120,123 research outputs found
Optimizing Collection of Trace Biological Samples from Vehicle Headrests
Tape-lifting and swabbing are two methods commonly used for collecting biological samples in the United Kingdom and United States to investigate vehicle crimes. Determining the optimal collection method may lead to an increase in generating DNA profiles and crime-solving. The objective of this study is to evaluate the efficiency of adhesive tape and the double-swab collection methods for investigating vehicle crimes with possible touch DNA samples. Two experiments were conducted to evaluate the use of tape-lifts and swabs on spiked common vehicle fabric materials. The efficiency of recovery between the two collection methods was performed using qPCR. The results from the collection of fabric materials indicated tape-lifts outperformed swabbing on cloth and vinyl substrates, while swabbing resulted in comparable recovery on leather substrates. By optimizing sample collection techniques, we aim to aid not only investigations involving vehicles but also other crimes with touch DNA evidence present
Horizontal transfer of antibiotic resistance genes on abiotic touch surfaces: implications for public health
Horizontal gene transfer (HGT) is largely responsible for increasing incidence of antibiotic-resistant infections worldwide. Whilst studies have focussed on HGT in vivo, this work investigates whether the ability of pathogens to persist in the environment, particularly on touch surfaces, may also play an important role. Escherichia coli, virulent clone ST131, and Klebsiella pneumoniae encoding extended-spectrum ?-lactamase (ESBL) bla CTX-M-15 and metallo-?-lactamase bla NDM-1, respectively, exhibited prolonged survival on stainless steel with approximately 104 viable cells remaining from an inoculum of 107cfu per cm2 after one month at 21oC. HGT of bla to an antibiotic-sensitive but azide-resistant recipient E. coli occurred on stainless steel dry touch surfaces and in suspension, but not on dry copper. Conjugation frequency was approximately 10-50 times greater, occurred immediately and resulting transconjugants were more stable with ESBL E. coli as donor cell compared to K. pneumoniae but bla NDM-1 transfer increased with time. Transconjugants also exhibited the same resistance profile as donor suggesting multiple gene transfer. Rapid death, inhibition of respiration and destruction of genomic and plasmid DNA of both pathogens occurred on copper alloys accompanied by a reduction in bla copy number. Naked E. coli DNA degraded on copper at 21oC and 37oC but slowly at 4oC suggesting a direct role for the metal. Persistence of viable pathogenic bacteria on touch surfaces may not only increase risk of infection transmission but also contribute to spread of antibiotic resistance by HGT. The use of copper alloys as antimicrobial touch surfaces may help reduce infection and HGT
Complexation of DNA with positive spheres: phase diagram of charge inversion and reentrant condensation
The phase diagram of a water solution of DNA and oppositely charged spherical
macroions is studied. DNA winds around spheres to form beads-on-a-string
complexes resembling the chromatin 10 nm fiber. At small enough concentration
of spheres these "artificial chromatin" complexes are negative, while at large
enough concentrations of spheres the charge of DNA is inverted by the adsorbed
spheres. Charges of complexes stabilize their solutions. In the plane of
concentrations of DNA and spheres the phases with positive and negative
complexes are separated by another phase, which contains the condensate of
neutral DNA-spheres complexes. Thus when the concentration of spheres grows,
DNA-spheres complexes experience condensation and resolubilization (or
reentrant condensation). Phenomenological theory of the phase diagram of
reentrant condensation and charge inversion is suggested. Parameters of this
theory are calculated by microscopic theory. It is shown that an important part
of the effect of a monovalent salt on the phase diagram can be described by the
nontrivial renormalization of the effective linear charge density of DNA wound
around a sphere, due to the Onsager-Manning condensation. We argue that our
phenomenological phase diagram or reentrant condensation is generic to a large
class of strongly asymmetric electrolytes. Possible implication of these
results for the natural chromatin are discussed.Comment: Many corrections to text. SUbmitted to J. Chem. Phy
Recommended from our members
A conserved morphogenetic mechanism for epidermal ensheathment of nociceptive sensory neurites.
Interactions between epithelial cells and neurons influence a range of sensory modalities including taste, touch, and smell. Vertebrate and invertebrate epidermal cells ensheath peripheral arbors of somatosensory neurons, including nociceptors, yet the developmental origins and functional roles of this ensheathment are largely unknown. Here, we describe an evolutionarily conserved morphogenetic mechanism for epidermal ensheathment of somatosensory neurites. We found that somatosensory neurons in Drosophila and zebrafish induce formation of epidermal sheaths, which wrap neurites of different types of neurons to different extents. Neurites induce formation of plasma membrane phosphatidylinositol 4,5-bisphosphate microdomains at nascent sheaths, followed by a filamentous actin network, and recruitment of junctional proteins that likely form autotypic junctions to seal sheaths. Finally, blocking epidermal sheath formation destabilized dendrite branches and reduced nociceptive sensitivity in Drosophila. Epidermal somatosensory neurite ensheathment is thus a deeply conserved cellular process that contributes to the morphogenesis and function of nociceptive sensory neurons
Field guide for didymo DNA sample collection
This protocol is designed for work in two-person teams for both safety and to maximise
sample integrity
Functional expression of TRPV4 channels in human collecting duct cells: implications for secondary hypertension in diabetic nephropathy
Background. The Vanilloid subfamily of transient receptor potential (TRPV) ion channels has been widely implicated in detecting osmotic and mechanical stress. In the current study, we examine the functional expression of TRPV4 channels in cell volume regulation in cells of the human collecting duct. Methods. Western blot analysis, siRNA knockdown, and microfluorimetry were used to assess the expression and function of TRPV4 in mediating Ca2+-dependent mechanical stimulation within a novel system of the human collecting duct (HCD). Results. Native and siRNA knockdown of TRPV4 protein expression was confirmed by western blot analysis. Touch was used as a cell-directed surrogate for osmotic stress. Mechanical stimulation of HCD cells evoked a transient increase in [Ca2+]i that was dependent upon thapsigargin-sensitive store release and Ca2+ influx. At 48 hrs, high glucose and mannitol (25 mM) reduced TRPV4 expression by 54% and 24%, respectively. Similar treatment doubled SGK1 expression. Touch-evoked changes were negated following TRPV4 knockdown. Conclusion. Our data confirm expression of Ca2+-dependent TRPV4 channels in HCD cells and suggest that a loss of expression in response to high glucose attenuates the ability of the collecting duct to exhibit regulatory volume decreases, an effect that may contribute to the pathology of fluid and electrolyte imbalance as observed in diabetic nephropathy
An investigation into the detection of latent marks on the feathers and eggs of birds of prey
There are numerous enhancement techniques (physical and chemical) which have been developed for the successful visualisation of latent fingermarks. Nonetheless, problems arise when latent fingermarks require enhancement on difficult surfaces such as human skin, food stuffs, fabric and animals. The ability to develop latent fingermarks on the surface of bird of prey feathers and that of their eggs was investigated. Red and green magnetic fluorescent powders proved to be most suitable on the surface of bird of prey feathers whereas black magnetic powder was the most suitable technique on the eggs. These powders produced the highest quality of visible ridge-detailed developments over a controlled period of time
Kinetics of macroion coagulation induced by multivalent counterions
Due to the strong correlations between multivalent counterions condensed on a
macroion, the net macroion charge changes sign at some critical counterion
concentration. This effect is known as the charge inversion. Near this critical
concentration the macroion net charge is small. Therefore, short range
attractive forces between macroions dominate Coulomb repulsion and lead to
their coagulation. The kinetics of macroion coagulation in this range of
counterion concentrations is studied. We calculate the Coulomb barrier between
two approaching like charged macroions at a given counterion concentration. Two
different macroion shapes (spherical and rod-like) are considered. A new
"self-regulated" regime of coagulation is found. As the size of aggregates
increases, their charge and Coulomb barrier also grow and diminish the sticking
probability of aggregates. This leads to a slow, logarithmic increase of the
aggregate size with time.Comment: Some formulas correcte
Bimodal activation of different neuron classes with the spectrally red-shifted channelrhodopsin chimera C1V1 in Caenorhabditis elegans
The C. elegans nervous system is particularly well suited for optogenetic analyses of circuit function: Essentially all connections have been mapped, and light can be directed at the neuron of interest in the freely moving, transparent animals, while behavior is observed. Thus, different nodes of a neuronal network can be probed for their role in controlling a particular behavior, using different optogenetic tools for photo-activation or –inhibition, which respond to different colors of light. As neurons may act in concert or in opposing ways to affect a behavior, one would further like to excite these neurons concomitantly, yet independent of each other. In addition to the blue-light activated Channelrhodopsin-2 (ChR2), spectrally red-shifted ChR variants have been explored recently. Here, we establish the green-light activated ChR chimera C1V1 (from Chlamydomonas and Volvox ChR1′s) for use in C. elegans. We surveyed a number of red-shifted ChRs, and found that C1V1-ET/ET (E122T; E162T) works most reliable in C. elegans, with 540–580 nm excitation, which leaves ChR2 silent. However, as C1V1-ET/ET is very light sensitive, it still becomes activated when ChR2 is stimulated, even at 400 nm. Thus, we generated a highly efficient blue ChR2, the H134R; T159C double mutant (ChR2-HR/TC). Both proteins can be used in the same animal, in different neurons, to independently control each cell type with light, enabling a further level of complexity in circuit analyses
- …
