19,973 research outputs found

    Building Damage-Resilient Dominating Sets in Complex Networks against Random and Targeted Attacks

    Full text link
    We study the vulnerability of dominating sets against random and targeted node removals in complex networks. While small, cost-efficient dominating sets play a significant role in controllability and observability of these networks, a fixed and intact network structure is always implicitly assumed. We find that cost-efficiency of dominating sets optimized for small size alone comes at a price of being vulnerable to damage; domination in the remaining network can be severely disrupted, even if a small fraction of dominator nodes are lost. We develop two new methods for finding flexible dominating sets, allowing either adjustable overall resilience, or dominating set size, while maximizing the dominated fraction of the remaining network after the attack. We analyze the efficiency of each method on synthetic scale-free networks, as well as real complex networks

    A Greedy Partition Lemma for Directed Domination

    Get PDF
    A directed dominating set in a directed graph DD is a set SS of vertices of VV such that every vertex uV(D)Su \in V(D) \setminus S has an adjacent vertex vv in SS with vv directed to uu. The directed domination number of DD, denoted by γ(D)\gamma(D), is the minimum cardinality of a directed dominating set in DD. The directed domination number of a graph GG, denoted Γd(G)\Gamma_d(G), which is the maximum directed domination number γ(D)\gamma(D) over all orientations DD of GG. The directed domination number of a complete graph was first studied by Erd\"{o}s [Math. Gaz. 47 (1963), 220--222], albeit in disguised form. In this paper we prove a Greedy Partition Lemma for directed domination in oriented graphs. Applying this lemma, we obtain bounds on the directed domination number. In particular, if α\alpha denotes the independence number of a graph GG, we show that αΓd(G)α(1+2ln(n/α))\alpha \le \Gamma_d(G) \le \alpha(1+2\ln(n/\alpha)).Comment: 12 page

    The Algorithmic Complexity of Bondage and Reinforcement Problems in bipartite graphs

    Full text link
    Let G=(V,E)G=(V,E) be a graph. A subset DVD\subseteq V is a dominating set if every vertex not in DD is adjacent to a vertex in DD. The domination number of GG, denoted by γ(G)\gamma(G), is the smallest cardinality of a dominating set of GG. The bondage number of a nonempty graph GG is the smallest number of edges whose removal from GG results in a graph with domination number larger than γ(G)\gamma(G). The reinforcement number of GG is the smallest number of edges whose addition to GG results in a graph with smaller domination number than γ(G)\gamma(G). In 2012, Hu and Xu proved that the decision problems for the bondage, the total bondage, the reinforcement and the total reinforcement numbers are all NP-hard in general graphs. In this paper, we improve these results to bipartite graphs.Comment: 13 pages, 4 figures. arXiv admin note: substantial text overlap with arXiv:1109.1657; and text overlap with arXiv:1204.4010 by other author

    Maximum Number of Minimum Dominating and Minimum Total Dominating Sets

    Full text link
    Given a connected graph with domination (or total domination) number \gamma>=2, we ask for the maximum number m_\gamma and m_{\gamma,T} of dominating and total dominating sets of size \gamma. An exact answer is provided for \gamma=2and lower bounds are given for \gamma>=3.Comment: 6 page
    corecore