77,493 research outputs found

    Understanding the Impact of Rural Electrification in Uttar Pradesh and Bihar, India: Evidence from The Rockefeller Foundation's Smart Power for Rural Development Initiative

    Get PDF
    Launched in 2015, Smart Power for Rural Development (SPRD) is a $75 million Rockefeller Foundationinitiative aimed at accelerating development in India's least electrified states. Through the deploymentof decentralized, renewable energy mini-grids, SPRD has supported the Foundation's vision of speedingthe growth of rural economies, while at the same time improving the lives and livelihoods of poor andmarginalized families and communities.A monitoring and evaluation (M&E) grantee, Sambodhi, was funded to work alongside implementingpartners to measure and document the changes that the initiative is having in people's lives. Sambodhialso collected data to inform decision making and support course correction throughout the initiative'simplementation.This report summarizes M&E data collected in late 2016, covering the period March 2016–August 2016.The sample for this report is 39 sites across Uttar Pradesh and Bihar, consisting of 1,000 households and320 micro-enterprises. Together, these constitute nearly 10 percent of SPRD customers. Another 328non-customer households were consulted to provide a comparative perspective

    First operation and performance of a 200 lt double phase LAr LEM-TPC with a 40x76 cm^2 readout

    Full text link
    In this paper we describe the design, construction, and operation of a first large area double-phase liquid argon Large Electron Multiplier Time Projection Chamber (LAr LEM-TPC). The detector has a maximum drift length of 60 cm and the readout consists of a 40×7640\times 76 cm2^2 LEM and 2D projective anode to multiply and collect drifting charges. Scintillation light is detected by means of cryogenic PMTs positioned below the cathode. To record both charge and light signals, we have developed a compact acquisition system, which is scalable up to ton-scale detectors with thousands of charge readout channels. The acquisition system, as well as the design and the performance of custom-made charge sensitive preamplifiers, are described. The complete experimental setup has been operated for a first time during a period of four weeks at CERN in the cryostat of the ArDM experiment, which was equipped with liquid and gas argon purification systems. The detector, exposed to cosmic rays, recorded events with a single-channel signal-to-noise ratio in excess of 30 for minimum ionising particles. Cosmic muon tracks and their δ\delta-rays were used to assess the performance of the detector, and to estimate the liquid argon purity and the gain at different amplification fields.Comment: 23 pages, 21 figure

    An Optical Readout TPC (O-TPC) for Studies in Nuclear Astrophysics With Gamma-Ray Beams at HIgS

    Full text link
    We report on the construction, tests, calibrations and commissioning of an Optical Readout Time Projection Chamber (O-TPC) detector operating with a CO2(80%) + N2(20%) gas mixture at 100 and 150 Torr. It was designed to measure the cross sections of several key nuclear reactions involved in stellar evolution. In particular, a study of the rate of formation of oxygen and carbon during the process of helium burning will be performed by exposing the chamber gas to intense nearly mono-energetic gamma-ray beams at the High Intensity Gamma Source (HIgS) facility. The O-TPC has a sensitive target-drift volume of 30x30x21 cm^3. Ionization electrons drift towards a double parallel grid avalanche multiplier, yielding charge multiplication and light emission. Avalanche induced photons from N2 emission are collected, intensified and recorded with a Charge Coupled Device (CCD) camera, providing two-dimensional track images. The event's time projection (third coordinate) and the deposited energy are recorded by photomultipliers and by the TPC charge-signal, respectively. A dedicated VME-based data acquisition system and associated data analysis tools were developed to record and analyze these data. The O-TPC has been tested and calibrated with 3.183 MeV alpha-particles emitted by a 148Gd source placed within its volume with a measured energy resolution of 3.0%. Tracks of alpha and 12C particles from the dissociation of 16O and of three alpha-particles from the dissociation of 12C have been measured during initial in-beam test experiments performed at the HIgS facility at Duke University. The full detection system and its performance are described and the results of the preliminary in-beam test experiments are reported.Comment: Supported by the Richard F. Goodman Yale-Weizmann Exchange Program, ACWIS, NY, and USDOE grant Numbers: DE-FG02-94ER40870 and DE-FG02-97ER4103
    corecore