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Abstract

Let G be a graph. The partially square graph G∗ of G is a graph obtained from G by adding
edges uv satisfying the conditions uv �∈E(G), and there is some w∈N (u) ∩ N (v), such that
N (w)⊆N (u)∪N (v)∪{u; v}. Let t ¿ 1 be an integer and Y ⊆V (G), denote n(Y )= |{v∈V (G) |
miny∈ Y{distG(v; y)}62}|; It(G)= {Z |Z is an independent set of G; |Z |= t}. In this paper, we
show that a k-connected almost claw-free graph with k¿2 is hamiltonian if

∑
z∈ Z d(z)¿n(Z)−

k in G for each Z ∈ Ik+1(G∗), thereby solving a conjecture proposed by Broersma, Ryj7a8cek and
Schiermeyer. Zhang’s result is also generalized by the new result. c© 2002 Elsevier Science B.V.
All rights reserved.
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1. Introduction

In this paper, we consider only Anite, undirected graphs G=(V; E) of order n without
loops or multiple edges. We use the notations and terminology in [4]. The indepen-
dence number of G and its subgraph induced by A⊆V (G) are, respectively, denoted
by �(G) and G[A]. G + H denotes the union of vertex-disjoint graphs G and H: The
join of vertex-disjoint graphs G and H is denoted by G ∨ H: If A, H are subsets of
V (G) or subgraphs of G, we denote by NH (A) the set of vertices in H which are
adjacent to some vertex in A. For simplicity, we adopt N (A) if H =G. The open
neighborhood, the closed neighborhood and the degree of vertex v are, respectively,
denoted by N (v)= {u∈V (G) | uv∈E(G)}; N [v] =N (v)∪{v} and d(v)= |N (v)|. �(G)
denotes the minimum degree of G. A dominating set of G is a subset S of V (G)
such that every vertex of G belongs to S or is adjacent to a vertex of S. The dom-
ination number, denoted �(G), is the minimum cardinality of a dominating set of G.
To each pair (u; v) of vertices at distance 2, we associate the set J (u; v)= {w∈N (u)∩
N (v) |N (w)⊆N [u] ∪ N [v]}. Let Z ⊆V (G); |Z |=p, and t ¿ 1 be an integer. Put,

Si(Z)= {v∈V (G) | |N (v) ∩ Z |= i}; si(Z)= |Si(Z)| for i=0; 1; : : : ; p
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and

It(G)= {Y |Y is an independent set of G; |Y |= t}:
Let G be connected and Z ⊆V (G). Denote

Ni(Z)=
{
v∈V (G) | min

z∈ Z
{distG(v; z)}= i

}
(i=0; 1; 2; : : :)

and

n(Z)= |N0(Z) ∪ N1(Z) ∪ N2(Z)|=
∣∣∣∣
{
v∈V (G)| min

z∈ Z
{distG(v; z)}62

}∣∣∣∣ ;
where distG(v; z) stands for the distance between v and z in G.
A claw in a graph is an induced subgraph G[{u; x; y; z}] isomorphic to K1;3 in which

the vertex u of degree 3 is called claw-center. A graph is claw-free if it does not contain
a claw as an induced subgraph.

De�nition 1.1 (Ryj/a0cek [10]). A graph G is almost claw-free if there exists an in-
dependent set A⊆V (G) such that �(G[N (v)])62 for every v 	∈A and �(G[N (v)])62
¡�(G[N (v)]) for every v∈A.

De�nition 1.2 (Ainouche and Kouider [3]). The partially square graph G∗ of G is a
graph satisfying V (G∗)=V (G) and E(G∗)=E(G)∪ {uv | uv 	∈E(G), and J (u; v) 	= ∅}.

De�nition 1.3. The square graph G2 of G is a graph satisfying V (G2)=V (G) and
E(G2)=E(G) ∪ {uv | distG(u; v)= 2}.

2. Properties

Property 2.1 (Ryj7a8cek [10]). Every almost claw-free graph is K1;5-free and K1;1;3-free.

Property 2.2. Let G be an almost claw-free graph and G∗ its partially square graph.
Then s3(Z)= 0 in G for each Z ∈ I3(G∗).

Proof. By contradiction. Suppose that Z = {u1; u2; u3} is an independent set of G∗,
and uui ∈E(G) (i=1; 2; 3). Clearly, {u1; u2; u3} is independent in G and u is a claw
center. Note that G is almost claw-free. There exists some vertex w∈N (u)\{u1; u2; u3}
dominating two vertices of {u1; u2; u3}. We assume w dominates u1 and u2. By the
deAnition of G∗ and u1u2 	∈E(G∗), we have J (u1; u2)= ∅. Then there must exist some
vertex u4(	∈{u1; u2; u}) in N (w) such that u4 	∈N [u1]∪N [u2]. Thus, G[{w; u1; u2; u4}] ∼=
K1;3. However, wu∈E(G) and u is a claw center, a contradiction.
Clearly, Property 2:2 is equivalent to saying that G∗ is claw-free if G is almost

claw-free.

Property 2.3. Let G be an almost claw-free graph and G∗ its partially square graph.
Then s2(Z)62 in G for each Z ∈ I2(G∗). Moreover, if S2(Z)= {u1; u2}, we have
u1u2 	∈E(G).
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Proof. By contradiction. Suppose that Z = {w1; w2} is independent in G∗ and
{u1; u2; u3}⊆ S2(Z). By the deAnition of G∗ and w1w2 	∈E(G∗), it is easy to see that
u1; u2; u3 are claw centers in G. Then, {u1; u2; u3} is independent in G and
G[{w1; u1; u2; u3}] ∼= K1;3, a contradiction. Hence s2(Z)62 in G for each Z ∈ I2(G∗).
Moreover, if S2(Z)= {u1; u2}, it is not diLcult to get u1u2 	∈E(G).

3. Hamiltonicity

The following results on claw-free graphs are known.

Theorem 3.1 (Matthews and Sumner [9]). A 2-connected claw-free graph G is hamil-
tonian if �(G)¿ 1

3 (n− 2).

Theorem 3.2 (Broersma [5], Liu and Tian [8]). Let G be a 2-connected claw-free
graph. If

∑
z∈ Z d(z)¿n− 2 for each Z ∈ I3(G); then G is hamiltonian.

Zhang generalized Theorem 3.2 to k-connected claw-free graphs for any positive
integer k¿2 as follows.

Theorem 3.3 (Zhang [12]). Let G be a k-connected claw-free graph with k¿2. If∑
z∈ Z d(z)¿n− k for each Z ∈ Ik+1(G); then G is hamiltonian.

Theorem 3.3 was extended by the following Theorem.

Theorem 3.4 (Ainouche and Broersma [1]). If G is a k-connected claw-free graph
(k¿2) with �(G2)6k; then G is hamiltonian.

Ainouche and Kouider in [3], considered the independence number of partially square
graphs and proved the following.

Theorem 3.5 (Ainouche and Kouider [3]). Let G be a k-connected graph with k¿2
and G∗ its partially square graph. If �(G∗)6k; then G is hamiltonian.

Our objective is to generalize results on claw-free graphs to almost claw-free graphs.
Following are some results on hamiltonicity in almost claw-free graphs.

Theorem 3.6 (Broersma et al. [6]). A 2-connected almost claw-free graph G is hamil-
tonian if �(G)¿ 1

3 (n− 2).

Theorem 3.7 (Broersma et al. [6]). Let G be a 2-connected almost claw-free graph.
If
∑
z∈ Z d(z)¿n for each Z ∈ I3(G); then G is hamiltonian.

Broersma et al. in [6] conjectured that
∑
z∈ Z d(z)¿n−2 for each Z ∈ I3(G) implies

hamiltonicity in 2-connected almost claw-free graphs. This conjecture was veriAed for
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Fig. 1. A k-connected almost claw-free hamiltonian graph.

n¿79 by Li and Tian [7], and proved in [2] for another class containing the class of
almost claw-free graphs.
In this paper, we will prove the following result.

Theorem 3.8. Let G be a k-connected almost claw-free graph with k¿2; and G∗ its
partially square graph. If

∑
z∈ Z d(z)¿n(Z)− k in G for each Z ∈ Ik+1(G∗); then G

is hamiltonian.

Clearly, Theorem 3.8 is best possible, it modiAes and generalizes Theorems 3.3, 3.6
and 3.7. Of course, it solves the conjecture proposed by Broersma et al. [6].
Now, for k¿2, we construct a graph Gk as follows (see Fig. 1). Let Hij ∼= Kk; H i5 ∼=
K1, where i=1; 2; : : : ; k; j=1; 2; 3; 4. Let Hi=(((Hi1+H

i
2)∨Hi3)+Hi4)∨Hi5, and V (H 1),

V (H 2); : : : ; V (Hk) be pairwise vertex-disjoint. Set

V (Gk)=
k⋃
i= 1

V (Hi);

E(Gk)=
k⋃
i= 1

E(Hi) ∪
(
k−1⋃
t = 1

E(Ht1 ∨ Ht+1
2 ) ∪ E(Hk1 ∨ H 1

2 )

)

∪ E(H 1
4 ∨ H 2

4 ∨ H 3
4 ∨ · · · ∨ Hk4 ):

Obviously, Gk is a k-connected almost claw-free hamiltonian graph which is not
claw-free, and

∑
z∈ Z d(z)= 4k2 = n(Z) − k in G for each Z ∈ Ik+1(G∗). Gk shows
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that it is meaningful to And the suLcient condition for the hamiltonicity of almost
claw-free graphs. On the other hand, for G=Gk(k¿2), we have n=4k2 + k, and
�(G)¡ (n− 2)=3, therefore Gk doesn’t satisfy the condition of Theorem 3.6.
To prove Theorem 3.8, we will relate in Section 4 the concept of global insertion

introduced in [2], and use the global insertion Lemma 4.1 to prove some new lemmas.
The proof of Theorem 3.8 is given in Section 5.

4. The global insertion concept

Let G be a k-connected non-hamiltonian graph and C its a maximal cycle of G
(that is, there is no cycle C′ in G such that V (C)⊂V (C′)), in the sense of the
vertex inclusion, in which an orientation is Axed. For simplicity, we use the same
notation to mean a subgraph, its vertex set or its edge set. If x∈V (C), denote by
x+ and x− the successor and the predecessor of x along the orientation of C, respec-
tively. Set x++ = (x+)+; x– = (x−)−. If u; v∈V (C), then C[u; v] denotes the consecu-
tive vertices on C from u to v in the chosen direction of C, and C(u; v] =C[u; v] −
{u}; C[u; v)=C[u; v] − {v}; C(u; v)=C[u; v] − {u; v}. The same vertices, in the re-
verse order, are, respectively, denoted by NC[v; u]; NC[v; u); NC(v; u] and NC(v; u). Let H
be a component of G − V (C). Assume, NC(H)= {v′1; v′2; : : : ; v′m} with m¿k¿2, and
v′1; v

′
2; : : : ; v

′
m occur on C in the order of their indices. The subscripts will be taken

modulo m. Let {x; y}⊆NC(H). We denote by xHy one of the longest (x; y)-paths
with all its internal vertices in H .
In [2], a relation ∼ on V (C) is deAned by the condition u ∼ v if there exists a path

with endpoints u; v and no internal vertex in C. Such a path is called a connecting
path between u and v and is denoted by uRv, where R:=V\V (C). Note that if one
of u or v is not a vertex v′i , any connecting path uRv is disjoint from H . If x; y; t; z
are distinct vertices of C such that z ∈{t+; t−}; x ∼ t; y ∼ z, then the paths xRt and
yRz are said to be crossing at x; y if either (z= t+ and t ∈C[y+; x−−]) or (z= t− and
t ∈C[x++; y−]).

De�nition 4.1 (Ainouche et al. [2]). For all i∈{1; 2; : : : ; m}, a vertex u∈C(v′i ; v′i+1)
is called globally path insertible (GPI for short) if

(i) each vertex in C(v′i ; u) is GPI or u=(v′i)
+;

(ii) there exist w; w+ ∈C[v′i+1; v
′
i] and v∈C(v′i ; u] (possibly v= u) such that either

(u ∼ w; v ∼ w+) or (u ∼ w+; v ∼ w).

Note that u ∼ v if uv∈E(G). By replacing the connecting path with the edge in (ii),
Wu et al. independently introduced the T -insertion concept in [11]. Clearly, T -insertion
concept is a special case of the global edge insertion.
Let u be a GPI vertex in C(v′i ; v

′
i+1) (i∈{1; 2; : : : ; m} ): By the technique in [2] we

can insert the vertices of C(v′i ; u] into the path C[v′i+1; v
′
i]. Consider that u1 = u; vu1
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and the insertion edge wu1w
+
u1 ; u2 = v

−
u1 ; vu2 and the insertion edge wu2w

+
u2 ; · · · ;

us= v−us−1
; vus =(v′i)

+ and the insertion edge wusw
+
us ; where for j∈{1; 2; : : : ; s}; vuj is

the Arst vertex in C(v′i ; uj] such that (ii) holds, and based on this, wujw
+
uj is the Arst

edge in C[v′i+1; v
′
i] such that (ii) holds. By the choice above, wu1w

+
u1 ; wu2w

+
u2 ; : : : ; wusw

+
us

are diPerent from each other. Similarly, the paths connecting the vertices wuj and w
+
uj

to the vertices uj and vuj are all pairwise internally disjoint by the choice of the
vuj ’s and the maximality of C. Thus, in the path C[v′i+1; v

′
i], replace the edge wujw

+
uj

(j∈{1; 2; : : : ; s} ) by the path C[vuj ; uj] or NC[uj; vuj ], for the resulting (v′i+1; v
′
i)-path Pu,

we have V (Pu)=C[v′i+1; u]: C(v
′
i ; u] is therefore inserted into the path C[v′i+1; v

′
i]. De-

note E(u)= {wu1w+
u1 ; wu2w

+
u2 ; : : : ; wusw

+
us}, and call it the inserted edge set of

C(v′i ; u].

Lemma 4.1 (Ainouche et al. [2]). For all i∈{1; 2; : : : ; m}; let x′i be the :rst vertex
on C(v′i ; v

′
i+1) along C which is not globally path insertible. Then

(a) For each i; x′i exists.
Set X ′ = {x′0; x′1; : : : ; x′m} with x′0 ∈V (H).

(b) For 16i 	= j6m and for any ui ∈C(v′i ; x′i ] and uj ∈C(v′j ; x′j]; ui � uj and there
are no crossing paths at ui; uj.

(c) X is independent.
(d) For 06i 	= j6m; J (x′i ; x′j)= ∅. In particular any common neighbor of at least two

vertices of X ′ must be a claw-center.

In the rest of this paper, we pick up {v1; v2; : : : ; vk}⊆{v′1; v′2; : : : ; v′m}. The subscripts
of (vi)′s will be taken modulo k. For each i∈{1; 2; : : : ; k}, let xi be the Arst non-GPI
in C(vi; vi+1). Set X = {x0; x1; : : : ; xk}, where x0 ∈V (H). Denote JX =

⋃k
i= 1 C[xi; vi+1],

KX =V (G)\JX . For X = {x0; x1; : : : ; xk}, let C[z1; z2)⊆C[xt ; vt+1] (t ∈{1; 2; : : : ; k}). If
C(z1; z2)∩S0(X )= ∅; and z1 ∈N2(X )∪X ; z2 ∈ S0(X )∪{v+t+1}, then C[z1; z2) is called a
CX -segment. A CX -segment C[z1; z2) is called simple if C(z1; z2)⊆ S1(X ). By Lemmas
4.1(b)–(d) and the maximality of C, the following Lemma holds.

Lemma 4.2 (Wu et al. [11]). (a) If u is a GPI; then u+ 	∈NC(H).
(b) X ∈ Ik+1(G∗); KX ⊆ S0(X ) ∪ S1(X ); KX ∩ N0(X )= {x0}.
(c) If u∈NC(H)\{v1; v2; : : : ; vk}; y∈

⋃k
j= 1 C(vj; xj]; then u

+y 	∈E(G).
(d) Let; C[z1; z2)(⊆C[xt ; vt+1]; t ∈{1; 2; : : : ; k}) be a CX -segment; and Mi=N (xi)∩
C(z1; z2) (i∈{0; 1; : : : ; k}). Then Mt;Mt−1; : : : ; M1; Mk ;Mk−1; : : : ; Mt+1; M0 (some of them
may be empty) form consecutive subpaths of C(z1; z2) which can have only their end-
vertices in common; and |Mi|61; i∈{0; 1; 2; : : : ; k}\{t}.

Lemma 4.3.

k∑
i= 0

|N (xi) ∩ KX |6|KX | − 1−
∑
l¿2

|Nl(X ) ∩ KX |:
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Proof. By Lemma 4.2(b), we have KX ⊆ S0(X )∪S1(X ), and KX ∩N0(X )= {x0}. Then
k∑
i= 0

|N (xi) ∩ KX | = |S1(X ) ∩ KX |= |N1(X ) ∩ KX |

= |KX | − |N0(X ) ∩ KX | −
∑
l¿2

|Nl(X ) ∩ KX | − |N2(X ) ∩ KX |

6 |KX | − 1−
∑
l¿2

|Nl(X ) ∩ KX |:

Lemma 4.4. If C[z1; z2) is a simple CX -segment; then
∑k
i= 0 |N (xi) ∩ C[z1; z2)|=

|C[z1; z2)| − 1.

Proof. By the deAnition of a simple CX -segment, it is easy to see that
k∑
i= 0

|N (xi) ∩ C[z1; z2)|= |S1(X ) ∩ C[z1; z2)|= |C(z1; z2)|= |C[z1; z2)| − 1:

Now, we assume that G is almost claw-free, and A is the set of all claw centers.
By the deAnition of an almost claw-free graph, A is independent. By Lemma 4.1(d),
we have the following:

Lemma 4.5. For any {i; j}⊆{0; 1; : : : ; k}; we have N (xi) ∩ N (xj)⊆A. Therefore; for
any i∈{1; 2; : : : ; k}; N (xi) ∩ NC(H)⊆A.

Lemma 4.6. For any t ∈{3; 4; : : : ; k+1}; we have St(X )= ∅. Therefore; for any {i; j}⊆
{1; 2; : : : ; k}; N (xi) ∩ N (xj) ∩ NC(H)= ∅.

Proof. By Lemma 4.2(b), X ∈ Ik+1(G∗): Then the result directly follows from
Property 2:2.

Lemma 4.7. For any i∈{1; 2; : : : ; k}; N (x0) ∩ N (xi)⊆{vi}.

Proof. By contradiction. Suppose that there exists some vertex w∈N (x0)∩N (xi)\{vi}:
Then we have w∈A by Lemma 4.5, and w∈C(xi; v−i ) by Lemma 4.2(a), (b) and the
deAnition of xi. Consider {w−; w+; x0} ∪ {xi}(⊆N (w)): It is clear that x0 and xi have
no common neighbor in N (w): Suppose Arst that x0 and w+ have a common neighbor
v in N (w): By the maximality of C, it is easy to see that v∈V (C), v 	∈ {w+; w−}
and v+x0; v−x0 	∈E(G). By w∈A, we have v 	∈A, then v+v− ∈E(G). Thus, the cy-
cle C1 =C[w+; v−]C[v+; w)wHvw+ in G contains C, a contradiction. Hence x0 and
w+ have no common neighbor in N (w): By symmetry, x0 and w− have no common
neighbor in N (w).
Since G is almost claw-free and w∈A, we have �(G[N (w)])62: Then there exists

some vertex u∈N (w) dominating {w+; w−} ∪ {xi}. Clearly, u∈V (C). By Lemmas
4:1(b), 4:2(c), we have u∈C(xi; vi]\{w}. By w∈A and uw∈E(G); u 	∈A. We will
consider three cases.
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Case 1: u= vi.
Note that u∈N (xi) ∩ NC(H): By Lemma 4.5, we have u∈A; a contradiction.
Case 2: u∈C(xi; w).
In fact, u+xi 	∈E(G) (Otherwise, suppose that u+xi ∈E(G). Note that since {w; u}⊆

N (xi); we have {uu+; ww+} ∩ E(x−i )= ∅; that is all the inserted edges of vertices in
C(vi; xi) are not in {uu+; ww+}. Then the vertices of C(vi; xi) can be inserted into the
cycle C[u+; w)wHvi NC(vi; w+] NC[u; xi]u+. Denote by C2 the resulting cycle. Clearly,
V (C)⊂V (C2); a contradiction). Thus u 	=w−: Moreover, u+w+ ∈E(G) (Otherwise
u+w+ 	∈E(G). By Lemmas 4:1(b) and 4:2(c), xiw+ 	∈E(G). Then G[{u; u+; w+; xi}] ∼=
K1;3, a contradiction). It is easy to see that {ww+; ww−; uu+}∩E(x−i )= ∅ by the deA-
nition of xi and wxi; uxi ∈E(G). Then the vertices of C(vi; xi) can be inserted into the
cycle C[xi; u] NC[w−; u+]C[w+; vi)viHwxi. Let C3 denote the resulting cycle, we have
V (C)⊂V (C3); a contradiction.
Case 3: u∈C(w; vi).
In fact, u+w+ 	∈E(G) (If not, we assume u+w+ ∈E(G). Note that {u; w}⊆N (xi), we

have {ww+; uu+} ∩ E(x−i )= ∅. Then the vertices of C(vi; xi) can be inserted into the
cycle C[w+; u]C[xi; w)wHvi NC(vi; u+]w+. Denote by C4 the resulting cycle, we have
V (C)⊂V (C4), a contradiction). Moreover, xiu+ 	∈E(G) (Otherwise, it is easy to see
that the vertices of C(vi; xi) can be inserted into the cycle C[xi; w−] NC[u; w)wHvi
NC[vi; u+]xi. Let C5 denote the resulting cycle. Clearly, V (C)⊂V (C5); a contradiction).
By Lemmas 4:1(b) and 4:2(c), we have xiw+ 	∈E(G): Thus, G[{u; u+; w+; xi}] ∼= K1;3,
a contradiction.

Lemma 4.8. Let; C[z1; z2) (⊆C[xt ; vt+1]; t ∈{1; 2; : : : ; k}) be a CX -segment. Then the
following statements hold.

(1) For any i∈{3; 4; : : : ; k}; |C[z1; z2) ∩ Si(X )|=0.
(2) If u∈ S2(X ) ∩ C(z1; z2); y∈C(u; z2); then yu∈E(G). Therefore; y 	∈A and

|C(z1; z2) ∩ S2(X )|61.
(3)

∑k
i= 0 |N (xi) ∩ C[z1; z2)|6|C[z1; z2)|.

Proof. (1) It is easy to see that (1) holds by Lemma 4.6.
(2) By contradiction. Suppose that y is the Arst vertex in C(u; z2) nonadjacent to
u. Then yu 	∈E(G); y 	= u+ and y−u∈E(G): Note that u∈ S2(X ) ∩ C(z1; z2). By the
deAnition of CX -segment, we set y− ∈N (xj)(j 	= t). It is clear that xj 	∈N (u) ∪ N (y)
by Lemma 4.2(d). Thus G[{y−; y; xj; u}] ∼= K1;3, y− ∈A. By Lemma 4.5, u∈A. This
contradicts y−u∈E(G). Hence yu∈E(G).
(3) By (1) and (2), we have

k∑
i= 0

|N (xi) ∩ C[z1; z2)| = |S1(X ) ∩ C(z1; z2)|+ 2|S2(X ) ∩ C(z1; z2)|

= |C(z1; z2)|+ |S2(X ) ∩ C(z1; z2)|6|C[z1; z2)|:

Lemma 4.8 holds.
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For t ∈{1; 2; : : : ; k}; C[xt ; vt+1]\
⋃
l¿2 Nl(X ) can be divided into some disjoint

CX -segments. Assume that all these CX -segments are C[z11; z12); C[z21; z22); : : : ;
C[zm1; zm2), occurring consecutively along the direction of the path C[xt ; vt+1]. It is
possible to have zj2 = zj+1;1 for some j.

Lemma 4.9. If vt+1 	∈ S2(X ); then C[zm1; zm2) is simple.

Proof. Suppose, to the contrary, that C[zm1; zm2) is not simple. By Lemma 4.8(2),
|C(zm1; zm2) ∩ S2(X )|=1. Let w∈C(zm1; zm2) ∩ S2(X ). Then w 	= vt+1. By Lemma 4.5,
w∈A. To get the contradiction, we Arst show two claims.

Claim 1. vt+1 ∈C[zm1; zm2); and vt+1x0; wv+t+1 ∈E(G).

Suppose that vt+1 	∈C[zm1; zm2). By the deAnition of CX -segment and |C(zm1; zm2) ∩
S2(X )|=1, we have zm2 ∈N2(X ). Then C[zm2; vt+1] still has some other CX -segments.
This contradicts the assumption.
By vt+1 	∈ S2(X ); w∈C(zm1; z−m2) ∩ S2(X ). By Lemma 4.8(2), wvt+1 ∈E(G) and

vt+1 	∈A. Then vt+1x0 ∈E(G)(Otherwise, suppose that vt+1x0 	∈E(G). Since vt+1 ∈ S1(X );
we set vt+1xj ∈E(G), where j∈{1; 2; : : : ; k}. By Lemma 4.5, vt+1 ∈A, a contradiction).
Moreover, wv+t+1 ∈E(G). (If not, we assume wv+t+1 	∈E(G). By vt+1 ∈N (x0) and Lemma
4.2(d), x0w 	∈E(G). By the maximality of C; v+t+1x0 	∈E(G). Then G[{vt+1; x0; w; v+t+1}]∼= K1;3, a contradiction.)

Claim 2. Let w∈N (xi) ∩ S2(X ) ∩ C[zm1; zm2). Then the following statements hold.

(1) {w+; w−; v+t+1} ∪ {xi}⊆N (w) (i 	=0; t + 1).
(2) Let u∈NC(w). If u dominates {xi} ∪ {w+; w−}; then u∈C(v+t+1; vi] ∪ C(xi; w);

If u dominates {xi; v+t+1}; then u∈C(xi; w).
(3) There is no vertex in N (w) dominating {xi} ∪ {w+; w−}.
(4) There is no vertex in N (w) dominating {xi; v+t+1; w

+}.
(5) There is no vertex in N (w) dominating {xi} ∪ {v+t+1; w

−}.

Now, we show these statements one by one.
(1) By Claim 1, wv+t+1; vt+1x0 ∈E(G). By wv+t+1 ∈E(G); we have {w+; w−; v+t+1}∪

{xi}⊆N (w). By vt+1x0 ∈E(G), Lemma 4.2(d) and w 	= vt+1; we have xi 	= x0.
If xi= xt+1; then w= v−t+1 by Lemma 4.2(d). This contradicts the deAnition of xt+1.
Hence xi 	= xt+1. (1) holds.
(2) In fact, C[zm1; zm2)=C[zm1; vt+1] by Claim 1. Clearly, u 	=w. By Lemma 4.2(d),
w∈N (xi) ∩ S2(X ) and u∈N (xi), we have u 	∈C(w; vt+1].

If u dominates {xi} ∪ {w+; w−}; then we have u 	= v+t+1 by Lemma 4.1(b)
and i 	= t + 1. Moreover, we have u 	∈C(vi; xi] by Lemma 4.2(d), w∈ S2(X ) and
{w+; w−}⊆N (u). Thus, u∈C(v+t+1; vi] ∪ C(xi; w).
If u dominates {xi; v+t+1}; then we have u 	∈ {v+t+1} ∪ C(vi; xi] by Lemma 4.1(b) and
i 	= t + 1. Moreover, u 	∈C(v+t+1; vi] (Suppose that u∈C(v+t+1; vi]. By Lemma 4.1(b),
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we have u+v+t+1; v
+
t+1xi 	∈E(G). By Lemma 4.5 and u 	∈A; we have u 	= vi. By the

deAnition of xi; u+xi 	∈E(G). Then, G[{u; u+; xi; v+t+1} ∼= K1;3, a contradiction.) Thus,
u∈C(xi; w).
(3) Suppose, to the contrary, that there exists a vertex u∈N (w) dominating

{xi}∪{w+; w−}. By the maximality of C; u∈V (C). By (2), u∈C(v+t+1; vi]∪C(xi; w).
By w∈A; we have u 	∈A.
If u∈C(v+t+1; vi], then we have u−xi 	∈E(G) as xi is not GPI. By Lemma 4.1(b) and
wv+t+1 ∈E(G), xiw+ 	∈E(G). Thus, u−w+ ∈E(G). (Otherwise, G[{u; u−; xi; w+} ∼= K1;3,
a contradiction.) Note that {u; w}⊆N (xi); we have {uu−; ww+; v+t+1vt+1} ∩ E(x−i )= ∅
by Lemma 4.1(b) and the deAnition of xi. The vertices of C(vi; xi) can be inserted into
the cycle C[xi; w]C[v+t+1; u

−] C[w+; vt+1) vt+1Hvi NC (vi; u]xi. Denote by C1 the resulting
cycle, we have V (C)⊂V (C1); a contradiction.
If u∈C(xi; w), then u+xi 	∈E(G) (If not, we assume u+xi ∈E(G). By Claim 1,

wv+t+1 ∈E(G). Note that {uu+; ww+; vt+1v+t+1} ∩ E(x−i )= ∅. The vertices of C(vi; xi)
can be inserted into the cycle C[xi; u] C[w+; vt+1) vt+1Hvi NC(vi; v+t+1] NC[w; u+]xi. Let
C2 denote the resulting cycle. Clearly, V (C)⊂V (C2), a contradiction). Thus, u 	=w−.
By wv+t+1 ∈E(G) and Lemma 4.1(b), we have xiw+ 	∈E(G). Then w+u+ ∈E(G) (Other-
wise, G[{u; xi; w+; u+}] ∼= K1;3; a contradiction). Note that {uu+; ww+; ww−; vt+1v+t+1}∩
E(x−i )= ∅ and {xi; v+t+1}⊆N (w); the vertices of C(vi; xi) can be inserted into the cy-
cle C[xi; u] NC[w−; u+] C[w+; vt+1) vt+1Hvi NC(vi; v+t+1]wxi. Denote by C3 the resulting
cycle, we have V (C)⊂V (C3); a contradiction.
(4) Suppose, to the contrary, that there exists a vertex u∈N (w) dominating

{xi; v+t+1; w
+}. By the maximality of C; u∈V (C). By (2), u∈C(xi; w). Then

we have xiu+; xiv+t+1 	∈E(G) by Lemma 4.1(b). Thus, u+v+t+1 ∈E(G). (Otherwise,
G[{u; v+t+1; xi; u

+}] ∼= K1;3; a contradiction.) Note that {uu+; ww+; vt+1v+t+1} ∩
E(x−i )= ∅. By inserting the vertices of C(vi; xi) into the cycle C[xi; u] C[w+; vt+1)
vt+1Hvi NC(vi; v+t+1] C[u

+; w]xi, we get a cycle which contains C, a contradiction.
(5) Suppose, to the contrary, that there is a vertex u∈N (w) dominating {xi} ∪

{v+t+1; w
−}. By the maximality of C; u∈V (C). By Lemma 4.1(b), u 	=w−. Then we

have u∈C(xi; w−) by (2). By Lemma 4.1(b), v+t+1xi; xiu
+ 	∈E(G). Thus, v+t+1u

+ ∈E(G).
(Otherwise, G[{u; u+; xi; v+t+1}] ∼= K1;3; a contradiction.) Note that {uu+; ww−; vt+1v+t+1}∩
E(x−i )=∅, the vertices of C(vi; xi) can be inserted into the cycle C[xi; u] NC[w−; u+]
C[v+t+1; vi) viHvt+1 NC(vt+1; w]xi. Denote by C4 the resulting cycle. Clearly, V (C)⊂
V (C4), a contradiction.
The proof of Claim 2 is over.
Now we prove Lemma 4.9. By Claim 2(1) and w∈ S2(X ); we have {w+; w−; v+t+1}∪

{xi; xj}⊆N (w); where {i; j}⊆{1; 2; : : : ; k}\{t + 1}. By Lemma 4.5 and since A is
independent, it is easy to see that there is no vertex in N (w) dominating {xi; xj}.
Then �(G[N (w)])¿ 2 by Claims 2(3)–(5), a contradiction. Hence Lemma 4.9
holds.
For given C and its {v1; v2; : : : ; vk}; set C= {C′|C′ is a cycle in G; V (C′)=V (C);

and v1; v2; : : : ; vk occur on C′ in the order of the indices }. C is the set of some cycles
in G. Clearly, C′ is a maximal cycle in G for each C′ ∈C.



M. Zhan /Discrete Mathematics 243 (2002) 171–185 181

Lemma 4.10. Let C ∈C be a cycle having maximum number of globally path insert-
ible vertices in C. If vt ∈ S2(X ); then m¿2; and there exists some j∈{1; 2; : : : ; m−1};
such that C[zj1; zj2) is simple.

Proof. In fact, vt ∈ S2(X )∩NC(H). Then we have vt ∈N (x0)∩N (xt) by Lemmas 4.6,
4.7, and vt ∈A by Lemma 4.5. Therefore, we have u 	∈A if u∈N (vt). By the deAni-
tion of xt ; xtv−t ; v

+
t v

−
t 	∈E(G). By the maximality of C; x0v+t ; x0v

−
t 	∈E(G). Considering

N (vt), we have {v+t ; v−t ; x0} ∪ {xt}⊆N (vt). (It is possible to have xt = v+t .) It is clear
that x0 and xt have no common neighbor in N (vt). Suppose, to the contrary, that
Lemma 4.10 does not hold.

Claim 1. There is no vertex in N (vt) dominating {x0; v+t }.

Suppose that there exists a vertex u∈N (vt) dominating {x0; v+t }. By the maximality
of C, we have u∈V (C); u 	= v+t and u+; u− 	∈N (x0). Note that u∈NC(x0) and u 	∈A,
we have u+u− ∈E(G). Then the cycle C[v+t ; u−]C[u+; vt)vtHuv

+
t in G contains C, a

contradiction.

Claim 2. There is no vertex in N (vt) dominating {x0; v−t }.

Suppose that there exists a vertex u∈N (vt) dominating {x0; v−t }. By the maximality
of C, we have u∈V (C); u 	= v−t and u−; u+ 	∈N (x0). Then u+u− ∈E(G). Thus, the
cycle C[vt ; u−]C[u+; v−t ]uHvt in G contains C, a contradiction. Claim 2 holds.
Since G is almost claw-free, we have �(G[N (vt)])62. Then there exists a vertex
u∈N (vt) dominating {xt}∪{v+t ; v−t } by Claims 1, 2. It is easy to see that u∈V (C). By
v−t xt ; v

−
t v

+
t 	∈E(G); we have u 	∈ {v+t ; v−t }∪{xt}. By u 	∈A and Lemma 4.5, u 	∈NC(H).

Claim 3. u∈C(xt ; vt+1); u+u− 	∈E(G).

Suppose that u 	∈C(xt ; vt+1). Since vtxt ; uv−t ∈E(G), we have u 	∈C(vt ; xt] by
the deAnition of xt . By u 	∈NC(H); we have u∈C(vt+1; vt). Thus, we may let u∈
C(vp; vp+1) (⊆C(vt+1; vt)). By uxt ∈E(G) and Lemma 4.1(b), u∈C(xp; vp+1). By
xtu∈E(G) and the deAnition of xt , we have u+xt ; u−xt 	∈E(G) and uu+; uu− 	∈E(x−t ).
Consider G[{u; u+; u−; xt}]. It is clear that u+u− ∈E(G). For each i∈{t+1; t+2; : : : ; p−
1}, we have uu+; uu− 	∈E(x−i ). (Otherwise, there exists some j∈{t + 1; t + 2; : : : ; p−
1}; such that {uu+; uu−} ∩ E(x−j ) 	= ∅. Then there is a vertex v∈C(vj; xj) satisfying
uv∈E(G). By Lemma 4.1(b), xtv; u+v 	∈E(G). Thus, G[{u; u+; v; xt}] ∼= K1;3; a contra-
diction.) By symmetry, u+u; uu− 	∈E(x−i ) for each i∈{p+ 1; p+ 2; : : : ; t − 1}. Hence
there is a cycle C1 =C[v+t ; u−]C[u+; vt]uv

+
t satisfying V (C)=V (C1), however C1 has

more globally path insertible vertices than C. This contradicts the choice of C. So
u∈C(xt ; vt+1).
Suppose u+u− ∈E(G). First we will prove uu−; uu+ 	∈E(x−i ) for each i∈

{1; 2; : : : ; k}\{t}. We proceed by contradiction. Suppose that there exists some
i0 ∈{1; 2; : : : ; k}\{t}, such that {uu−; uu+} ∩ E(x−i0 ) 	= ∅. Let g be the Arst vertex in
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C(vi0 ; xi0 ) adjacent to u. Then uu+ 	∈E(g−). If vtv−t 	∈E(g−), then we have gxt ; u+xt 	∈
E(G) by Lemma 4.1(b). Thus gu+ ∈E(G) as u 	∈A. Hence the vertices of C(vi0 ; g)
can be inserted into the cycle C[u+; vi0 ) vi0Hvt C(vt ; u] NC[v−t ; g]u+. Denote by C2
the resulting cycle. Clearly, V (C)⊂V (C2), a contradiction. If vtv−t ∈E(g−), we let
h the Arst vertex in C(vi0 ; g) adjacent to vt . Then vtv−t 	∈E(h−). By Lemma 4.1(b) and
the choices of h; g, we have uu+; uu−; vtv+t 	∈E(h−). Thus we can insert all vertices
of C(vi0 ; h) into the cycle C[u+; vi0 ) vi0Hvt C[h; v

−
t ]u C[v

+
t ; u−]u+. Denote by C3 the

resulting cycle. Then we have V (C)⊂V (C3), a contradiction.
Thus, we have uu+; uu− 	∈E(x−i ) for each i∈{1; 2; : : : ; k}\{t}. Considering the cy-

cle C4 =C[v+t ; u−] C[u+; vt] uv
+
t in G, we have V (C)=V (C4), however C4 has more

globally path insertible vertices than C. This contradicts the choice of C too. So
u+u− 	∈E(G).

Claim 4. u∈ S1(X ), u+ 	∈NC(H). Therefore u 	= v−t+1.

In fact, note that uxt ∈E(G), we have u∈ S1(X ) by Lemma 4.5 and u 	∈A. More-
over u+ 	∈NC(H), otherwise the cycle NC[u; vt)vtHu+C(u+; v−t ]u in G contains C, a
contradiction.

Claim 5. u+ ∈N (xt).

Suppose, to the contrary, that u+ 	∈N (xt). By Claim 4, we have u+; u++ ∈C(xt ; vt+1]
and u+ 	∈N (x0). We distinguish three cases.
Case 1: u+ ∈ S0(X ).
Let a be the Arst vertex in NC[u; xt] nonadjacent to xt . Then C[a; u+) is simple by

Lemma 4.2(d) and Claim 4. Since u+ ∈N2(X ) and u+ ∈C[xt ; vt+1], there must exist
some other CX -segments in C[u+; vt+1]. This contradicts the assumption.
Case 2: u+ ∈ Sl(X ) (l¿2).
Set u+ ∈N (xi) ∩ N (xj). Clearly, i; j 	=0; t. By Lemma 4.1(b), E(x−i ) ∩ E(x−j )= ∅.

Then we have either vtv−t 	∈E(x−i ) or vtv−t 	∈E(x−j ). Without loss of generality, we may
assume that vtv−t 	∈E(x−i ). By xiu+ ∈E(G) and the deAnition of xi; uu+ 	∈E(x−i ). Thus,
the vertices of C(vi; xi) can be inserted into the cycle C[vt ; u] NC[v−t ; xi]C[u+; vi) viHvt .
Denote by C1 the resulting cycle, we have V (C)⊂V (C1), a contradiction.
Case 3: u+ ∈ S1(X ).
Suppose u+ ∈N (xi), where i 	=0; t. Then vtv−t ∈E(x−i ). (Otherwise, the cycle C1

which is mentioned in Case 2 contains C, a contradiction). Consider G[{u; u+; v−t ; xt}].
Since xtv−t ; xtu+ 	∈E(G) and u 	∈A, we have u+v−t ∈E(G). For u++(∈C[xt ; vt+1]), we
assume that there exists some j∈{0; 1; 2; : : : ; k} such that u++ ∈N (xj). By Lemma
4.2(d), we have either xj ∈C(vt+1; vi) or j=0. If j=0; then the cycle C[u++; v−t ]
NC[u+; vt) vtHu++ contains C; a contradiction. If j 	=0; then we have vtv−t 	∈E(x−j )
since vtv−t ∈E(x−i ). Thus, the vertices of C(vj; xj) can be inserted into the cycle
C[vt ; u+] NC[v−t ; xj] C[u++; vj] vjHvt . Denote by C2 the resulting cycle. It is clear that
V (C)⊂V (C2); a contradiction. So u++ ∈ S0(X ). Let a be the Arst vertex in NC[u; xt]
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nonadjacent to xt . Then C[a; u++) is simple by Lemma 4.2(d). Since u++ ∈N2(X ) and
u++ ∈C[xt ; vt+1]; there exist some other CX -segments in C[xt ; vt+1]: This contradicts
the assumption too.

Claim 6. For any i∈{1; 2; : : : ; k}; vtv−t 	∈E(x−i ).

If i∈{t; t − 1}, it is clear that Claim 6 holds. Then we should prove vtv−t 	∈E(x−i )
for any i∈{1; 2; : : : ; k}\{t; t − 1}.
Suppose, to the contrary, that there exists some i0 ∈{1; 2; : : : ; k}\{t; t − 1}; such

that vtv−t ∈E(x−i0 ). Let f be Arst vertex in C(vi0 ; xi0 ) adjacent to vt . Then we have
vtv−t 	∈E(f−). Considering E(f−) and E(x−t ), we have E(f−)∩E(x−t )= ∅ by Lemma
4.1(b). By Claim 5, xtu+ ∈E(G). Thus, uu+ 	∈E(f−) by Lemma 4.1(b). Note that
{uu+; vtv−t }∩E(x−t )= ∅, the vertices in C(vi0 ; f)∪C(vt ; xt) can be inserted into the cycle
C[xt ; u] NC[v−t ; f] vtHvi0 NC(vi0 ; u

+]xt . Denote by C1 the resulting cycle. It is obvious that
V (C)⊂V (C1), a contradiction.

Claim 7. v−t+1 	∈N (xt).

Suppose, to the contrary, that xtv−t+1 ∈E(G). By Claim 3, u+u− 	∈E(G). Consid-
ering G[{u; u+; u−; vt}]; we have either u+vt ∈E(G) or u−vt ∈E(G) as uvt ∈E(G).
If u+vt ∈E(G); then the vertices of C(vt ; xt) can be inserted into the cycle C[xt ; u]
NC[v−t ; vt+1) vt+1Hvt C[u+; v−t+1]xt as u 	= v−t+1 by Claim 4. Thus, we get the cycle that
contains C; a contradiction. If u−vt ∈E(G), note that u 	= xt ; we can extend C by in-
serting the vertices of C(vt ; xt) into the cycle C[xt ; u−] vtHvt+1 C(vt+1; v−t ] C[u; v

−
t+1]xt ;

a contradiction. Hence v−t+1 	∈N (xt).

Claim 8. Let; C[u; w)⊆N (xt). Then we have w 	∈N (xi) for each i∈{0; 1; : : : ; k}\{t}.

In fact, by Claim 7, w∈C[u+; v−t+1]. First we will prove that there exists a (v−t ; vt)-
path P containing the vertices of C[xt ; w). By Claim 3, u+u− 	∈E(G). Then we have
either vtu+ ∈E(G) or vtu− ∈E(G) since u 	∈A. If vtu− ∈E(G), then P= v−t C[u; w−]
C[xt ; u−]vt is a (v−t ; vt)-path which contains all vertices of C[xt ; w). If vtu+ ∈E(G),
then we put P= v−t NC[u; xt] NC[w−; u+]vt when w 	= u+, and put P= v−t NC[u; xt]vt when
w= u+. Thus P contains the vertices of C[xt ; w).
Suppose, to the contrary, that there exists some i∈{0; 1; : : : ; k}\{t} such that

w∈N (xi). If i=0, then the vertices of C(vt ; xt) can be inserted into the cycle
P[v−t ; vt)vtHwC(w; v

−
t ). Denote by C1 the resulting cycle. Then we have V (C)⊂V (C1),

a contradiction. If i∈{1; 2; : : : ; k}\{t}, by inserting the vertices of C(vt ; xt) ∪ C(vi; xi)
into the cycle P[v−t ; vt)vtHvi NC(xi; w]C[xi; v

−
t ), we get a cycle which contains C, a con-

tradiction. Claim 8 holds.
By Claim 7, let w+

0 be the Arst vertex in C[u; vt+1) nonadjacent to xt . Then
C[u; w0]⊆N (xt). By Claim 8, w0 ∈ S1(X ); w+

0 ∈ S0(X ). Let a be the Arst vertex in
NC[u; xt] nonadjacent to xt . Then C[a; w+

0 ) is simple by Lemma 4.2(d). By Claim 7, we
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have w+
0 ∈C[xt ; vt+1). Note that w+

0 ∈N2(X ); there exist some other CX -segments in
C[w+

0 ; vt+1]. It contradicts the assumption. The proof of Lemma 4.10 is over.

Lemma 4.11.
∑k
i= 0 d(xi)6n(X )− k − 1.

Proof. Suppose that |{v1; v2; : : : ; vk} ∩ S2(X )|=p. By Lemmas 4.9 and 4.10, there are
at least (k − p) + p= k simple CX -segments in JX \

⋃
l¿2 Nl(X ). Thus, by Lemmas

4.4 and 4.8(3), we have

k∑
i= 0

|JX ∩ N (xi)| =
k∑
t = 1

k∑
i= 0

|C[xt ; vt+1] ∩ N (xi)|

=
k∑
t = 1

m∑
j= 1

k∑
i= 0

|C[zj1; zj2) ∩ N (xi)|6
k∑
t = 1

m∑
j= 1

|C[zj1; zj2)| − k

=
k∑
t = 1

(
|C[xt ; vt+1]| −

∑
l¿2

|Nl(X ) ∩ C[xt ; vt+1]|
)

− k

= |JX | −
∑
l¿2

|Nl(X ) ∩ JX | − k:

Note that V (G)= JX ∪ KX . By Lemma 4.3, we have

k∑
i= 0

d(xi) =
k∑
i= 0

|JX ∩ N (xi)|+
k∑
i= 0

|KX ∩ N (xi)|

6 |JX | − k −
∑
l¿2

|Nl(X ) ∩ JX |+ |KX | − 1−
∑
l¿2

|Nl(X ) ∩ KX |

= n− k − 1−
∑
l¿2

|Nl(X )|= n(X )− k − 1:

5. Proof of Theorem 3.8

Proof of Theorem 3.8. Suppose, to the contrary, that G is non-hamiltonian. Let C
be a longest cycle in G. Then C is clearly a maximal cycle of G, and G\V (C)
has at least a component H . Since G is a k-connected graph with k¿2, we may
suppose {v1; v2; : : : ; vk}⊆NC(H), and v1; v2; : : : ; vk occur on C in the order of their
indices. For the cycle C above and its {v1; v2; : : : ; vk}, set C= {C′ |C′ is a cycle in
G; V (C′)=V (C); and v1; v2; : : : ; vk occur on C′ in the order of the indices}. Let C ∈C

be a cycle having maximum number of globally path insertible vertices. By Lemma
4.1(a), for each i∈{1; 2; : : : ; k}; denote by xi the Arst non-GPI vertex in C(vi; vi+1). Pick
up an x0 ∈V (H) and let X = {x0; x1; x2; : : : ; xk}. By Lemma 4.11,

∑k
i= 0 d(xi)6n(X )−

k − 1. On the other hand, by Lemma 4.2(b), X ∈ Ik+1(G∗), a contradiction.



M. Zhan /Discrete Mathematics 243 (2002) 171–185 185

Acknowledgements

I would like to thank Professor Wu Zhengsheng for his help.

References

[1] A. Ainouche, H.J. Broersma, H.J. Veldman, Remarks on hamiltonian properties of claw-free graphs,
Ars Combin. 29C (1990) 110–121.

[2] A. Ainouche, O. Favaron, H. Li, Global insertion and hamiltonicity in DCT-graphs, Discrete Math. 184
(1998) 1–13.

[3] A. Ainouche, M. Kouider, Hamiltonism and partially square graphs, Graphs Combin. 15 (1999)
257–265.

[4] J.A. Bondy, U.S.R. Murty, Graph theory with applications, Macmillan, London and Elsevier, New York,
1976.

[5] H.J. Broersma, SuLcient conditions for hamiltonicity and traceability of K1;3-free graphs, preprint, 1986,
unpublished.

[6] H.J. Broersma, Z. Ryj7a8cek, I. Schiermeyer, Toughness and hamiltonicity in almost claw-free graphs,
J. Graph Theory 21 (1996) 431–439.

[7] Hao Li, F. Tian, Degree sums, claws and hamiltonicity, Rapport de Recherche n0886, University de
Paris Sud, center d’Orsay Laboratoire de Recherche en Informatique, Bat.490, 91405 Orsay.

[8] Yiping Liu, Feng Tian, Zhengsheng Wu, Some results on longest paths and cycles in K1;3-free graphs,
J.Changsha Railway Inst. 4 (1986) 105–106.

[9] M.M. Matthews, D.P. Sumner, Longest paths and cycles in K1;3-free graphs, J. Graph Theory 9 (1985)
269–277.

[10] Z. Ryj7a8cek, Almost claw-free graphs, J. Graph Theory 18 (1994) 469–477.
[11] Z. Wu, X. Xu, X. Zhou, The neighborhood intersections of essential sets and hamiltonicity of graphs,

J. Systems Sci. Math. Sci. 3 (1998) 230–237.
[12] C.Q. Zhang, Hamilton cycle in claw-free graphs, J. Graph Theory 10 (1988) 209–216.


