15,267 research outputs found

    Absorption Time of the Moran Process

    Get PDF
    The Moran process models the spread of mutations in populations on graphs. We investigate the absorption time of the process, which is the time taken for a mutation introduced at a randomly chosen vertex to either spread to the whole population, or to become extinct. It is known that the expected absorption time for an advantageous mutation is O(n^4) on an n-vertex undirected graph, which allows the behaviour of the process on undirected graphs to be analysed using the Markov chain Monte Carlo method. We show that this does not extend to directed graphs by exhibiting an infinite family of directed graphs for which the expected absorption time is exponential in the number of vertices. However, for regular directed graphs, we show that the expected absorption time is Omega(n log n) and O(n^2). We exhibit families of graphs matching these bounds and give improved bounds for other families of graphs, based on isoperimetric number. Our results are obtained via stochastic dominations which we demonstrate by establishing a coupling in a related continuous-time model. The coupling also implies several natural domination results regarding the fixation probability of the original (discrete-time) process, resolving a conjecture of Shakarian, Roos and Johnson.Comment: minor change

    Maker-Breaker domination number

    Full text link
    The Maker-Breaker domination game is played on a graph GG by Dominator and Staller. The players alternatively select a vertex of GG that was not yet chosen in the course of the game. Dominator wins if at some point the vertices he has chosen form a dominating set. Staller wins if Dominator cannot form a dominating set. In this paper we introduce the Maker-Breaker domination number γMB(G)\gamma_{{\rm MB}}(G) of GG as the minimum number of moves of Dominator to win the game provided that he has a winning strategy and is the first to play. If Staller plays first, then the corresponding invariant is denoted γMB(G)\gamma_{{\rm MB}}'(G). Comparing the two invariants it turns out that they behave much differently than the related game domination numbers. The invariant γMB(G)\gamma_{{\rm MB}}(G) is also compared with the domination number. Using the Erd\H{o}s-Selfridge Criterion a large class of graphs GG is found for which γMB(G)>γ(G)\gamma_{{\rm MB}}(G) > \gamma(G) holds. Residual graphs are introduced and used to bound/determine γMB(G)\gamma_{{\rm MB}}(G) and γMB(G)\gamma_{{\rm MB}}'(G). Using residual graphs, γMB(T)\gamma_{{\rm MB}}(T) and γMB(T)\gamma_{{\rm MB}}'(T) are determined for an arbitrary tree. The invariants are also obtained for cycles and bounded for union of graphs. A list of open problems and directions for further investigations is given.Comment: 20 pages, 5 figure
    corecore