973 research outputs found

    On a Linear Program for Minimum-Weight Triangulation

    Full text link
    Minimum-weight triangulation (MWT) is NP-hard. It has a polynomial-time constant-factor approximation algorithm, and a variety of effective polynomial- time heuristics that, for many instances, can find the exact MWT. Linear programs (LPs) for MWT are well-studied, but previously no connection was known between any LP and any approximation algorithm or heuristic for MWT. Here we show the first such connections: for an LP formulation due to Dantzig et al. (1985): (i) the integrality gap is bounded by a constant; (ii) given any instance, if the aforementioned heuristics find the MWT, then so does the LP.Comment: To appear in SICOMP. Extended abstract appeared in SODA 201

    Hitting Diamonds and Growing Cacti

    Full text link
    We consider the following NP-hard problem: in a weighted graph, find a minimum cost set of vertices whose removal leaves a graph in which no two cycles share an edge. We obtain a constant-factor approximation algorithm, based on the primal-dual method. Moreover, we show that the integrality gap of the natural LP relaxation of the problem is \Theta(\log n), where n denotes the number of vertices in the graph.Comment: v2: several minor changes

    Approximation Algorithms for Union and Intersection Covering Problems

    Get PDF
    In a classical covering problem, we are given a set of requests that we need to satisfy (fully or partially), by buying a subset of items at minimum cost. For example, in the k-MST problem we want to find the cheapest tree spanning at least k nodes of an edge-weighted graph. Here nodes and edges represent requests and items, respectively. In this paper, we initiate the study of a new family of multi-layer covering problems. Each such problem consists of a collection of h distinct instances of a standard covering problem (layers), with the constraint that all layers share the same set of requests. We identify two main subfamilies of these problems: - in a union multi-layer problem, a request is satisfied if it is satisfied in at least one layer; - in an intersection multi-layer problem, a request is satisfied if it is satisfied in all layers. To see some natural applications, consider both generalizations of k-MST. Union k-MST can model a problem where we are asked to connect a set of users to at least one of two communication networks, e.g., a wireless and a wired network. On the other hand, intersection k-MST can formalize the problem of connecting a subset of users to both electricity and water. We present a number of hardness and approximation results for union and intersection versions of several standard optimization problems: MST, Steiner tree, set cover, facility location, TSP, and their partial covering variants

    Approximation algorithms for Capacitated Facility Location Problem with Penalties

    Full text link
    In this paper, we address the problem of capacitated facility location problem with penalties (CapFLPP) paid per unit of unserved demand. In case of uncapacitated FLP with penalties demands of a client are either entirely met or are entirely rejected and penalty is paid. In the uncapacitated case, there is no reason to serve a client partially. Whereas, in case of CapFLPP, it may be beneficial to serve a client partially instead of not serving at all and, pay the penalty for the unmet demand. Charikar et. al. \cite{charikar2001algorithms}, Jain et. al. \cite{jain2003greedy} and Xu- Xu \cite{xu2009improved} gave 33, 22 and 1.85261.8526 approximation, respectively, for the uncapacitated case . We present (5.83+ϵ)(5.83 + \epsilon) factor for the case of uniform capacities and (8.532+ϵ)(8.532 + \epsilon) factor for non-uniform capacities

    A 1.751.75 LP approximation for the Tree Augmentation Problem

    Full text link
    In the Tree Augmentation Problem (TAP) the goal is to augment a tree TT by a minimum size edge set FF from a given edge set EE such that T∪FT \cup F is 22-edge-connected. The best approximation ratio known for TAP is 1.51.5. In the more general Weighted TAP problem, FF should be of minimum weight. Weighted TAP admits several 22-approximation algorithms w.r.t. to the standard cut LP-relaxation, but for all of them the performance ratio of 22 is tight even for TAP. The problem is equivalent to the problem of covering a laminar set family. Laminar set families play an important role in the design of approximation algorithms for connectivity network design problems. In fact, Weighted TAP is the simplest connectivity network design problem for which a ratio better than 22 is not known. Improving this "natural" ratio is a major open problem, which may have implications on many other network design problems. It seems that achieving this goal requires finding an LP-relaxation with integrality gap better than 22, which is a long time open problem even for TAP. In this paper we introduce such an LP-relaxation and give an algorithm that computes a feasible solution for TAP of size at most 1.751.75 times the optimal LP value. This gives some hope to break the ratio 22 for the weighted case. Our algorithm computes some initial edge set by solving a partial system of constraints that form the integral edge-cover polytope, and then applies local search on 33-leaf subtrees to exchange some of the edges and to add additional edges. Thus we do not need to solve the LP, and the algorithm runs roughly in time required to find a minimum weight edge-cover in a general graph.Comment: arXiv admin note: substantial text overlap with arXiv:1507.0279
    • …
    corecore