14 research outputs found

    Edge-dominating cycles, k-walks and Hamilton prisms in 2K22K_2-free graphs

    Full text link
    We show that an edge-dominating cycle in a 2K22K_2-free graph can be found in polynomial time; this implies that every 1/(k-1)-tough 2K22K_2-free graph admits a k-walk, and it can be found in polynomial time. For this class of graphs, this proves a long-standing conjecture due to Jackson and Wormald (1990). Furthermore, we prove that for any \epsilon>0 every (1+\epsilon)-tough 2K22K_2-free graph is prism-Hamiltonian and give an effective construction of a Hamiltonian cycle in the corresponding prism, along with few other similar results.Comment: LaTeX, 8 page

    Factors and Connected Factors in Tough Graphs with High Isolated Toughness

    Full text link
    In this paper, we show that every 11-tough graph with order and isolated toughness at least r+1r+1 has a factor whose degrees are rr, except for at most one vertex with degree r+1r+1. Using this result, we conclude that every 33-tough graph with order and isolated toughness at least r+1r+1 has a connected factor whose degrees lie in the set {r,r+1}\{r,r+1\}, where r≥3r\ge 3. Also, we show that this factor can be found mm-tree-connected, when GG is a (2m+ϵ)(2m+\epsilon)-tough graph with order and isolated toughness at least r+1r+1, where r≥(2m−1)(2m/ϵ+1)r\ge (2m-1)(2m/\epsilon+1) and ϵ>0\epsilon > 0. Next, we prove that every (m+ϵ)(m+\epsilon)-tough graph of order at least 2m2m with high enough isolated toughness admits an mm-tree-connected factor with maximum degree at most 2m+12m+1. From this result, we derive that every (2+ϵ)(2+\epsilon)-tough graph of order at least three with high enough isolated toughness has a spanning Eulerian subgraph whose degrees lie in the set {2,4}\{2,4\}. In addition, we provide a family of 5/35/3-tough graphs with high enough isolated toughness having no connected even factors with bounded maximum degree

    A note on interconnecting matchings in graphs

    Get PDF
    AbstractWe prove a sufficient condition for a graph G to have a matching that interconnects all the components of a disconnected spanning subgraph of G. The condition is derived from a recent extension of the Matroid intersection theorem due to Aharoni and Berger. We apply the result to the problem of the existence of a (spanning) 2-walk in sufficiently tough graphs

    Spanning k-trees and distance spectral radius in graphs

    Full text link
    Let k≥2k\geq2 be an integer. A tree TT is called a kk-tree if dT(v)≤kd_T(v)\leq k for each v∈V(T)v\in V(T), that is, the maximum degree of a kk-tree is at most kk. Let λ1(D(G))\lambda_1(D(G)) denote the distance spectral radius in GG, where D(G)D(G) denotes the distance matrix of GG. In this paper, we verify a upper bound for λ1(D(G))\lambda_1(D(G)) in a connected graph GG to guarantee the existence of a spanning kk-tree in GG.Comment: 11 page

    Graph Toughness from Laplacian Eigenvalues

    Get PDF
    corecore