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1 Graph toughness from Laplacian eigenvalues

Xiaofeng Gu∗ and Willem H. Haemers†

Abstract

The toughness t(G) of a graph G = (V,E) is defined as t(G) = min{ |S|
c(G−S)}, in which the

minimum is taken over all S ⊂ V such that G − S is disconnected, where c(G − S) denotes the
number of components of G − S. We present two tight lower bounds for t(G) in terms of the
Laplacian eigenvalues and provide strong support for a conjecture for a better bound which, if
true, implies both bounds, and improves and generalizes known bounds by Alon, Brouwer, and
the first author. As applications, several new results on perfect matchings, factors and walks
from Laplacian eigenvalues are obtained, which leads to a conjecture about Hamiltonicity and
Laplacian eigenvalues.

MSC: 05C42, 05C50, 05C70, 05C45

Key words: toughness, Laplacian eigenvalue, perfect matching, factor, Hamilton cycle

1 Introduction

Throughout this paper, G = (V,E) is a simple graph of order n with nonempty vertex set V and
nonempty edge set E. The minimum degree of G is denoted by δ. For a subset S ⊂ V , the subgraph
of G induced by V \ S is denoted by G− S, and c(G − S) is the number of components of G− S.

The toughness t(G) of a graph G is defined as t(G) = min{ |S|
c(G−S)}, where the minimum is

taken over all proper subsets S ⊂ V such that c(G − S) > 1. By convention, a complete graph has
infinite toughness. For any real number r ≥ 0, G is r-tough if t(G) ≥ r. The graph toughness was
introduced by Chvátal [11] in 1973 and has been extensively studied since then. It is closely related
to graph structures, including cycles, matchings, factors, spanning trees, and others (see [4]).

Toughness of regular graphs from eigenvalues of adjacency matrices has been well studied by,
among others, [1, 6, 16, 15, 23, 24]. We use λi := λi(G) to denote the ith largest eigenvalue of the
adjacency matrix of G, and let λ = max{|λ2|, |λn|}. It was Alon [1] who first showed that for any

connected d-regular graph G, t(G) > 1
3(

d2

dλ+λ2 − 1). By this result, Alon showed that for every t and
g there are t-tough graphs of girth strictly greater than g, which strengthened a result of Bauer, Van
den Heuvel and Schmeichel [5] who showed the same for g = 3, and thus disproved the pancyclic
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conjecture of Chvátal [11] in a strong sense. Almost at the same time, Brouwer [6] independently
showed that t(G) > d

λ−2 for any connected d-regular graph G. He also conjectured that t(G) ≥ d
λ−1

in [6, 7]. Recently Brouwer’s conjecture has been confirmed by the first author [24]. In this paper
we consider arbitrary graphs and look for lower bounds on t(G) in terms of the eigenvalues of the
Laplacian matrix.

The Laplacian matrix L (also called combinatorial Laplacian or discrete Laplacian) of a
graph G, is defined by L = D − A, where D is the diagonal degree matrix and A is the adjacency
matrix of G. Let µi := µi(G) denote the ith smallest eigenvalue of the Laplacian matrix of G. Then
L is positive semi-definite and µ1(G) = 0. The second smallest Laplacian eigenvalue µ2(G), is known
as the algebraic connectivity of G. We have µ2(G) = 0 if and only if G is disconnected. Moreover,
if κ is the vertex connectivity, then

µ2 ≤ κ ≤ δ. (1.1)

The complement G of G has eigenvalues µ1(G) = 0 and µi(G) = n − µn+2−i(G) for i = 2, . . . , n.
Therefore µn(G) ≤ n and µn(G) = n if and only if G is disconnected. If G is regular of degree d,
then L = dI − A and therefore µi = d − λi for i = 1, . . . , n. For these and other properties of the
Laplacian matrix and its eigenvalues we refer to [9].

The paper is organized as following. Our main results will be in the next section. The tools and
the proofs will be presented in Sections 3 and 4. In Section 5, we will show applications on perfect
matchings, factors and walks. Since toughness is closely related to cycle structures, we include a
conjecture on Hamilton cycles from Laplacian eigenvalues.

2 Results

Recently, the second author made the following conjecture [27].

Conjecture 2.1 (Haemers).

t(G) ≥
µ2

µn − δ
. (2.1)

For d-regular graphs, this conjecture implies that t(G) ≥ d−λ2

−λn

, which is stronger than Brouwer’s
conjecture. The conjecture is supported by the following theorem and proposition. The proofs will
be given in Section 4.

Theorem 2.1.

t(G) ≥
µnµ2

n(µn − δ)
, (2.2)

and
t(G) ≥

µ2

µn − µ2
. (2.3)

Proposition 2.2. Let S ⊂ V be such that t(G) = |S|/c(G−S). Then Conjecture 2.1 is true in each
of the following cases.
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(i) The complement of G is disconnected,

(ii) All connected components of G− S are singletons (i.e. n− |S| = c(G − S)),

(iii) The union of some components of G− S has order 1
2(n − |S|),

(iv) c(G − S) = 2.

Since µn ≤ n and δ ≥ µ2, the conjectured bound (2.1) implies (2.2) and (2.3). Note that (2.1)
and (2.2) coincide if µn = n, that is, if the complement of G is disconnected. Therefore (i) of
Propoition 2.2 follows from (2.2).

The three bounds coincide and are tight in case G is the complete multipartite graph Kn1,...,nm

(1 < m < n). Indeed, assume n1 ≥ . . . ≥ nm then t(G) = (n− n1)/n1, µn = n and µ2 = δ = n− n1.
The bounds (2.2) and (2.3) are incomparable. For example, when G is the Petersen graph, then

t(G) = 4/3 and µ2 = 2, µ10 = 5 and δ = 3, and so (2.1), (2.2), and (2.3) give t(G) ≥ 1, 1/2 and 2/3,
respectively. The complement G satisfies t(G) = 3 and µ2(G) = 5, µ10(G) = 8 and δ = 6, and the
bounds (2.1), (2.2), and (2.3) give t(G) ≥ 5/2, 2 and 5/3 respectively.

3 Tools

The following separation inequality from [26] provides a bridge between graph parameters and Lapla-
cian eigenvalues. It can also be found in [9, Proposition 4.8.1].

Theorem 3.1 ([26]). Suppose that X and Y are two disjoint subsets of V such that there is no edge
between X and Y . Then

|X||Y |

(n − |X|)(n − |Y |)
≤

(

µn − µ2

µn + µ2

)2

. (3.1)

By the above separation inequality, a simple yet useful proposition has been proved in [25].

Proposition 3.2 ([25]). Let S ⊂ V such that G−S is disconnected. Let X and Y be disjoint vertex
subsets of V \ S such that X ∪ Y = V \ S with |X| ≤ |Y |. Then

|X| ≤
µn − µ2

2µn
· n, (3.2)

and

|S| ≥
2µ2

µn − µ2
· |X|, (3.3)

with each equality holding only when |X| = |Y |.

For review purpose, we include a proof, which was originally given in [25].
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Proof. By (3.1), we have

|X||Y | ≤

(

µn − µ2

µn + µ2

)2

(n− |X|)(n − |Y |), (3.4)

Let β = µn−µ2

µn+µ2
. Then 0 < β ≤ 1, as G contains at least one edge and G − S is disconnected. It

follows that
|X|2 ≤ |X| · |Y | ≤ β2(n− |X|)(n − |Y |) ≤ β2(n− |X|)2,

that is
|X| ≤ β(n− |X|),

and hence

|X| ≤
βn

1 + β
=

µn − µ2

2µn
· n, (3.5)

with the equality holding only when |X| = |Y |.

Also, since |Y | = n− |S| − |X|, by (3.4), we have

|X|(n − |S| − |X|) = |X| · |Y | ≤ β2(n− |X|)(n − |Y |) = β2(n− |X|)(|S| + |X|),

implying that

|X|n ≤
(

β2(n− |X|) + |X|
)

(|S|+ |X|) =
(

β2n+ (1− β2)|X|
)

(|S|+ |X|) . (3.6)

By (3.5), we have

(1− β2)|X| ≤ (1− β2) ·
βn

1 + β
= (β − β2)n,

which, together with (3.6), implies that

|X|n ≤
(

β2n+ (β − β2)n
)

(|S|+ |X|) = βn (|S|+ |X|) ,

and we have
|X| ≤ β (|S|+ |X|) .

Hence,

|S| ≥
1− β

β
|X| =

2µ2

µn − µ2
· |X|.

Since (3.5) was utilized, the equality holds in (3.3) only when |X| = |Y |.

Generalizing Hoffman’s ratio bound, the following bound for the cardinality of an independent
set of an arbitrary graph has been obtained independently in [21] and in [37] (see also [28]).

Theorem 3.3 (Godsil and Newman [21], Lu, Liu and Tian [37]). If U is an independent set of G,
then

|U | ≤
µn − δ

µn
· n.
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4 Proofs

Throughout this section we take S ⊂ V such that t(G) = |S|/c(G− S), and put c = c(G− S). First
we prove (2.2) of Theorem 2.1.

Proof. Clearly the vertex connectivity κ of G satisfies κ ≤ |S|, so |S| ≥ µ2 by (1.1). By taking
a vertex in each component of G − S we obtain an independent set of cardinality c. Therefore
Theorem 3.3 gives c ≤ n(µn − δ)/µn, and so

t(G) ≥
µnµ2

n(µn − δ)
.

For convenience we continue with the proof of (ii) of Proposition 2.2.

Proof. If n − |S| = c, then V \ S is an independent set of G. By use of Theorem 3.3 and (1.1) we
have

t(G) =
|S|

c
≥

n− c

c
=

n

c
− 1 ≥

µn

µn − δ
− 1 =

δ

µn − δ
≥

µ2

µn − δ
.

Next we prove (2.3) of Theorem 2.1.

Proof. Let H1,H2, . . . ,Hc be the vertex sets of the components of G−S. Without loss of generality,
suppose that |H1| ≤ |H2| ≤ · · · ≤ |Hc|. Above we proved that (2.1) and therefore (2.3) holds if
H1, . . . ,Hc are singletons. Thus, we may assume that n− |S| ≥ c+1. We claim that H1,H2, . . . ,Hc

can be partitioned into two sets X and Y such that |Y | ≥ |X| ≥ c/2. If c is even, we can simply define
X =

⋃

1≤i≤⌊c/2⌋ Hi and Y = (V \S)\X. Now we assume c is odd. If |H(c−1)/2| ≥ 2, then define X =
⋃

1≤i≤(c−1)/2 Hi and Y = (V \ S) \X as needed. The remaining case is |H1| = · · · = |H(c−1)/2| = 1.
We can define X =

⋃

1≤i≤(c+1)/2 Hi and Y = (V \S)\X, and we need to show that |Y | ≥ |X| ≥ c/2.

If |H(c+1)/2| = 1, then |X| = c+1
2 and |Y | = n−|S|−|X| ≥ c+1

2 , since n−|S| ≥ c+1. If |H(c+1)/2| ≥ 2,

then |X| = c−1
2 + |H(c+1)/2| ≥

c−1
2 +2 > c

2 and |Y | =
∑

i>(c+1)/2 |Hi| ≥ 2 · c−1
2 = c− 1 ≥ c/2. Switch

X and Y whenever needed to get |Y | ≥ |X|.

It follows that c ≤ 2|X|. Thus, by (3.3),

t(G) =
|S|

c
≥

2µ2

µn − µ2
·
|X|

c
≥

µ2

µn − µ2
.

The last two proofs of this section deal with (iii) and (iv) of Proposition 2.2.
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Proof. (iii): In this case V \ S can be partitioned into two sets X and Y both having cardinality
1
2(n−|S|), such that there are no edges between X and Y . We apply (3.3) and find |S| ≥ µ2

µn−µ2
(n−

|S|), which implies |S| ≥ nµ2/µn. As before, Theorem 3.3 gives c ≤ n(µn − δ)/µn and hence

t(G) =
|S|

c
≥ n

µ2

µn
·

µn

n(µn − δ)
=

µ2

µn − δ
.

Proof. (iv): It is known (see [9], Section 3.9) that µn ≥ dmax+1, when dmax is the maximum degree
of G. If G is not regular, then dmax − δ ≥ 1, and hence µn − δ ≥ 2. If G is regular of degree d = δ,
then the adjacency matrix has smallest eigenvalue λn = d − µn. If G is regular with λn > −2 then
G is the complete graph Kn or an odd cycle Cn; see Theorem 2.5 of [17]. We have t(Kn) = ∞ and
t(Cn) = 2 if n ≥ 4. If n is odd, µ2(Cn) = 2 − 2 cos(π/n) and µn(Cn) = 2 + 2 cos(2π/n), so (2.1)
gives 2 ≥ (1− cos(π/n))/ cos(2π/n) which is clearly true for all odd n ≥ 5. Thus we can assume that
λn ≤ −2 and hence µn − d = µn − δ ≥ 2. Thus we find

t(G) =
|S|

c
≥

µ2

2
≥

µ2

µn − δ
.

5 Applications

It was shown in [33] that if µ2

µn

≥ 2
3 , then G is 2-tough. Now we can generalize it by rewriting (2.3)

of Theorem 2.1 as below.

Theorem 5.1. If
µ2

µn
≥

r

r + 1
, then G is r-tough.

Since many graph parameters and properties are related to toughness, we have various applica-
tions, including but not limited to the results in this section. We refer readers to the the survey
paper [4] for more toughness related results.

The spectral conditions for matchings and k-factors of regular graphs have been attracting many
researchers [8, 12, 32, 13, 14, 38, 35, 36, 22], among others. However, not as much has been discovered
for general graphs that are not necessarily regular. Brouwer and the second author [8] showed that
if n is even and 2µ2 ≥ µn, then G has a perfect matching. This result has been recently generalized
to matching numbers in [25]. We will have other generalizations by using graph toughness.

A graph G is called elementary if it contains a perfect matching and if the edges which occur in
at least one perfect matching in G induce a connected subgraph. A substantial study of elementary
graphs has been given in [34]. It is proved in [3] that every 1-tough graph with an even number of
vertices is elementary. Thus Theorem 5.1 implies the following result.

Theorem 5.2. If n is even and 2µ2 ≥ µn, then G is elementary.

Let G be an n-vertex graph with a perfect matching, and m be a positive integer with m <
n/2− 1. Then G is called m-extendable if every matching of size m extends to a perfect matching.
Plummer [39] proved that if t(G) > m, then G is m-extendable.

6



Theorem 5.3. Suppose n is even, and let m be a positive integer such that m < n/2− 1. If

µ2

µn
>

m

m+ 1
,

then G is m-extendable.

In [19], it is proved that every k-tough graph has a k-factor if k|V (G)| is even and |V (G)| ≥
k + 1, confirming a conjecture of Chvátal [11]. The result was extended to non-regular factors by
Katerinis [30]. Let a ≤ b be positive integers. An [a, b]-factor of a graph G is a spanning subgraph
H such that a ≤ dH(v) ≤ b for each vertex. Katerinis [30] showed that for a graph G on n vertices
such that a < b or bn is even, if t(G) ≥ a+ a

b − 1, then G has an [a, b]-factor. By using Theorem 5.1,
we have the following Laplacian eigenvalue condition for the existence of factors.

Theorem 5.4. Let a ≤ b be positive integers such that a < b or bn is even. If

µ2

µn
≥ 1−

b

a(b+ 1)
,

then G has a [a, b]-factor.

The following corollary on k-factors is a generalization of the result on perfect matching by
Brouwer and the second author [8].

Corollary 5.5. Let k be a positive integer such that n ≥ k + 1 and kn is even. If

µ2

µn
≥

k

k + 1
,

then G has a k-factor.

A graph G is (k, s)-factor-critical if G −X has a k-factor for all X ⊆ V (G) with |X| = s. A
(1, 1)-factor-critical graph is usually referred to as a factor-critical graph. It is proved in [3] that
every 1-tough graph with an odd number of vertices is factor-critical. By Theorem 5.1, we have the
following result on factor-critical graphs from Laplacian eigenvalues, which was originally obtained
in [25].

Theorem 5.6 ([25]). If n is odd and 2µ2 ≥ µn, then G is (1, 1)-factor-critical.

For 2 ≤ s < n, it was shown by Favaron [20] that for a graph G on n vertices with n+ s even, if
t(G) > s/2, then G is (1, s)-factor-critical. By Theorem 5.1, we have the following result.

Theorem 5.7. Suppose 2 ≤ s < n and n+ s is even. If

µ2

µn
>

s

s+ 2
,

then G is (1, s)-factor-critical.
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For k = 2, 3 or even a general k, similar results on (k, s)-factor-critical graphs from toughness
can be found in the survey [4]. Thus Theorem 5.1 implies Laplacian eigenvalue conditions for (k, s)-
factor-critical graphs with various values of k and s, which will be omitted here.

Spectral conditions of the existence of a spanning tree with degree bounded above by a fixed
number k in a regular graph have been obtained in [16, 15]. When k = 2, such a spanning tree
is exactly a Hamilton path, and a sufficient condition has been given by, among others, Butler and
Chung [10], who borrowed the idea from [31] (both [31, 10] studied a stronger structure, i.e., Hamilton
cycle). The case of k ≥ 3 for general graphs was asked in [15] and has been solved in [25]. A theorem
of Win [40] implies that if t(G) ≥ 1

k−2 for k ≥ 3, then G has a spanning tree with maximum degree
at most k. Thus, Theorem 5.1 implies the following result of [25].

Theorem 5.8 ([25]). Let k ≥ 3 be an integer. If

µ2

µn
≥

1

k − 1
,

then G has a spanning tree with maximum degree at most k.

Generalizing the idea of a Hamilton cycle, a k-walk in a graph G is a closed spanning walk of G
that visits every vertex of G at most k times. In particular, a Hamilton cycle is a 1-walk. Jackson
and Wormald [29] observed that the existence of a spanning tree with maximum degree at most
k actually implies the existence of a k-walk. Thus Theorem 5.8 implies the existence of a k-walk
for k ≥ 3. For k = 2, Ellingham and Zha [18] showed that every 4-tough graph has a 2-walk. By
Theorem 5.1, we have the following Laplacian eigenvalue condition for the existence of a 2-walk.

Theorem 5.9. If µ2

µn

≥ 4
5 , then G has a 2-walk.

Remark 1. In this section we presented applications of (2.3) on perfect matchings, factors and
walks. The bound (2.2) has similar applications and if Conjecture 2.1 is true, then all results in this
section can be improved in a similar manner.

Remark 2. The results in this section as well as [26, 8, 41, 25] indicate that many graph properties
are related to the Laplacian eigenratio µ2/µn. This eigenratio also has application aspects, and is
highly related to the synchronization in Small-world Systems [2]. It plays a similar role as the spectral
gap, but may give a bit more information about the structure of the graph. We feel that µ2/µn is
interesting for future research.

Similar to Theorems 5.8 and 5.9, the first author ever made the following conjecture for Hamilton
cycles, but never published elsewhere before.

Conjecture 5.1 (Gu). There exists a positive constant C < 1 such that if µ2/µn ≥ C and n ≥ 3
(or n is sufficiently large), then G contains a Hamilton cycle.
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Remark 3. Notice that Ks,s+1 contains no Hamilton cycle, but µ2 = s and µn = 2s + 1, which
implies that µ2/µn can be arbitrarily close to 1/2 if s is sufficiently large. Thus the smallest possible
C is at least 1/2.

Chvátal [11] conjectured that there exists a constant t0 such that every t0-tough graph contains
a Hamilton cycle. By (2.3) of Theorem 2.1, clearly Chvátal’s conjecture implies Conjecture 5.1.
Krivelevich and Sudakov [31] conjectured that for a d-regular graph G, there exists a constant K
such that d/λ > K and n is large enough, then G contains a Hamilton cycle. It is not hard to see
that Conjecture 5.1 implies the conjecture of Krivelevich and Sudakov. All the three conjectures
remain open.
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[11] V. Chvátal, Tough graphs and hamiltonian circuits, Discrete Math. 5 (1973), 215–228.
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[14] S. M. Cioabă, D. A. Gregory and W. H. Haemers, Matchings in regular graphs from eigenvalues,
J. Combin. Theory Ser. B, 99 (2009), 287–297.
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