Neighborhood intersections and Hamiltonicity in almost claw-free graphs

Mingquan Zhan
Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA

Received 20 October 1997; revised 9 June 2000; accepted 9 October 2000

Abstract

Let G be a graph. The partially square graph G^{*} of G is a graph obtained from G by adding edges $u v$ satisfying the conditions $u v \notin E(G)$, and there is some $w \in N(u) \cap N(v)$, such that $N(w) \subseteq N(u) \cup N(v) \cup\{u, v\}$. Let $t>1$ be an integer and $Y \subseteq V(G)$, denote $n(Y)=\mid\{v \in V(G) \mid$ $\left.\min _{y \in Y}\left\{\operatorname{dist}_{G}(v, y)\right\} \leqslant 2\right\} \mid, I_{t}(G)=\{Z \mid Z$ is an independent set of $G,|Z|=t\}$. In this paper, we show that a k-connected almost claw-free graph with $k \geqslant 2$ is hamiltonian if $\sum_{z \in Z} d(z) \geqslant n(Z)-$ k in G for each $Z \in I_{k+1}\left(G^{*}\right)$, thereby solving a conjecture proposed by Broersma, Ryjáček and Schiermeyer. Zhang's result is also generalized by the new result. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Hamiltonian graphs; Almost claw-free graphs; Claw center; The global insertion

1. Introduction

In this paper, we consider only finite, undirected graphs $G=(V, E)$ of order n without loops or multiple edges. We use the notations and terminology in [4]. The independence number of G and its subgraph induced by $A \subseteq V(G)$ are, respectively, denoted by $\alpha(G)$ and $G[A] . G+H$ denotes the union of vertex-disjoint graphs G and H. The join of vertex-disjoint graphs G and H is denoted by $G \vee H$. If A, H are subsets of $V(G)$ or subgraphs of G, we denote by $N_{H}(A)$ the set of vertices in H which are adjacent to some vertex in A. For simplicity, we adopt $N(A)$ if $H=G$. The open neighborhood, the closed neighborhood and the degree of vertex v are, respectively, denoted by $N(v)=\{u \in V(G) \mid u v \in E(G)\}, N[v]=N(v) \cup\{v\}$ and $d(v)=|N(v)| . \delta(G)$ denotes the minimum degree of G. A dominating set of G is a subset S of $V(G)$ such that every vertex of G belongs to S or is adjacent to a vertex of S. The domination number, denoted $\gamma(G)$, is the minimum cardinality of a dominating set of G. To each pair (u, v) of vertices at distance 2, we associate the set $J(u, v)=\{w \in N(u) \cap$ $N(v) \mid N(w) \subseteq N[u] \cup N[v]\}$. Let $Z \subseteq V(G),|Z|=p$, and $t>1$ be an integer. Put,

$$
S_{i}(Z)=\{v \in V(G)| | N(v) \cap Z \mid=i\}, \quad s_{i}(Z)=\left|S_{i}(Z)\right| \quad \text { for } i=0,1, \ldots, p
$$

and

$$
I_{t}(G)=\{Y \mid Y \text { is an independent set of } G,|Y|=t\} .
$$

Let G be connected and $Z \subseteq V(G)$. Denote

$$
N_{i}(Z)=\left\{v \in V(G) \mid \min _{z \in Z}\left\{\operatorname{dist}_{G}(v, z)\right\}=i\right\}(i=0,1,2, \ldots)
$$

and

$$
n(Z)=\left|N_{0}(Z) \cup N_{1}(Z) \cup N_{2}(Z)\right|=\left|\left\{v \in V(G) \mid \min _{z \in Z}\left\{\operatorname{dist}_{G}(v, z)\right\} \leqslant 2\right\}\right|,
$$

where $\operatorname{dist}_{G}(v, z)$ stands for the distance between v and z in G.
A claw in a graph is an induced subgraph $G[\{u, x, y, z\}]$ isomorphic to $K_{1,3}$ in which the vertex u of degree 3 is called claw-center. A graph is claw-free if it does not contain a claw as an induced subgraph.

Definition 1.1 (Ryjáček [10]). A graph G is almost claw-free if there exists an independent set $A \subseteq V(G)$ such that $\alpha(G[N(v)]) \leqslant 2$ for every $v \notin A$ and $\gamma(G[N(v)]) \leqslant 2$ $<\alpha(G[N(v)])$ for every $v \in A$.

Definition 1.2 (Ainouche and Kouider [3]). The partially square graph G^{*} of G is a graph satisfying $V\left(G^{*}\right)=V(G)$ and $E\left(G^{*}\right)=E(G) \cup\{u v \mid u v \notin E(G)$, and $J(u, v) \neq \emptyset\}$.

Definition 1.3. The square graph G^{2} of G is a graph satisfying $V\left(G^{2}\right)=V(G)$ and $E\left(G^{2}\right)=E(G) \cup\left\{u v \mid \operatorname{dist}_{G}(u, v)=2\right\}$.

2. Properties

Property 2.1 (Ryjáček [10]). Every almost claw-free graph is $K_{1,5}$-free and $K_{1,1,3}$-free.
Property 2.2. Let G be an almost claw-free graph and G^{*} its partially square graph. Then $s_{3}(Z)=0$ in G for each $Z \in I_{3}\left(G^{*}\right)$.

Proof. By contradiction. Suppose that $Z=\left\{u_{1}, u_{2}, u_{3}\right\}$ is an independent set of G^{*}, and $u u_{i} \in E(G)(i=1,2,3)$. Clearly, $\left\{u_{1}, u_{2}, u_{3}\right\}$ is independent in G and u is a claw center. Note that G is almost claw-free. There exists some vertex $w \in N(u) \backslash\left\{u_{1}, u_{2}, u_{3}\right\}$ dominating two vertices of $\left\{u_{1}, u_{2}, u_{3}\right\}$. We assume w dominates u_{1} and u_{2}. By the definition of G^{*} and $u_{1} u_{2} \notin E\left(G^{*}\right)$, we have $J\left(u_{1}, u_{2}\right)=\emptyset$. Then there must exist some vertex $u_{4}\left(\notin\left\{u_{1}, u_{2}, u\right\}\right)$ in $N(w)$ such that $u_{4} \notin N\left[u_{1}\right] \cup N\left[u_{2}\right]$. Thus, $G\left[\left\{w, u_{1}, u_{2}, u_{4}\right\}\right] \cong$ $K_{1,3}$. However, $w u \in E(G)$ and u is a claw center, a contradiction.

Clearly, Property 2.2 is equivalent to saying that G^{*} is claw-free if G is almost claw-free.

Property 2.3. Let G be an almost claw-free graph and G^{*} its partially square graph. Then $s_{2}(Z) \leqslant 2$ in G for each $Z \in I_{2}\left(G^{*}\right)$. Moreover, if $S_{2}(Z)=\left\{u_{1}, u_{2}\right\}$, we have $u_{1} u_{2} \notin E(G)$.

Proof. By contradiction. Suppose that $Z=\left\{w_{1}, w_{2}\right\}$ is independent in G^{*} and $\left\{u_{1}, u_{2}, u_{3}\right\} \subseteq S_{2}(Z)$. By the definition of G^{*} and $w_{1} w_{2} \notin E\left(G^{*}\right)$, it is easy to see that u_{1}, u_{2}, u_{3} are claw centers in G. Then, $\left\{u_{1}, u_{2}, u_{3}\right\}$ is independent in G and $G\left[\left\{w_{1}, u_{1}, u_{2}, u_{3}\right\}\right] \cong K_{1,3}$, a contradiction. Hence $s_{2}(Z) \leqslant 2$ in G for each $Z \in I_{2}\left(G^{*}\right)$. Moreover, if $S_{2}(Z)=\left\{u_{1}, u_{2}\right\}$, it is not difficult to get $u_{1} u_{2} \notin E(G)$.

3. Hamiltonicity

The following results on claw-free graphs are known.
Theorem 3.1 (Matthews and Sumner [9]). A 2-connected claw-free graph G is hamiltonian if $\delta(G) \geqslant \frac{1}{3}(n-2)$.

Theorem 3.2 (Broersma [5], Liu and Tian [8]). Let G be a 2-connected claw-free graph. If $\sum_{z \in Z} d(z) \geqslant n-2$ for each $Z \in I_{3}(G)$, then G is hamiltonian.

Zhang generalized Theorem 3.2 to k-connected claw-free graphs for any positive integer $k \geqslant 2$ as follows.

Theorem 3.3 (Zhang [12]). Let G be a k-connected claw-free graph with $k \geqslant 2$. If $\sum_{z \in Z} d(z) \geqslant n-k$ for each $Z \in I_{k+1}(G)$, then G is hamiltonian.

Theorem 3.3 was extended by the following Theorem.
Theorem 3.4 (Ainouche and Broersma [1]). If G is a k-connected claw-free graph $(k \geqslant 2)$ with $\alpha\left(G^{2}\right) \leqslant k$, then G is hamiltonian.

Ainouche and Kouider in [3], considered the independence number of partially square graphs and proved the following.

Theorem 3.5 (Ainouche and Kouider [3]). Let G be a k-connected graph with $k \geqslant 2$ and G^{*} its partially square graph. If $\alpha\left(G^{*}\right) \leqslant k$, then G is hamiltonian.

Our objective is to generalize results on claw-free graphs to almost claw-free graphs. Following are some results on hamiltonicity in almost claw-free graphs.

Theorem 3.6 (Broersma et al. [6]). A 2-connected almost claw-free graph G is hamiltonian if $\delta(G) \geqslant \frac{1}{3}(n-2)$.

Theorem 3.7 (Broersma et al. [6]). Let Ge a 2 -connected almost claw-free graph. If $\sum_{z \in Z} d(z) \geqslant n$ for each $Z \in I_{3}(G)$, then G is hamiltonian.

Broersma et al. in [6] conjectured that $\sum_{z \in Z} d(z) \geqslant n-2$ for each $Z \in I_{3}(G)$ implies hamiltonicity in 2 -connected almost claw-free graphs. This conjecture was verified for

Fig. 1. A k-connected almost claw-free hamiltonian graph.
$n \geqslant 79$ by Li and Tian [7], and proved in [2] for another class containing the class of almost claw-free graphs.

In this paper, we will prove the following result.
Theorem 3.8. Let G be a k-connected almost claw-free graph with $k \geqslant 2$, and G^{*} its partially square graph. If $\sum_{z \in Z} d(z) \geqslant n(Z)-k$ in G for each $Z \in I_{k+1}\left(G^{*}\right)$, then G is hamiltonian.

Clearly, Theorem 3.8 is best possible, it modifies and generalizes Theorems 3.3, 3.6 and 3.7. Of course, it solves the conjecture proposed by Broersma et al. [6].

Now, for $k \geqslant 2$, we construct a graph G_{k} as follows (see Fig. 1). Let $H_{j}^{i} \cong K_{k}, H_{5}^{i} \cong$ K_{1}, where $i=1,2, \ldots, k, j=1,2,3,4$. Let $H^{i}=\left(\left(\left(H_{1}^{i}+H_{2}^{i}\right) \vee H_{3}^{i}\right)+H_{4}^{i}\right) \vee H_{5}^{i}$, and $V\left(H^{1}\right)$, $V\left(H^{2}\right), \ldots, V\left(H^{k}\right)$ be pairwise vertex-disjoint. Set

$$
\begin{aligned}
V\left(G_{k}\right)= & \bigcup_{i=1}^{k} V\left(H^{i}\right), \\
E\left(G_{k}\right)= & \bigcup_{i=1}^{k} E\left(H^{i}\right) \cup\left(\bigcup_{t=1}^{k-1} E\left(H_{1}^{t} \vee H_{2}^{t+1}\right) \cup E\left(H_{1}^{k} \vee H_{2}^{1}\right)\right) \\
& \cup E\left(H_{4}^{1} \vee H_{4}^{2} \vee H_{4}^{3} \vee \cdots \vee H_{4}^{k}\right) .
\end{aligned}
$$

Obviously, G_{k} is a k-connected almost claw-free hamiltonian graph which is not claw-free, and $\sum_{z \in Z} d(z)=4 k^{2}=n(Z)-k$ in G for each $Z \in I_{k+1}\left(G^{*}\right) . G_{k}$ shows
that it is meaningful to find the sufficient condition for the hamiltonicity of almost claw-free graphs. On the other hand, for $G=G_{k}(k \geqslant 2)$, we have $n=4 k^{2}+k$, and $\delta(G)<(n-2) / 3$, therefore G_{k} doesn't satisfy the condition of Theorem 3.6.

To prove Theorem 3.8, we will relate in Section 4 the concept of global insertion introduced in [2], and use the global insertion Lemma 4.1 to prove some new lemmas. The proof of Theorem 3.8 is given in Section 5.

4. The global insertion concept

Let G be a k-connected non-hamiltonian graph and C its a maximal cycle of G (that is, there is no cycle C^{\prime} in G such that $V(C) \subset V\left(C^{\prime}\right)$), in the sense of the vertex inclusion, in which an orientation is fixed. For simplicity, we use the same notation to mean a subgraph, its vertex set or its edge set. If $x \in V(C)$, denote by x^{+}and x^{-}the successor and the predecessor of x along the orientation of C, respectively. Set $x^{++}=\left(x^{+}\right)^{+}, x^{-}=\left(x^{-}\right)^{-}$. If $u, v \in V(C)$, then $C[u, v]$ denotes the consecutive vertices on C from u to v in the chosen direction of C, and $C(u, v]=C[u, v]-$ $\{u\}, C[u, v)=C[u, v]-\{v\}, C(u, v)=C[u, v]-\{u, v\}$. The same vertices, in the reverse order, are, respectively, denoted by $\bar{C}[v, u], \bar{C}[v, u), \bar{C}(v, u]$ and $\bar{C}(v, u)$. Let H be a component of $G-V(C)$. Assume, $N_{C}(H)=\left\{v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{m}^{\prime}\right\}$ with $m \geqslant k \geqslant 2$, and $v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{m}^{\prime}$ occur on C in the order of their indices. The subscripts will be taken modulo m. Let $\{x, y\} \subseteq N_{C}(H)$. We denote by $x H y$ one of the longest (x, y)-paths with all its internal vertices in H.

In [2], a relation \sim on $V(C)$ is defined by the condition $u \sim v$ if there exists a path with endpoints u, v and no internal vertex in C. Such a path is called a connecting path between u and v and is denoted by $u R v$, where $R:=V \backslash V(C)$. Note that if one of u or v is not a vertex v_{i}^{\prime}, any connecting path $u R v$ is disjoint from H. If x, y, t, z are distinct vertices of C such that $z \in\left\{t^{+}, t^{-}\right\}, x \sim t, y \sim z$, then the paths $x R t$ and $y R z$ are said to be crossing at x, y if either $\left(z=t^{+}\right.$and $\left.t \in C\left[y^{+}, x^{--}\right]\right)$or $\left(z=t^{-}\right.$and $\left.t \in C\left[x^{++}, y^{-}\right]\right)$.

Definition 4.1 (Ainouche et al. [2]). For all $i \in\{1,2, \ldots, m\}$, a vertex $u \in C\left(v_{i}^{\prime}, v_{i+1}^{\prime}\right)$ is called globally path insertible (GPI for short) if
(i) each vertex in $C\left(v_{i}^{\prime}, u\right)$ is GPI or $u=\left(v_{i}^{\prime}\right)^{+}$;
(ii) there exist $w, w^{+} \in C\left[v_{i+1}^{\prime}, v_{i}^{\prime}\right]$ and $v \in C\left(v_{i}^{\prime}, u\right]$ (possibly $v=u$) such that either ($u \sim w, v \sim w^{+}$) or ($\left.u \sim w^{+}, v \sim w\right)$.

Note that $u \sim v$ if $u v \in E(G)$. By replacing the connecting path with the edge in (ii), Wu et al. independently introduced the T-insertion concept in [11]. Clearly, T-insertion concept is a special case of the global edge insertion.

Let u be a GPI vertex in $C\left(v_{i}^{\prime}, v_{i+1}^{\prime}\right)(i \in\{1,2, \ldots, m\})$. By the technique in [2] we can insert the vertices of $C\left(v_{i}^{\prime}, u\right]$ into the path $C\left[v_{i+1}^{\prime}, v_{i}^{\prime}\right]$. Consider that $u_{1}=u, v_{u_{1}}$
and the insertion edge $w_{u_{1}} w_{u_{1}}^{+} ; u_{2}=v_{u_{1}}^{-}, v_{u_{2}}$ and the insertion edge $w_{u_{2}} w_{u_{2}}^{+} ; \cdots$; $u_{s}=v_{u_{s-1}}^{-}, v_{u_{s}}=\left(v_{i}^{\prime}\right)^{+}$and the insertion edge $w_{u_{s}} w_{u_{s}}^{+}$, where for $j \in\{1,2, \ldots, s\}, v_{u_{j}}$ is the first vertex in $C\left(v_{i}^{\prime}, u_{j}\right]$ such that (ii) holds, and based on this, $w_{u_{j}} w_{u_{j}}^{+}$is the first edge in $C\left[v_{i+1}^{\prime}, v_{i}^{\prime}\right]$ such that (ii) holds. By the choice above, $w_{u_{1}} w_{u_{1}}^{+}, w_{u_{2}} w_{u_{2}}^{+}, \ldots, w_{u_{s}} w_{u_{s}}^{+}$ are different from each other. Similarly, the paths connecting the vertices $w_{u_{j}}$ and $w_{u_{j}}^{+}$ to the vertices u_{j} and $v_{u_{j}}$ are all pairwise internally disjoint by the choice of the $v_{u_{j}}$'s and the maximality of C. Thus, in the path $C\left[v_{i+1}^{\prime}, v_{i}^{\prime}\right]$, replace the edge $w_{u_{j}} w_{u_{j}}^{+}$ $(j \in\{1,2, \ldots, s\})$ by the path $C\left[v_{u_{j}}, u_{j}\right]$ or $\bar{C}\left[u_{j}, v_{u_{j}}\right]$, for the resulting ($v_{i+1}^{\prime}, v_{i}^{\prime}$)-path P_{u}, we have $V\left(P_{u}\right)=C\left[v_{i+1}^{\prime}, u\right] . C\left(v_{i}^{\prime}, u\right]$ is therefore inserted into the path $C\left[v_{i+1}^{\prime}, v_{i}^{\prime}\right]$. Denote $E(u)=\left\{w_{u_{1}} w_{u_{1}}^{+}, w_{u_{2}} w_{u_{2}}^{+}, \ldots, w_{u_{s}} w_{u_{s}}^{+}\right\}$, and call it the inserted edge set of $C\left(v_{i}^{\prime}, u\right]$.

Lemma 4.1 (Ainouche et al. [2]). For all $i \in\{1,2, \ldots, m\}$, let x_{i}^{\prime} be the first vertex on $C\left(v_{i}^{\prime}, v_{i+1}^{\prime}\right)$ along C which is not globally path insertible. Then
(a) For each i, x_{i}^{\prime} exists.

Set $X^{\prime}=\left\{x_{0}^{\prime}, x_{1}^{\prime}, \ldots, x_{m}^{\prime}\right\}$ with $x_{0}^{\prime} \in V(H)$.
(b) For $1 \leqslant i \neq j \leqslant m$ and for any $u_{i} \in C\left(v_{i}^{\prime}, x_{i}^{\prime}\right]$ and $u_{j} \in C\left(v_{j}^{\prime}, x_{j}^{\prime}\right], u_{i} \nsim u_{j}$ and there are no crossing paths at u_{i}, u_{j}.
(c) X is independent.
(d) For $0 \leqslant i \neq j \leqslant m, J\left(x_{i}^{\prime}, x_{j}^{\prime}\right)=\emptyset$. In particular any common neighbor of at least two vertices of X^{\prime} must be a claw-center.

In the rest of this paper, we pick up $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\} \subseteq\left\{v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{m}^{\prime}\right\}$. The subscripts of $\left(v_{i}\right)^{\prime} s$ will be taken modulo k. For each $i \in\{1,2, \ldots, k\}$, let x_{i} be the first non-GPI in $C\left(v_{i}, v_{i+1}\right)$. Set $X=\left\{x_{0}, x_{1}, \ldots, x_{k}\right\}$, where $x_{0} \in V(H)$. Denote $J_{X}=\bigcup_{i=1}^{k} C\left[x_{i}, v_{i+1}\right]$, $K_{X}=V(G) \backslash J_{X}$. For $X=\left\{x_{0}, x_{1}, \ldots, x_{k}\right\}$, let $C\left[z_{1}, z_{2}\right) \subseteq C\left[x_{t}, v_{t+1}\right](t \in\{1,2, \ldots, k\})$. If $C\left(z_{1}, z_{2}\right) \cap S_{0}(X)=\emptyset$, and $z_{1} \in N_{2}(X) \cup X, z_{2} \in S_{0}(X) \cup\left\{v_{t+1}^{+}\right\}$, then $C\left[z_{1}, z_{2}\right)$ is called a $C X$-segment. A $C X$-segment $C\left[z_{1}, z_{2}\right)$ is called simple if $C\left(z_{1}, z_{2}\right) \subseteq S_{1}(X)$. By Lemmas 4.1(b) $-(\mathrm{d})$ and the maximality of C, the following Lemma holds.

Lemma 4.2 (Wu et al. [11]). (a) If u is a GPI, then $u^{+} \notin N_{C}(H)$.
(b) $X \in I_{k+1}\left(G^{*}\right), K_{X} \subseteq S_{0}(X) \cup S_{1}(X), K_{X} \cap N_{0}(X)=\left\{x_{0}\right\}$.
(c) If $u \in N_{C}(H) \backslash\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}, y \in \bigcup_{j=1}^{k} C\left(v_{j}, x_{j}\right]$, then $u^{+} y \notin E(G)$.
(d) Let, $C\left[z_{1}, z_{2}\right)\left(\subseteq C\left[x_{t}, v_{t+1}\right], t \in\{1,2, \ldots, k\}\right.$) be a $C X$-segment, and $M_{i}=N\left(x_{i}\right) \cap$
$C\left(z_{1}, z_{2}\right)(i \in\{0,1, \ldots, k\})$. Then $M_{t}, M_{t-1}, \ldots, M_{1}, M_{k}, M_{k-1}, \ldots, M_{t+1}, M_{0}$ (some of them may be empty) form consecutive subpaths of $C\left(z_{1}, z_{2}\right)$ which can have only their endvertices in common, and $\left|M_{i}\right| \leqslant 1, i \in\{0,1,2, \ldots, k\} \backslash\{t\}$.

Lemma 4.3.

$$
\sum_{i=0}^{k}\left|N\left(x_{i}\right) \cap K_{X}\right| \leqslant\left|K_{X}\right|-1-\sum_{l>2}\left|N_{l}(X) \cap K_{X}\right|
$$

Proof. By Lemma 4.2(b), we have $K_{X} \subseteq S_{0}(X) \cup S_{1}(X)$, and $K_{X} \cap N_{0}(X)=\left\{x_{0}\right\}$. Then

$$
\begin{aligned}
\sum_{i=0}^{k}\left|N\left(x_{i}\right) \cap K_{X}\right| & =\left|S_{1}(X) \cap K_{X}\right|=\left|N_{1}(X) \cap K_{X}\right| \\
& =\left|K_{X}\right|-\left|N_{0}(X) \cap K_{X}\right|-\sum_{l>2}\left|N_{l}(X) \cap K_{X}\right|-\left|N_{2}(X) \cap K_{X}\right| \\
& \leqslant\left|K_{X}\right|-1-\sum_{l>2}\left|N_{l}(X) \cap K_{X}\right| .
\end{aligned}
$$

Lemma 4.4. If $C\left[z_{1}, z_{2}\right)$ is a simple $C X$-segment, then $\sum_{i=0}^{k}\left|N\left(x_{i}\right) \cap C\left[z_{1}, z_{2}\right)\right|=$ $\left|C\left[z_{1}, z_{2}\right)\right|-1$.

Proof. By the definition of a simple $C X$-segment, it is easy to see that

$$
\sum_{i=0}^{k}\left|N\left(x_{i}\right) \cap C\left[z_{1}, z_{2}\right)\right|=\left|S_{1}(X) \cap C\left[z_{1}, z_{2}\right)\right|=\left|C\left(z_{1}, z_{2}\right)\right|=\left|C\left[z_{1}, z_{2}\right)\right|-1 .
$$

Now, we assume that G is almost claw-free, and A is the set of all claw centers. By the definition of an almost claw-free graph, A is independent. By Lemma 4.1(d), we have the following:

Lemma 4.5. For any $\{i, j\} \subseteq\{0,1, \ldots, k\}$, we have $N\left(x_{i}\right) \cap N\left(x_{j}\right) \subseteq A$. Therefore, for any $i \in\{1,2, \ldots, k\}, N\left(x_{i}\right) \cap N_{C}(H) \subseteq A$.

Lemma 4.6. For any $t \in\{3,4, \ldots, k+1\}$, we have $S_{t}(X)=\emptyset$. Therefore, for any $\{i, j\} \subseteq$ $\{1,2, \ldots, k\}, N\left(x_{i}\right) \cap N\left(x_{j}\right) \cap N_{C}(H)=\emptyset$.

Proof. By Lemma 4.2(b), $X \in I_{k+1}\left(G^{*}\right)$. Then the result directly follows from Property 2.2.

Lemma 4.7. For any $i \in\{1,2, \ldots, k\}, N\left(x_{0}\right) \cap N\left(x_{i}\right) \subseteq\left\{v_{i}\right\}$.
Proof. By contradiction. Suppose that there exists some vertex $w \in N\left(x_{0}\right) \cap N\left(x_{i}\right) \backslash\left\{v_{i}\right\}$. Then we have $w \in A$ by Lemma 4.5, and $w \in C\left(x_{i}, v_{i}^{-}\right)$by Lemma 4.2(a), (b) and the definition of x_{i}. Consider $\left\{w^{-}, w^{+}, x_{0}\right\} \cup\left\{x_{i}\right\}(\subseteq N(w))$. It is clear that x_{0} and x_{i} have no common neighbor in $N(w)$. Suppose first that x_{0} and w^{+}have a common neighbor v in $N(w)$. By the maximality of C, it is easy to see that $v \in V(C), v \notin\left\{w^{+}, w^{-}\right\}$ and $v^{+} x_{0}, v^{-} x_{0} \notin E(G)$. By $w \in A$, we have $v \notin A$, then $v^{+} v^{-} \in E(G)$. Thus, the cycle $C_{1}=C\left[w^{+}, v^{-}\right] C\left[v^{+}, w\right) w H v w^{+}$in G contains C, a contradiction. Hence x_{0} and w^{+}have no common neighbor in $N(w)$. By symmetry, x_{0} and w^{-}have no common neighbor in $N(w)$.
Since G is almost claw-free and $w \in A$, we have $\gamma(G[N(w)]) \leqslant 2$. Then there exists some vertex $u \in N(w)$ dominating $\left\{w^{+}, w^{-}\right\} \cup\left\{x_{i}\right\}$. Clearly, $u \in V(C)$. By Lemmas 4.1(b), 4.2(c), we have $u \in C\left(x_{i}, v_{i} \backslash \backslash\{w\}\right.$. By $w \in A$ and $u w \in E(G), u \notin A$. We will consider three cases.

Case 1: $u=v_{i}$.
Note that $u \in N\left(x_{i}\right) \cap N_{C}(H)$. By Lemma 4.5, we have $u \in A$, a contradiction.
Case 2: $u \in C\left(x_{i}, w\right)$.
In fact, $u^{+} x_{i} \notin E(G)$ (Otherwise, suppose that $u^{+} x_{i} \in E(G)$. Note that since $\{w, u\} \subseteq$ $N\left(x_{i}\right)$, we have $\left\{u u^{+}, w w^{+}\right\} \cap E\left(x_{i}^{-}\right)=\emptyset$, that is all the inserted edges of vertices in $C\left(v_{i}, x_{i}\right)$ are not in $\left\{u u^{+}, w w^{+}\right\}$. Then the vertices of $C\left(v_{i}, x_{i}\right)$ can be inserted into the cycle $C\left[u^{+}, w\right) w H v_{i} \bar{C}\left(v_{i}, w^{+}\right] \bar{C}\left[u, x_{i}\right] u^{+}$. Denote by C_{2} the resulting cycle. Clearly, $V(C) \subset V\left(C_{2}\right)$, a contradiction). Thus $u \neq w^{-}$. Moreover, $u^{+} w^{+} \in E(G)$ (Otherwise $u^{+} w^{+} \notin E(G)$. By Lemmas 4.1(b) and 4.2(c), $x_{i} w^{+} \notin E(G)$. Then $G\left[\left\{u, u^{+}, w^{+}, x_{i}\right\}\right] \cong$ $K_{1,3}$, a contradiction). It is easy to see that $\left\{w w^{+}, w w^{-}, u u^{+}\right\} \cap E\left(x_{i}^{-}\right)=\emptyset$ by the definition of x_{i} and $w x_{i}, u x_{i} \in E(G)$. Then the vertices of $C\left(v_{i}, x_{i}\right)$ can be inserted into the cycle $C\left[x_{i}, u\right] \bar{C}\left[w^{-}, u^{+}\right] C\left[w^{+}, v_{i}\right) v_{i} H w x_{i}$. Let C_{3} denote the resulting cycle, we have $V(C) \subset V\left(C_{3}\right)$, a contradiction.

Case 3: $u \in C\left(w, v_{i}\right)$.
In fact, $u^{+} w^{+} \notin E(G)$ (If not, we assume $u^{+} w^{+} \in E(G)$. Note that $\{u, w\} \subseteq N\left(x_{i}\right)$, we have $\left\{w w^{+}, u u^{+}\right\} \cap E\left(x_{i}^{-}\right)=\emptyset$. Then the vertices of $C\left(v_{i}, x_{i}\right)$ can be inserted into the cycle $C\left[w^{+}, u\right] C\left[x_{i}, w\right) w H v_{i} \bar{C}\left(v_{i}, u^{+}\right] w^{+}$. Denote by C_{4} the resulting cycle, we have $V(C) \subset V\left(C_{4}\right)$, a contradiction). Moreover, $x_{i} u^{+} \notin E(G)$ (Otherwise, it is easy to see that the vertices of $C\left(v_{i}, x_{i}\right)$ can be inserted into the cycle $C\left[x_{i}, w^{-}\right] \bar{C}[u, w) w H v_{i}$ $\bar{C}\left[v_{i}, u^{+}\right] x_{i}$. Let C_{5} denote the resulting cycle. Clearly, $V(C) \subset V\left(C_{5}\right)$, a contradiction). By Lemmas 4.1(b) and 4.2(c), we have $x_{i} w^{+} \notin E(G)$. Thus, $G\left[\left\{u, u^{+}, w^{+}, x_{i}\right\}\right] \cong K_{1,3}$, a contradiction.

Lemma 4.8. Let, $C\left[z_{1}, z_{2}\right)\left(\subseteq C\left[x_{t}, v_{t+1}\right], t \in\{1,2, \ldots, k\}\right)$ be a $C X$-segment. Then the following statements hold.
(1) For any $i \in\{3,4, \ldots, k\},\left|C\left[z_{1}, z_{2}\right) \cap S_{i}(X)\right|=0$.
(2) If $u \in S_{2}(X) \cap C\left(z_{1}, z_{2}\right), y \in C\left(u, z_{2}\right)$, then $y u \in E(G)$. Therefore, $y \notin A$ and $\left|C\left(z_{1}, z_{2}\right) \cap S_{2}(X)\right| \leqslant 1$.
(3) $\sum_{i=0}^{k}\left|N\left(x_{i}\right) \cap C\left[z_{1}, z_{2}\right)\right| \leqslant\left|C\left[z_{1}, z_{2}\right)\right|$.

Proof. (1) It is easy to see that (1) holds by Lemma 4.6.
(2) By contradiction. Suppose that y is the first vertex in $C\left(u, z_{2}\right)$ nonadjacent to u. Then $y u \notin E(G), y \neq u^{+}$and $y^{-} u \in E(G)$. Note that $u \in S_{2}(X) \cap C\left(z_{1}, z_{2}\right)$. By the definition of $C X$-segment, we set $y^{-} \in N\left(x_{j}\right)(j \neq t)$. It is clear that $x_{j} \notin N(u) \cup N(y)$ by Lemma 4.2(d). Thus $G\left[\left\{y^{-}, y, x_{j}, u\right\}\right] \cong K_{1,3}, y^{-} \in A$. By Lemma 4.5, $u \in A$. This contradicts $y^{-} u \in E(G)$. Hence $y u \in E(G)$.
(3) By (1) and (2), we have

$$
\begin{aligned}
\sum_{i=0}^{k}\left|N\left(x_{i}\right) \cap C\left[z_{1}, z_{2}\right)\right| & =\left|S_{1}(X) \cap C\left(z_{1}, z_{2}\right)\right|+2\left|S_{2}(X) \cap C\left(z_{1}, z_{2}\right)\right| \\
& =\left|C\left(z_{1}, z_{2}\right)\right|+\left|S_{2}(X) \cap C\left(z_{1}, z_{2}\right)\right| \leqslant\left|C\left[z_{1}, z_{2}\right)\right| .
\end{aligned}
$$

Lemma 4.8 holds.

For $t \in\{1,2, \ldots, k\}, C\left[x_{t}, v_{t+1}\right] \backslash \bigcup_{l>2} N_{l}(X)$ can be divided into some disjoint $C X$-segments. Assume that all these $C X$-segments are $C\left[z_{11}, z_{12}\right), C\left[z_{21}, z_{22}\right), \ldots$, $C\left[z_{m 1}, z_{m 2}\right)$, occurring consecutively along the direction of the path $C\left[x_{t}, v_{t+1}\right]$. It is possible to have $z_{j 2}=z_{j+1,1}$ for some j.

Lemma 4.9. If $v_{t+1} \notin S_{2}(X)$, then $C\left[z_{m 1}, z_{m 2}\right)$ is simple.
Proof. Suppose, to the contrary, that $C\left[z_{m 1}, z_{m 2}\right)$ is not simple. By Lemma 4.8(2), $\left|C\left(z_{m 1}, z_{m 2}\right) \cap S_{2}(X)\right|=1$. Let $w \in C\left(z_{m 1}, z_{m 2}\right) \cap S_{2}(X)$. Then $w \neq v_{t+1}$. By Lemma 4.5, $w \in A$. To get the contradiction, we first show two claims.

Claim 1. $v_{t+1} \in C\left[z_{m 1}, z_{m 2}\right)$, and $v_{t+1} x_{0}, w v_{t+1}^{+} \in E(G)$.
Suppose that $v_{t+1} \notin C\left[z_{m 1}, z_{m 2}\right)$. By the definition of $C X$-segment and $\mid C\left(z_{m 1}, z_{m 2}\right) \cap$ $S_{2}(X) \mid=1$, we have $z_{m 2} \in N_{2}(X)$. Then $C\left[z_{m 2}, v_{t+1}\right]$ still has some other $C X$-segments. This contradicts the assumption.

By $v_{t+1} \notin S_{2}(X), w \in C\left(z_{m 1}, z_{m 2}^{-}\right) \cap S_{2}(X)$. By Lemma 4.8(2), $w v_{t+1} \in E(G)$ and $v_{t+1} \notin A$. Then $v_{t+1} x_{0} \in E(G)$ (Otherwise, suppose that $v_{t+1} x_{0} \notin E(G)$. Since $v_{t+1} \in S_{1}(X)$, we set $v_{t+1} x_{j} \in E(G)$, where $j \in\{1,2, \ldots, k\}$. By Lemma 4.5, $v_{t+1} \in A$, a contradiction). Moreover, $w v_{t+1}^{+} \in E(G)$. (If not, we assume $w v_{t+1}^{+} \notin E(G)$. By $v_{t+1} \in N\left(x_{0}\right)$ and Lemma $4.2(\mathrm{~d}), x_{0} w \notin E(G)$. By the maximality of $C, v_{t+1}^{+} x_{0} \notin E(G)$. Then $G\left[\left\{v_{t+1}, x_{0}, w, v_{t+1}^{+}\right\}\right]$ $\cong K_{1,3}$, a contradiction.)

Claim 2. Let $w \in N\left(x_{i}\right) \cap S_{2}(X) \cap C\left[z_{m 1}, z_{m 2}\right)$. Then the following statements hold.
(1) $\left\{w^{+}, w^{-}, v_{t+1}^{+}\right\} \cup\left\{x_{i}\right\} \subseteq N(w)(i \neq 0, t+1)$.
(2) Let $u \in N_{C}(w)$. If u dominates $\left\{x_{i}\right\} \cup\left\{w^{+}, w^{-}\right\}$, then $u \in C\left(v_{t+1}^{+}, v_{i}\right] \cup C\left(x_{i}, w\right)$; If u dominates $\left\{x_{i}, v_{t+1}^{+}\right\}$, then $u \in C\left(x_{i}, w\right)$.
(3) There is no vertex in $N(w)$ dominating $\left\{x_{i}\right\} \cup\left\{w^{+}, w^{-}\right\}$.
(4) There is no vertex in $N(w)$ dominating $\left\{x_{i}, v_{t+1}^{+}, w^{+}\right\}$.
(5) There is no vertex in $N(w)$ dominating $\left\{x_{i}\right\} \cup\left\{v_{t+1}^{+}, w^{-}\right\}$.

Now, we show these statements one by one.
(1) By Claim 1, $w v_{t+1}^{+}, v_{t+1} x_{0} \in E(G)$. By $w v_{t+1}^{+} \in E(G)$, we have $\left\{w^{+}, w^{-}, v_{t+1}^{+}\right\} \cup$ $\left\{x_{i}\right\} \subseteq N(w)$. By $v_{t+1} x_{0} \in E(G)$, Lemma 4.2(d) and $w \neq v_{t+1}$, we have $x_{i} \neq x_{0}$. If $x_{i}=x_{t+1}$, then $w=v_{t+1}^{-}$by Lemma 4.2(d). This contradicts the definition of x_{t+1}. Hence $x_{i} \neq x_{t+1}$. (1) holds.
(2) In fact, $C\left[z_{m 1}, z_{m 2}\right)=C\left[z_{m 1}, v_{t+1}\right]$ by Claim 1. Clearly, $u \neq w$. By Lemma 4.2(d), $w \in N\left(x_{i}\right) \cap S_{2}(X)$ and $u \in N\left(x_{i}\right)$, we have $u \notin C\left(w, v_{t+1}\right]$.

If u dominates $\left\{x_{i}\right\} \cup\left\{w^{+}, w^{-}\right\}$, then we have $u \neq v_{t+1}^{+}$by Lemma 4.1(b) and $i \neq t+1$. Moreover, we have $u \notin C\left(v_{i}, x_{i}\right]$ by Lemma $4.2(\mathrm{~d}), w \in S_{2}(X)$ and $\left\{w^{+}, w^{-}\right\} \subseteq N(u)$. Thus, $u \in C\left(v_{t+1}^{+}, v_{i}\right] \cup C\left(x_{i}, w\right)$.

If u dominates $\left\{x_{i}, v_{t+1}^{+}\right\}$, then we have $u \notin\left\{v_{t+1}^{+}\right\} \cup C\left(v_{i}, x_{i}\right]$ by Lemma 4.1(b) and $i \neq t+1$. Moreover, $u \notin C\left(v_{t+1}^{+}, v_{i}\right]$ (Suppose that $u \in C\left(v_{t+1}^{+}, v_{i}\right]$. By Lemma 4.1(b),
we have $u^{+} v_{t+1}^{+}, v_{t+1}^{+} x_{i} \notin E(G)$. By Lemma 4.5 and $u \notin A$, we have $u \neq v_{i}$. By the definition of $x_{i}, u^{+} x_{i} \notin E(G)$. Then, $G\left[\left\{u, u^{+}, x_{i}, v_{t+1}^{+}\right\} \cong K_{1,3}\right.$, a contradiction.) Thus, $u \in C\left(x_{i}, w\right)$.
(3) Suppose, to the contrary, that there exists a vertex $u \in N(w)$ dominating $\left\{x_{i}\right\} \cup\left\{w^{+}, w^{-}\right\}$. By the maximality of $C, u \in V(C)$. By (2), $u \in C\left(v_{t+1}^{+}, v_{i}\right] \cup C\left(x_{i}, w\right)$. By $w \in A$, we have $u \notin A$.

If $u \in C\left(v_{t+1}^{+}, v_{i}\right]$, then we have $u^{-} x_{i} \notin E(G)$ as x_{i} is not GPI. By Lemma 4.1(b) and $w v_{t+1}^{+} \in E(G), x_{i} w^{+} \notin E(G)$. Thus, $u^{-} w^{+} \in E(G)$. (Otherwise, $G\left[\left\{u, u^{-}, x_{i}, w^{+}\right\} \cong K_{1,3}\right.$, a contradiction.) Note that $\{u, w\} \subseteq N\left(x_{i}\right)$, we have $\left\{u u^{-}, w w^{+}, v_{t+1}^{+} v_{t+1}\right\} \cap E\left(x_{i}^{-}\right)=\emptyset$ by Lemma 4.1(b) and the definition of x_{i}. The vertices of $C\left(v_{i}, x_{i}\right)$ can be inserted into the cycle $C\left[x_{i}, w\right] C\left[v_{t+1}^{+}, u^{-}\right] C\left[w^{+}, v_{t+1}\right) v_{t+1} H v_{i} \bar{C}\left(v_{i}, u\right] x_{i}$. Denote by C_{1} the resulting cycle, we have $V(C) \subset V\left(C_{1}\right)$, a contradiction.

If $u \in C\left(x_{i}, w\right)$, then $u^{+} x_{i} \notin E(G)$ (If not, we assume $u^{+} x_{i} \in E(G)$. By Claim 1, $w v_{t+1}^{+} \in E(G)$. Note that $\left\{u u^{+}, w w^{+}, v_{t+1} v_{t+1}^{+}\right\} \cap E\left(x_{i}^{-}\right)=\emptyset$. The vertices of $C\left(v_{i}, x_{i}\right)$ can be inserted into the cycle $C\left[x_{i}, u\right] C\left[w^{+}, v_{t+1}\right) v_{t+1} H v_{i} \bar{C}\left(v_{i}, v_{t+1}^{+}\right] \bar{C}\left[w, u^{+}\right] x_{i}$. Let C_{2} denote the resulting cycle. Clearly, $V(C) \subset V\left(C_{2}\right)$, a contradiction). Thus, $u \neq w^{-}$. By $w v_{t+1}^{+} \in E(G)$ and Lemma 4.1(b), we have $x_{i} w^{+} \notin E(G)$. Then $w^{+} u^{+} \in E(G)$ (Otherwise, $G\left[\left\{u, x_{i}, w^{+}, u^{+}\right\}\right] \cong K_{1,3}$, a contradiction). Note that $\left\{u u^{+}, w w^{+}, w w^{-}, v_{t+1} v_{t+1}^{+}\right\} \cap$ $E\left(x_{i}^{-}\right)=\emptyset$ and $\left\{x_{i}, v_{t+1}^{+}\right\} \subseteq N(w)$, the vertices of $C\left(v_{i}, x_{i}\right)$ can be inserted into the cycle $C\left[x_{i}, u\right] \bar{C}\left[w^{-}, u^{+}\right] C\left[w^{+}, v_{t+1}\right) v_{t+1} H v_{i} \bar{C}\left(v_{i}, v_{t+1}^{+}\right] w x_{i}$. Denote by C_{3} the resulting cycle, we have $V(C) \subset V\left(C_{3}\right)$, a contradiction.
(4) Suppose, to the contrary, that there exists a vertex $u \in N(w)$ dominating $\left\{x_{i}, v_{t+1}^{+}, w^{+}\right\}$. By the maximality of $C, u \in V(C)$. By (2), $u \in C\left(x_{i}, w\right)$. Then we have $x_{i} u^{+}, x_{i} v_{t+1}^{+} \notin E(G)$ by Lemma 4.1(b). Thus, $u^{+} v_{t+1}^{+} \in E(G)$. (Otherwise, $G\left[\left\{u, v_{t+1}^{+}, x_{i}, u^{+}\right\}\right] \cong K_{1,3}$, a contradiction.) Note that $\left\{u u^{+}, w w^{+}, v_{t+1} v_{t+1}^{+}\right\} \cap$ $E\left(x_{i}^{-}\right)=\emptyset$. By inserting the vertices of $C\left(v_{i}, x_{i}\right)$ into the cycle $C\left[x_{i}, u\right] C\left[w^{+}, v_{t+1}\right)$ $v_{t+1} H v_{i} \bar{C}\left(v_{i}, v_{t+1}^{+}\right] C\left[u^{+}, w\right] x_{i}$, we get a cycle which contains C, a contradiction.
(5) Suppose, to the contrary, that there is a vertex $u \in N(w)$ dominating $\left\{x_{i}\right\} \cup$ $\left\{v_{t+1}^{+}, w^{-}\right\}$. By the maximality of $C, u \in V(C)$. By Lemma 4.1(b), $u \neq w^{-}$. Then we have $u \in C\left(x_{i}, w^{-}\right)$by (2). By Lemma 4.1(b), $v_{t+1}^{+} x_{i}, x_{i} u^{+} \notin E(G)$. Thus, $v_{t+1}^{+} u^{+} \in E(G)$. (Otherwise, $G\left[\left\{u, u^{+}, x_{i}, v_{t+1}^{+}\right\}\right] \cong K_{1,3}$, a contradiction.) Note that $\left\{u u^{+}, w w^{-}, v_{t+1} v_{t+1}^{+}\right\} \cap$ $E\left(x_{i}^{-}\right)=\emptyset$, the vertices of $C\left(v_{i}, x_{i}\right)$ can be inserted into the cycle $C\left[x_{i}, u\right] \bar{C}\left[w^{-}, u^{+}\right]$ $C\left[v_{t+1}^{+}, v_{i}\right) v_{i} H v_{t+1} \bar{C}\left(v_{t+1}, w\right] x_{i}$. Denote by C_{4} the resulting cycle. Clearly, $V(C) \subset$ $V\left(C_{4}\right)$, a contradiction.

The proof of Claim 2 is over.
Now we prove Lemma 4.9. By Claim 2(1) and $w \in S_{2}(X)$, we have $\left\{w^{+}, w^{-}, v_{t+1}^{+}\right\} \cup$ $\left\{x_{i}, x_{j}\right\} \subseteq N(w)$, where $\{i, j\} \subseteq\{1,2, \ldots, k\} \backslash\{t+1\}$. By Lemma 4.5 and since A is independent, it is easy to see that there is no vertex in $N(w)$ dominating $\left\{x_{i}, x_{j}\right\}$. Then $\gamma(G[N(w)])>2$ by Claims $2(3)-(5)$, a contradiction. Hence Lemma 4.9 holds.

For given C and its $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$, set $\mathscr{C}=\left\{C^{\prime} \mid C^{\prime}\right.$ is a cycle in $G, V\left(C^{\prime}\right)=V(C)$, and $v_{1}, v_{2}, \ldots, v_{k}$ occur on C^{\prime} in the order of the indices $\} . \mathscr{C}$ is the set of some cycles in G. Clearly, C^{\prime} is a maximal cycle in G for each $C^{\prime} \in \mathscr{C}$.

Lemma 4.10. Let $C \in \mathscr{C}$ be a cycle having maximum number of globally path insertible vertices in \mathscr{C}. If $v_{t} \in S_{2}(X)$, then $m \geqslant 2$, and there exists some $j \in\{1,2, \ldots, m-1\}$, such that $C\left[z_{j 1}, z_{j 2}\right)$ is simple.

Proof. In fact, $v_{t} \in S_{2}(X) \cap N_{C}(H)$. Then we have $v_{t} \in N\left(x_{0}\right) \cap N\left(x_{t}\right)$ by Lemmas 4.6, 4.7, and $v_{t} \in A$ by Lemma 4.5. Therefore, we have $u \notin A$ if $u \in N\left(v_{t}\right)$. By the definition of $x_{t}, x_{t} v_{t}^{-}, v_{t}^{+} v_{t}^{-} \notin E(G)$. By the maximality of $C, x_{0} v_{t}^{+}, x_{0} v_{t}^{-} \notin E(G)$. Considering $N\left(v_{t}\right)$, we have $\left\{v_{t}^{+}, v_{t}^{-}, x_{0}\right\} \cup\left\{x_{t}\right\} \subseteq N\left(v_{t}\right)$. (It is possible to have $x_{t}=v_{t}^{+}$.) It is clear that x_{0} and x_{t} have no common neighbor in $N\left(v_{t}\right)$. Suppose, to the contrary, that Lemma 4.10 does not hold.

Claim 1. There is no vertex in $N\left(v_{t}\right)$ dominating $\left\{x_{0}, v_{t}^{+}\right\}$.
Suppose that there exists a vertex $u \in N\left(v_{t}\right)$ dominating $\left\{x_{0}, v_{t}^{+}\right\}$. By the maximality of C, we have $u \in V(C), u \neq v_{t}^{+}$and $u^{+}, u^{-} \notin N\left(x_{0}\right)$. Note that $u \in N_{C}\left(x_{0}\right)$ and $u \notin A$, we have $u^{+} u^{-} \in E(G)$. Then the cycle $C\left[v_{t}^{+}, u^{-}\right] C\left[u^{+}, v_{t}\right) v_{t} H u v_{t}^{+}$in G contains C, a contradiction.

Claim 2. There is no vertex in $N\left(v_{t}\right)$ dominating $\left\{x_{0}, v_{t}^{-}\right\}$.
Suppose that there exists a vertex $u \in N\left(v_{t}\right)$ dominating $\left\{x_{0}, v_{t}^{-}\right\}$. By the maximality of C, we have $u \in V(C), u \neq v_{t}^{-}$and $u^{-}, u^{+} \notin N\left(x_{0}\right)$. Then $u^{+} u^{-} \in E(G)$. Thus, the cycle $C\left[v_{t}, u^{-}\right] C\left[u^{+}, v_{t}^{-}\right] u H v_{t}$ in G contains C, a contradiction. Claim 2 holds.

Since G is almost claw-free, we have $\gamma\left(G\left[N\left(v_{t}\right)\right]\right) \leqslant 2$. Then there exists a vertex $u \in N\left(v_{t}\right)$ dominating $\left\{x_{t}\right\} \cup\left\{v_{t}^{+}, v_{t}^{-}\right\}$by Claims 1,2 . It is easy to see that $u \in V(C)$. By $v_{t}^{-} x_{t}, v_{t}^{-} v_{t}^{+} \notin E(G)$, we have $u \notin\left\{v_{t}^{+}, v_{t}^{-}\right\} \cup\left\{x_{t}\right\}$. By $u \notin A$ and Lemma 4.5, $u \notin N_{C}(H)$.

Claim 3. $u \in C\left(x_{t}, v_{t+1}\right), u^{+} u^{-} \notin E(G)$.
Suppose that $u \notin C\left(x_{t}, v_{t+1}\right)$. Since $v_{t} x_{t}, u v_{t}^{-} \in E(G)$, we have $u \notin C\left(v_{t}, x_{t}\right]$ by the definition of x_{t}. By $u \notin N_{C}(H)$, we have $u \in C\left(v_{t+1}, v_{t}\right)$. Thus, we may let $u \in$ $C\left(v_{p}, v_{p+1}\right)\left(\subseteq C\left(v_{t+1}, v_{t}\right)\right)$. By $u x_{t} \in E(G)$ and Lemma 4.1(b), $u \in C\left(x_{p}, v_{p+1}\right)$. By $x_{t} u \in E(G)$ and the definition of x_{t}, we have $u^{+} x_{t}, u^{-} x_{t} \notin E(G)$ and $u u^{+}, u u^{-} \notin E\left(x_{t}^{-}\right)$. Consider $G\left[\left\{u, u^{+}, u^{-}, x_{t}\right\}\right]$. It is clear that $u^{+} u^{-} \in E(G)$. For each $i \in\{t+1, t+2, \ldots, p-$ $1\}$, we have $u u^{+}, u u^{-} \notin E\left(x_{i}^{-}\right)$. (Otherwise, there exists some $j \in\{t+1, t+2, \ldots, p-$ $1\}$, such that $\left\{u u^{+}, u u^{-}\right\} \cap E\left(x_{j}^{-}\right) \neq \emptyset$. Then there is a vertex $v \in C\left(v_{j}, x_{j}\right)$ satisfying $u v \in E(G)$. By Lemma 4.1(b), $x_{t} v, u^{+} v \notin E(G)$. Thus, $G\left[\left\{u, u^{+}, v, x_{t}\right\}\right] \cong K_{1,3}$, a contradiction.) By symmetry, $u^{+} u, u u^{-} \notin E\left(x_{i}^{-}\right)$for each $i \in\{p+1, p+2, \ldots, t-1\}$. Hence there is a cycle $C_{1}=C\left[v_{t}^{+}, u^{-}\right] C\left[u^{+}, v_{t}\right] u v_{t}^{+}$satisfying $V(C)=V\left(C_{1}\right)$, however C_{1} has more globally path insertible vertices than C. This contradicts the choice of C. So $u \in C\left(x_{t}, v_{t+1}\right)$.

Suppose $u^{+} u^{-} \in E(G)$. First we will prove $u u^{-}, u u^{+} \notin E\left(x_{i}^{-}\right)$for each $i \in$ $\{1,2, \ldots, k\} \backslash\{t\}$. We proceed by contradiction. Suppose that there exists some $i_{0} \in\{1,2, \ldots, k\} \backslash\{t\}$, such that $\left\{u u^{-}, u u^{+}\right\} \cap E\left(x_{i_{0}}^{-}\right) \neq \emptyset$. Let g be the first vertex in
$C\left(v_{i_{0}}, x_{i_{0}}\right)$ adjacent to u. Then $u u^{+} \notin E\left(g^{-}\right)$. If $v_{t} v_{t}^{-} \notin E\left(g^{-}\right)$, then we have $g x_{t}, u^{+} x_{t} \notin$ $E(G)$ by Lemma 4.1(b). Thus $g u^{+} \in E(G)$ as $u \notin A$. Hence the vertices of $C\left(v_{i_{0}}, g\right)$ can be inserted into the cycle $C\left[u^{+}, v_{i_{0}}\right) v_{i_{0}} H v_{t} C\left(v_{t}, u\right] \bar{C}\left[v_{t}^{-}, g\right] u^{+}$. Denote by C_{2} the resulting cycle. Clearly, $V(C) \subset V\left(C_{2}\right)$, a contradiction. If $v_{t} v_{t}^{-} \in E\left(g^{-}\right)$, we let h the first vertex in $C\left(v_{i_{0}}, g\right)$ adjacent to v_{t}. Then $v_{t} v_{t}^{-} \notin E\left(h^{-}\right)$. By Lemma 4.1(b) and the choices of h, g, we have $u u^{+}, u u^{-}, v_{t} v_{t}^{+} \notin E\left(h^{-}\right)$. Thus we can insert all vertices of $C\left(v_{i_{0}}, h\right)$ into the cycle $C\left[u^{+}, v_{i_{0}}\right) v_{i_{0}} H v_{t} C\left[h, v_{t}^{-}\right] u C\left[v_{t}^{+}, u^{-}\right] u^{+}$. Denote by C_{3} the resulting cycle. Then we have $V(C) \subset V\left(C_{3}\right)$, a contradiction.

Thus, we have $u u^{+}, u u^{-} \notin E\left(x_{i}^{-}\right)$for each $i \in\{1,2, \ldots, k\} \backslash\{t\}$. Considering the cycle $C_{4}=C\left[v_{t}^{+}, u^{-}\right] C\left[u^{+}, v_{t}\right] u v_{t}^{+}$in G, we have $V(C)=V\left(C_{4}\right)$, however C_{4} has more globally path insertible vertices than C. This contradicts the choice of C too. So $u^{+} u^{-} \notin E(G)$.

Claim 4. $u \in S_{1}(X), u^{+} \notin N_{C}(H)$. Therefore $u \neq v_{t+1}^{-}$.
In fact, note that $u x_{t} \in E(G)$, we have $u \in S_{1}(X)$ by Lemma 4.5 and $u \notin A$. Moreover $u^{+} \notin N_{C}(H)$, otherwise the cycle $\bar{C}\left[u, v_{t}\right) v_{t} H u^{+} C\left(u^{+}, v_{t}^{-}\right] u$ in G contains C, a contradiction.

Claim 5. $u^{+} \in N\left(x_{t}\right)$.
Suppose, to the contrary, that $u^{+} \notin N\left(x_{t}\right)$. By Claim 4, we have $u^{+}, u^{++} \in C\left(x_{t}, v_{t+1}\right]$ and $u^{+} \notin N\left(x_{0}\right)$. We distinguish three cases.

Case 1: $u^{+} \in S_{0}(X)$.
Let a be the first vertex in $\bar{C}\left[u, x_{t}\right]$ nonadjacent to x_{t}. Then $C\left[a, u^{+}\right)$is simple by Lemma 4.2(d) and Claim 4. Since $u^{+} \in N_{2}(X)$ and $u^{+} \in C\left[x_{t}, v_{t+1}\right]$, there must exist some other $C X$-segments in $C\left[u^{+}, v_{t+1}\right]$. This contradicts the assumption.

Case 2: $u^{+} \in S_{l}(X)(l \geqslant 2)$.
Set $u^{+} \in N\left(x_{i}\right) \cap N\left(x_{j}\right)$. Clearly, $i, j \neq 0, t$. By Lemma 4.1(b), $E\left(x_{i}^{-}\right) \cap E\left(x_{j}^{-}\right)=\emptyset$. Then we have either $v_{t} v_{t}^{-} \notin E\left(x_{i}^{-}\right)$or $v_{t} v_{t}^{-} \notin E\left(x_{j}^{-}\right)$. Without loss of generality, we may assume that $v_{t} v_{t}^{-} \notin E\left(x_{i}^{-}\right)$. By $x_{i} u^{+} \in E(G)$ and the definition of $x_{i}, u u^{+} \notin E\left(x_{i}^{-}\right)$. Thus, the vertices of $C\left(v_{i}, x_{i}\right)$ can be inserted into the cycle $C\left[v_{t}, u\right] \bar{C}\left[v_{t}^{-}, x_{i}\right] C\left[u^{+}, v_{i}\right) v_{i} H v_{t}$. Denote by C_{1} the resulting cycle, we have $V(C) \subset V\left(C_{1}\right)$, a contradiction.

Case 3: $u^{+} \in S_{1}(X)$.
Suppose $u^{+} \in N\left(x_{i}\right)$, where $i \neq 0, t$. Then $v_{t} v_{t}^{-} \in E\left(x_{i}^{-}\right)$. (Otherwise, the cycle C_{1} which is mentioned in Case 2 contains C, a contradiction). Consider $G\left[\left\{u, u^{+}, v_{t}^{-}, x_{t}\right\}\right]$. Since $x_{t} v_{t}^{-}, x_{t} u^{+} \notin E(G)$ and $u \notin A$, we have $u^{+} v_{t}^{-} \in E(G)$. For $u^{++}\left(\in C\left[x_{t}, v_{t+1}\right]\right)$, we assume that there exists some $j \in\{0,1,2, \ldots, k\}$ such that $u^{++} \in N\left(x_{j}\right)$. By Lemma 4.2(d), we have either $x_{j} \in C\left(v_{t+1}, v_{i}\right)$ or $j=0$. If $j=0$, then the cycle $C\left[u^{++}, v_{t}^{-}\right]$ $\bar{C}\left[u^{+}, v_{t}\right) v_{t} H u^{++}$contains C, a contradiction. If $j \neq 0$, then we have $v_{t} v_{t}^{-} \notin E\left(x_{j}^{-}\right)$ since $v_{t} v_{t}^{-} \in E\left(x_{i}^{-}\right)$. Thus, the vertices of $C\left(v_{j}, x_{j}\right)$ can be inserted into the cycle $C\left[v_{t}, u^{+}\right] \bar{C}\left[v_{t}^{-}, x_{j}\right] C\left[u^{++}, v_{j}\right] v_{j} H v_{t}$. Denote by C_{2} the resulting cycle. It is clear that $V(C) \subset V\left(C_{2}\right)$, a contradiction. So $u^{++} \in S_{0}(X)$. Let a be the first vertex in $\bar{C}\left[u, x_{t}\right]$
nonadjacent to x_{t}. Then $C\left[a, u^{++}\right)$is simple by Lemma 4.2(d). Since $u^{++} \in N_{2}(X)$ and $u^{++} \in C\left[x_{t}, v_{t+1}\right]$, there exist some other $C X$-segments in $C\left[x_{t}, v_{t+1}\right]$. This contradicts the assumption too.

Claim 6. For any $i \in\{1,2, \ldots, k\}, v_{t} v_{t}^{-} \notin E\left(x_{i}^{-}\right)$.
If $i \in\{t, t-1\}$, it is clear that Claim 6 holds. Then we should prove $v_{t} v_{t}^{-} \notin E\left(x_{i}^{-}\right)$ for any $i \in\{1,2, \ldots, k\} \backslash\{t, t-1\}$.

Suppose, to the contrary, that there exists some $i_{0} \in\{1,2, \ldots, k\} \backslash\{t, t-1\}$, such that $v_{t} v_{t}^{-} \in E\left(x_{i_{0}}^{-}\right)$. Let f be first vertex in $C\left(v_{i_{0}}, x_{i_{0}}\right)$ adjacent to v_{t}. Then we have $v_{t} v_{t}^{-} \notin E\left(f^{-}\right)$. Considering $E\left(f^{-}\right)$and $E\left(x_{t}^{-}\right)$, we have $E\left(f^{-}\right) \cap E\left(x_{t}^{-}\right)=\emptyset$ by Lemma 4.1(b). By Claim 5, $x_{t} u^{+} \in E(G)$. Thus, $u u^{+} \notin E\left(f^{-}\right)$by Lemma 4.1(b). Note that $\left\{u u^{+}, v_{t} v_{t}^{-}\right\} \cap E\left(x_{t}^{-}\right)=\emptyset$, the vertices in $C\left(v_{i}, f\right) \cup C\left(v_{t}, x_{t}\right)$ can be inserted into the cycle $C\left[x_{t}, u\right] \bar{C}\left[v_{t}^{-}, f\right] v_{t} H v_{i_{0}} \bar{C}\left(v_{i_{0}}, u^{+}\right] x_{t}$. Denote by C_{1} the resulting cycle. It is obvious that $V(C) \subset V\left(C_{1}\right)$, a contradiction.

Claim 7. $v_{t+1}^{-} \notin N\left(x_{t}\right)$.
Suppose, to the contrary, that $x_{t} v_{t+1}^{-} \in E(G)$. By Claim 3, $u^{+} u^{-} \notin E(G)$. Considering $G\left[\left\{u, u^{+}, u^{-}, v_{t}\right\}\right]$, we have either $u^{+} v_{t} \in E(G)$ or $u^{-} v_{t} \in E(G)$ as $u v_{t} \in E(G)$. If $u^{+} v_{t} \in E(G)$, then the vertices of $C\left(v_{t}, x_{t}\right)$ can be inserted into the cycle $C\left[x_{t}, u\right]$ $\bar{C}\left[v_{t}^{-}, v_{t+1}\right) v_{t+1} H v_{t} C\left[u^{+}, v_{t+1}^{-}\right] x_{t}$ as $u \neq v_{t+1}^{-}$by Claim 4. Thus, we get the cycle that contains C, a contradiction. If $u^{-} v_{t} \in E(G)$, note that $u \neq x_{t}$, we can extend C by inserting the vertices of $C\left(v_{t}, x_{t}\right)$ into the cycle $C\left[x_{t}, u^{-}\right] v_{t} H v_{t+1} C\left(v_{t+1}, v_{t}^{-}\right] C\left[u, v_{t+1}^{-}\right] x_{t}$, a contradiction. Hence $v_{t+1}^{-} \notin N\left(x_{t}\right)$.

Claim 8. Let, $C[u, w) \subseteq N\left(x_{t}\right)$. Then we have $w \notin N\left(x_{i}\right)$ for each $i \in\{0,1, \ldots, k\} \backslash\{t\}$.
In fact, by Claim 7, $w \in C\left[u^{+}, v_{t+1}^{-}\right]$. First we will prove that there exists a $\left(v_{t}^{-}, v_{t}\right)$ path P containing the vertices of $C\left[x_{t}, w\right)$. By Claim 3, $u^{+} u^{-} \notin E(G)$. Then we have either $v_{t} u^{+} \in E(G)$ or $v_{t} u^{-} \in E(G)$ since $u \notin A$. If $v_{t} u^{-} \in E(G)$, then $P=v_{t}^{-} C\left[u, w^{-}\right]$ $C\left[x_{t}, u^{-}\right] v_{t}$ is a $\left(v_{t}^{-}, v_{t}\right)$-path which contains all vertices of $C\left[x_{t}, w\right)$. If $v_{t} u^{+} \in E(G)$, then we put $P=v_{t}^{-} \bar{C}\left[u, x_{t}\right] \bar{C}\left[w^{-}, u^{+}\right] v_{t}$ when $w \neq u^{+}$, and put $P=v_{t}^{-} \bar{C}\left[u, x_{t}\right] v_{t}$ when $w=u^{+}$. Thus P contains the vertices of $C\left[x_{t}, w\right)$.

Suppose, to the contrary, that there exists some $i \in\{0,1, \ldots, k\} \backslash\{t\}$ such that $w \in N\left(x_{i}\right)$. If $i=0$, then the vertices of $C\left(v_{t}, x_{t}\right)$ can be inserted into the cycle $P\left[v_{t}^{-}, v_{t}\right) v_{t} H w C\left(w, v_{t}^{-}\right)$. Denote by C_{1} the resulting cycle. Then we have $V(C) \subset V\left(C_{1}\right)$, a contradiction. If $i \in\{1,2, \ldots, k\} \backslash\{t\}$, by inserting the vertices of $C\left(v_{t}, x_{t}\right) \cup C\left(v_{i}, x_{i}\right)$ into the cycle $P\left[v_{t}^{-}, v_{t}\right) v_{t} H v_{i} \bar{C}\left(x_{i}, w\right] C\left[x_{i}, v_{t}^{-}\right)$, we get a cycle which contains C, a contradiction. Claim 8 holds.

By Claim 7, let w_{0}^{+}be the first vertex in $C\left[u, v_{t+1}\right)$ nonadjacent to x_{t}. Then $C\left[u, w_{0}\right] \subseteq N\left(x_{t}\right)$. By Claim $8, w_{0} \in S_{1}(X), w_{0}^{+} \in S_{0}(X)$. Let a be the first vertex in $\bar{C}\left[u, x_{t}\right]$ nonadjacent to x_{t}. Then $C\left[a, w_{0}^{+}\right)$is simple by Lemma 4.2(d). By Claim 7, we
have $w_{0}^{+} \in C\left[x_{t}, v_{t+1}\right)$. Note that $w_{0}^{+} \in N_{2}(X)$, there exist some other $C X$-segments in $C\left[w_{0}^{+}, v_{t+1}\right]$. It contradicts the assumption. The proof of Lemma 4.10 is over.

Lemma 4.11. $\sum_{i=0}^{k} d\left(x_{i}\right) \leqslant n(X)-k-1$.
Proof. Suppose that $\left|\left\{v_{1}, v_{2}, \ldots, v_{k}\right\} \cap S_{2}(X)\right|=p$. By Lemmas 4.9 and 4.10, there are at least $(k-p)+p=k$ simple $C X$-segments in $J_{X} \backslash \bigcup_{l>2} N_{l}(X)$. Thus, by Lemmas 4.4 and 4.8(3), we have

$$
\begin{aligned}
\sum_{i=0}^{k}\left|J_{X} \cap N\left(x_{i}\right)\right| & =\sum_{t=1}^{k} \sum_{i=0}^{k}\left|C\left[x_{t}, v_{t+1}\right] \cap N\left(x_{i}\right)\right| \\
& =\sum_{t=1}^{k} \sum_{j=1}^{m} \sum_{i=0}^{k}\left|C\left[z_{j 1}, z_{j 2}\right) \cap N\left(x_{i}\right)\right| \leqslant \sum_{t=1}^{k} \sum_{j=1}^{m}\left|C\left[z_{j 1}, z_{j 2}\right)\right|-k \\
& =\sum_{t=1}^{k}\left(\left|C\left[x_{t}, v_{t+1}\right]\right|-\sum_{l>2}\left|N_{l}(X) \cap C\left[x_{t}, v_{t+1}\right]\right|\right)-k \\
& =\left|J_{X}\right|-\sum_{l>2}\left|N_{l}(X) \cap J_{X}\right|-k .
\end{aligned}
$$

Note that $V(G)=J_{X} \cup K_{X}$. By Lemma 4.3, we have

$$
\begin{aligned}
\sum_{i=0}^{k} d\left(x_{i}\right) & =\sum_{i=0}^{k}\left|J_{X} \cap N\left(x_{i}\right)\right|+\sum_{i=0}^{k}\left|K_{X} \cap N\left(x_{i}\right)\right| \\
& \leqslant\left|J_{X}\right|-k-\sum_{l>2}\left|N_{l}(X) \cap J_{X}\right|+\left|K_{X}\right|-1-\sum_{l>2}\left|N_{l}(X) \cap K_{X}\right| \\
& =n-k-1-\sum_{l>2}\left|N_{l}(X)\right|=n(X)-k-1 .
\end{aligned}
$$

5. Proof of Theorem 3.8

Proof of Theorem 3.8. Suppose, to the contrary, that G is non-hamiltonian. Let C be a longest cycle in G. Then C is clearly a maximal cycle of G, and $G \backslash V(C)$ has at least a component H. Since G is a k-connected graph with $k \geqslant 2$, we may suppose $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\} \subseteq N_{C}(H)$, and $v_{1}, v_{2}, \ldots, v_{k}$ occur on C in the order of their indices. For the cycle C above and its $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$, set $\mathscr{C}=\left\{C^{\prime} \mid C^{\prime}\right.$ is a cycle in $G, V\left(C^{\prime}\right)=V(C)$, and $v_{1}, v_{2}, \ldots, v_{k}$ occur on C^{\prime} in the order of the indices $\}$. Let $C \in \mathscr{C}$ be a cycle having maximum number of globally path insertible vertices. By Lemma 4.1(a), for each $i \in\{1,2, \ldots, k\}$, denote by x_{i} the first non-GPI vertex in $C\left(v_{i}, v_{i+1}\right)$. Pick up an $x_{0} \in V(H)$ and let $X=\left\{x_{0}, x_{1}, x_{2}, \ldots, x_{k}\right\}$. By Lemma 4.11, $\sum_{i=0}^{k} d\left(x_{i}\right) \leqslant n(X)-$ $k-1$. On the other hand, by Lemma 4.2(b), $X \in I_{k+1}\left(G^{*}\right)$, a contradiction.

Acknowledgements

I would like to thank Professor Wu Zhengsheng for his help.

References

[1] A. Ainouche, H.J. Broersma, H.J. Veldman, Remarks on hamiltonian properties of claw-free graphs, Ars Combin. 29C (1990) 110-121.
[2] A. Ainouche, O. Favaron, H. Li, Global insertion and hamiltonicity in DCT-graphs, Discrete Math. 184 (1998) 1-13.
[3] A. Ainouche, M. Kouider, Hamiltonism and partially square graphs, Graphs Combin. 15 (1999) 257-265.
[4] J.A. Bondy, U.S.R. Murty, Graph theory with applications, Macmillan, London and Elsevier, New York, 1976.
[5] H.J. Broersma, Sufficient conditions for hamiltonicity and traceability of $K_{1,3}$-free graphs, preprint, 1986, unpublished.
[6] H.J. Broersma, Z. Ryjáček, I. Schiermeyer, Toughness and hamiltonicity in almost claw-free graphs, J. Graph Theory 21 (1996) 431-439.
[7] Hao Li, F. Tian, Degree sums, claws and hamiltonicity, Rapport de Recherche $n^{0} 886$, University de Paris Sud, center d'Orsay Laboratoire de Recherche en Informatique, Bat.490, 91405 Orsay.
[8] Yiping Liu, Feng Tian, Zhengsheng Wu, Some results on longest paths and cycles in $K_{1,3}$-free graphs, J.Changsha Railway Inst. 4 (1986) 105-106.
[9] M.M. Matthews, D.P. Sumner, Longest paths and cycles in $K_{1,3}$-free graphs, J. Graph Theory 9 (1985) 269-277.
[10] Z. Ryjáček, Almost claw-free graphs, J. Graph Theory 18 (1994) 469-477.
[11] Z. Wu, X. Xu, X. Zhou, The neighborhood intersections of essential sets and hamiltonicity of graphs, J. Systems Sci. Math. Sci. 3 (1998) 230-237.
[12] C.Q. Zhang, Hamilton cycle in claw-free graphs, J. Graph Theory 10 (1988) 209-216.

