u",x;, v, }]1 = K| 3, a contradiction.) Note that {uu™, ww™, v, 10, }N
E(x;)=0, the vertices of C(v;,x;) can be inserted into the cycle Clx;,u] C[w™,u"]
C[v:jrl,vi) viHv, . C(vr41,w]x;. Denote by Cj4 the resulting cycle. Clearly, ¥V (C)C
V(Cy4), a contradiction.

The proof of Claim 2 is over.

Now we prove Lemma 4.9. By Claim 2(1) and w € $>(X), we have {w™,w™, v/ }U
{xi,x;} CN(w), where {i,j} C{1,2,...,k}\{t + 1}. By Lemma 4.5 and since 4 is
independent, it is easy to see that there is no vertex in N(w) dominating {x;,x;}.
Then y(G[N(w)]) >2 by Claims 2(3)—(5), a contradiction. Hence Lemma 4.9
holds.

For given C and its {vy,vs,...,0;}, set € ={C’|C" is a cycle in G, V(C")=V(C),
and vy,0s,...,0; occur on C’ in the order of the indices }. ¥ is the set of some cycles
in G. Clearly, C’ is a maximal cycle in G for each C' € %.
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Lemma 4.10. Let C €% be a cycle having maximum number of globally path insert-
ible vertices in €. If v; € S2(X), then m=2, and there exists some j€{1,2,...,m—1},
such that Clzj1,zp) is simple.

Proof. In fact, v, € S5(X) N N¢(H). Then we have v, € N(x9) N N(x;) by Lemmas 4.6,
4.7, and v, € A by Lemma 4.5. Therefore, we have u & A if u€ N(v,;). By the defini-
tion of x,, x,v, ,v; v, € E(G). By the maximality of C, xov;",xov;” & E(G). Considering
N(v,), we have {v],v; ,x0} U {x;} CN(v,). (It is possible to have x, =v;".) It is clear
that xo and x, have no common neighbor in N(v;). Suppose, to the contrary, that
Lemma 4.10 does not hold.

Claim 1. There is no vertex in N(v,) dominating {xo, v/ }.

Suppose that there exists a vertex u € N(v,) dominating {xo,v;" }. By the maximality
of C, we have u€ V(C), u#v; and ut,u™ € N(xq). Note that u € Nc(x) and u & A4,
we have utu~ € E(G). Then the cycle C[v;,u~|C[u",v;)v;Huv} in G contains C, a
contradiction.

Claim 2. There is no vertex in N(v;) dominating {xo,v; }.

Suppose that there exists a vertex u € N(v,) dominating {xp,v, }. By the maximality
of C, we have ue V(C), u#v; and u—,u” ZN(xy). Then u"u~ € E(G). Thus, the
cycle Clv;,,u”]C[u",v; JuHv; in G contains C, a contradiction. Claim 2 holds.

Since G is almost claw-free, we have y(G[N(v;)])<2. Then there exists a vertex
u € N(v,) dominating {x,}U{v;",v; } by Claims 1, 2. It is easy to see that u € V'(C). By
v; X, v; v € E(G), we have ud {v;,v; }U{x;}. By u¢ A4 and Lemma 4.5, u & Nc(H).

Claim 3. ue€ C(x;,v,01), utu™ € E(G).

Suppose that u & C(x;,v41). Since vx,,uv, € E(G), we have u¢ C(v;,x,] by
the definition of x,. By u¢& Nc(H), we have u € C(v;11,v,). Thus, we may let u€
C(vp,Upt1) (€ C(vi41,v,)). By ux, € E(G) and Lemma 4.1(b), u€ C(xp,vp41). By
x:u € E(G) and the definition of x;, we have u"x,,u"x;, Z E(G) and uu™t,uu~ & E(x;).
Consider G[{u,u™,u™,x,}]. It is clear that utu~ € E(G). For each i € {t+1,¢+2,..., p—
1}, we have uu™,uu™ ¢ E(x; ). (Otherwise, there exists some j€{t+ 1,¢+2,...,p—
1}, such that {uu™,uu™} N E(x; ) # 0. Then there is a vertex v C(v;,x;) satisfying
uv € E(G). By Lemma 4.1(b), x,0,utv & E(G). Thus, G[{u,u",v,x;}] = K, 3, a contra-
diction.) By symmetry, utu,uu” ¢ E(x; ) for each ie {p+1,p+2,...,t — 1}. Hence
there is a cycle Cy = C[v;",u~|C[u™, v, Juv; satisfying V(C)=V(C;), however C; has
more globally path insertible vertices than C. This contradicts the choice of C. So
ue C(xs,vr41)-

Suppose utu~ € E(G). First we will prove wu—,uu™ € E(x;) for each i€
{1,2,...,k}\{¢t}. We proceed by contradiction. Suppose that there exists some
ip€{1,2,...,k}\{t}, such that {uu",uu™} N E(x; )#0. Let g be the first vertex in
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C(vi,,x;,) adjacent to u. Then uut € E(g™). If v,0; € E(g™), then we have gx,,u™x, &
E(G) by Lemma 4.1(b). Thus gu™ € E(G) as u¢ A. Hence the vertices of C(v;,,9)
can be inserted into the cycle Clu't,uv;,) vi,Hv, C(v;,u] C[v; ,g]u*. Denote by C,
the resulting cycle. Clearly, V(C)C V(C,), a contradiction. If v,v, € E(g™), we let
h the first vertex in C(v;,,g) adjacent to v,. Then v,v; ¢ E(h~). By Lemma 4.1(b) and
the choices of &,g, we have uu™,uu—,v,v; ¢ E(h~). Thus we can insert all vertices
of C(v;,,h) into the cycle Clu™,v;,) vi,Hv, C[h,v; Ju C[v;,u” Ju". Denote by C; the
resulting cycle. Then we have V(C)C V(C3), a contradiction.

Thus, we have uut,uu™ ¢ E(x; ) for each i€ {1,2,...,k}\{¢}. Considering the cy-
cle C4=C[v),u"] Clu",v,] uv;” in G, we have V(C)=V(C,), however C4 has more
globally path insertible vertices than C. This contradicts the choice of C too. So
utu~ E(G).

Claim 4. uc S|(X), u" Nc(H). Therefore u#uv,, ;.
In fact, note that ux, € E(G), we have u € S;(X) by Lemma 4.5 and u ¢ A. More-

over ut ¢ Ne(H), otherwise the cycle Clu,v,)v,Hu"C(u*,v; Ju in G contains C, a
contradiction.

Claim 5. u* € N(x,).

Suppose, to the contrary, that u™ & N(x,). By Claim 4, we have u*,u*" € C(x;, v,41]
and u™ & N(xp). We distinguish three cases.

Case 1: u™ € Sy(X).

Let a be the first vertex in C[u,x,] nonadjacent to x,. Then C[a,u") is simple by
Lemma 4.2(d) and Claim 4. Since u™ € Ny(X) and u" € C[x;,v,.1], there must exist
some other CX-segments in C[u",v,1]. This contradicts the assumption.

Case 2: ut € S)(X) (I=2).

Set u™ € N(x;) N N(x;). Clearly, i,j#0,z. By Lemma 4.1(b), E(x; ) N E()g;):@.
Then we have either v,v;” € E(x;") or vv, € E(x; ). Without loss of generality, we may
assume that v, € E(x; ). By x;u™ € E(G) and the definition of x;, uu™ & E(x; ). Thus,
the vertices of C(v;,x;) can be inserted into the cycle C[v,,u]C[v; ,x;]C[u™,v;) viHv,.
Denote by C; the resulting cycle, we have V(C)C V(C)), a contradiction.

Case 3: u™ € S)(X).

Suppose u™ € N(x;), where i#£0,¢. Then v,v; € E(x; ). (Otherwise, the cycle C;
which is mentioned in Case 2 contains C, a contradiction). Consider G[{u,u™t,v;,x,}].
Since x;v; ,x;ut € E(G) and u & A, we have utv,” € E(G). For ut™( € Cl[x;,v:11]), we
assume that there exists some j€{0,1,2,...,k} such that u™" € N(x;). By Lemma
4.2(d), we have either x; € C(v,41,0;) or j=0. If j=0, then the cycle Clu"",v,]
Clu*,v,) v;Hu™" contains C, a contradiction. If j#0, then we have v,v, ZE(x;)
since v,v; € E(x; ). Thus, the vertices of C(v;,x;) can be inserted into the cycle
Clv,,u*] Clv; ,x;] Clu*™,v;] v;Hv,. Denote by C, the resulting cycle. It is clear that
V(C)C V(Cy), a contradiction. So u™ € Sy(X). Let a be the first vertex in Clu,x,]
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nonadjacent to x;. Then C[a,u™ ") is simple by Lemma 4.2(d). Since u™" € Ny(X) and
u™ € C[x;,v,41], there exist some other CX-segments in C[x;,v;;1]. This contradicts
the assumption too.

Claim 6. For any i€ {1,2,...,k}, v,o; €E(x; ).

If ie {t,t — 1}, it is clear that Claim 6 holds. Then we should prove v,v, € E(x; )
for any i€ {1,2,...,k}\{t,t — 1}.

Suppose, to the contrary, that there exists some ip€ {1,2,...,k}\{#,¢ — 1}, such
that v, € E(x; ). Let f be first vertex in C(v;,x;,) adjacent to v;. Then we have
v,v; € E(f7). Considering E( /™) and E(x;” ), we have E(f~)NE(x; ) =0 by Lemma
4.1(b). By Claim 35, x,ut € E(G). Thus, uut ¢ E(f~) by Lemma 4.1(b). Note that
{uu™, v,0; YNE(x; ) =0, the vertices in C(v;,, /)UC(v;,x,) can be inserted into the cycle
Clx;,u] Clo;, f] v Hvj, C_’(v,-o,uﬂxt. Denote by C| the resulting cycle. It is obvious that
V(C)C V(Cy), a contradiction.

Claim 7. v, € N(x;).

Suppose, to the contrary, that x,v,, € E(G). By Claim 3, u"u~ ¢ E(G). Consid-
ering G[{u,ut, u~, v,}], we have either utv, € E(G) or u~ v, € E(G) as uv, € E(G).
If uTv, € E(G), then the vertices of C(v,,x;) can be inserted into the cycle C[x;,u]
C_’[vf,v,H) vy 1 Hoy C[u*,v;l]x, as u;«év;l by Claim 4. Thus, we get the cycle that
contains C, a contradiction. If u~v, € E(G), note that u#x;, we can extend C by in-
serting the vertices of C(vy,x,) into the cycle Clx;,u™] v,Hv, 41 C(vy1,v, ] Clu, v, 1x;,
a contradiction. Hence v, | & N(x,).

Claim 8. Let, Clu,w) C N(x;). Then we have w¢& N(x;) for each i € {0,1,...,k}\{¢}.

In fact, by Claim 7, we C[u",v,,]. First we will prove that there exists a (v, ,v;)-
path P containing the vertices of C[x;,w). By Claim 3, utu~ € E(G). Then we have
either vu™ € E(G) or vu~ € E(G) since ugA. If v,u™ € E(G), then P=v; Clu,w™]
Clx;,u™]v; is a (v, ,v;)-path which contains all vertices of C[x;,w). If v,u™ € E(G),
then we put P =0, Clu,x,JC[w~,ut]v, when w#u", and put P=v, C[u,x,Jv; when
w=u". Thus P contains the vertices of C[x;,w).

Suppose, to the contrary, that there exists some i€{0,1,...,k}\{¢} such that
weN(x;). If i=0, then the vertices of C(v;,x;) can be inserted into the cycle
Plv, ,v;)v,HwC(w, v, ). Denote by C, the resulting cycle. Then we have V(C) C V' (C)),
a contradiction. If i € {1,2,...,k}\{¢}, by inserting the vertices of C(v,x,)U C(v;,x;)
into the cycle P[v,,v,)v,Hv;C(x;, w]C[x;,v; ), we get a cycle which contains C, a con-
tradiction. Claim 8 holds.

By Claim 7, let wj be the first vertex in C[u,v,+1) nonadjacent to x,. Then
Clu,wo] CN(x;). By Claim 8, wy€S81(X), wy €So(X). Let a be the first vertex in
C[u,x,] nonadjacent to x,. Then Cla,wy ) is simple by Lemma 4.2(d). By Claim 7, we
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have wy € C[x;,v,41). Note that wy € N(X), there exist some other CX-segments in
C[wg, vi41]. It contradicts the assumption. The proof of Lemma 4.10 is over.

Lemma 4.11. YF_ d(x))<n(X) —k — 1.
Proof. Suppose that |[{vy,v,...,0:} N S2(X)| = p. By Lemmas 4.9 and 4.10, there are

at least (k — p) + p=k simple CX-segments in Jy\ J,., N;(X). Thus, by Lemmas
4.4 and 4.8(3), we have

k k k
S U ONG)l =D ) ICu v 1NN ()|
i=0 t=1i=0
k m k k m

=3 3 N [Clzzp) NI D] D [Clznzp) — &

t=1j=1i=0 t=1j=1

k
=) <|C[xt, vl =D NN C[xt,vt+]]|> —k
t=1 [>2
= x| =D IN(X) N Jy| - k.

1>2

Note that V' (G)=Jy U Ky. By Lemma 4.3, we have

k

k k
d(x) = > x AN+ > [Kx NN())
i=0 i=0 i=0
< Vx| =k = INi(X) NJx| + [Kx| = 1= D INi(X) N K|
1>2 1>2
=n—k—1=> |NX)|=nX)-k-1.
1>2

5. Proof of Theorem 3.8

Proof of Theorem 3.8. Suppose, to the contrary, that G is non-hamiltonian. Let C
be a longest cycle in G. Then C is clearly a maximal cycle of G, and G\V(C)
has at least a component H. Since G is a k-connected graph with £ >2, we may
suppose {v1,v2,...,00} CNc(H), and vy,vz,...,0¢ occur on C in the order of their
indices. For the cycle C above and its {vy,v2,...,0¢}, set €={C’|C’ is a cycle in
G, V(C")=V(C), and vy,v,,...,v; occur on C’ in the order of the indices}. Let C € €
be a cycle having maximum number of globally path insertible vertices. By Lemma
4.1(a), for each i € {1,2,...,k}, denote by x; the first non-GPI vertex in C(v;,v;41). Pick
up an xo € V(H) and let X = {x,x1,x2,...,%;}. By Lemma 4.11, Zf:o dx))<n(X)—
k — 1. On the other hand, by Lemma 4.2(b), X € I;;(G*), a contradiction.
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