852 research outputs found

    Position Sensing Errors in Synchronous Motor Drives

    Full text link
    Non-ideal position estimation results in degraded performance of synchronous motor drive systems due to reduction of the average capability of the drive as well as torque harmonics of different orders. The signature and extent of the performance degradation is further dependent, quite significantly, on the current control architecture, i.e., feedforward or feedback control, employed. This paper presents a comprehensive analysis of non-idealities or errors in position estimation and their effects on the control performance of synchronous motor drives. Analytical models capturing the error in various signals caused by position sensing errors in the drive system for different control architectures are presented and are validated with simulation and experimental results on a prototype permanent magnet synchronous motor drive

    Neural-Network Vector Controller for Permanent-Magnet Synchronous Motor Drives: Simulated and Hardware-Validated Results

    Get PDF
    This paper focuses on current control in a permanentmagnet synchronous motor (PMSM). The paper has two main objectives: The first objective is to develop a neural-network (NN) vector controller to overcome the decoupling inaccuracy problem associated with conventional PI-based vector-control methods. The NN is developed using the full dynamic equation of a PMSM, and trained to implement optimal control based on approximate dynamic programming. The second objective is to evaluate the robust and adaptive performance of the NN controller against that of the conventional standard vector controller under motor parameter variation and dynamic control conditions by (a) simulating the behavior of a PMSM typically used in realistic electric vehicle applications and (b) building an experimental system for hardware validation as well as combined hardware and simulation evaluation. The results demonstrate that the NN controller outperforms conventional vector controllers in both simulation and hardware implementation

    Control Performance Analysis of Power Steering System Electromechanical Dynamics

    Full text link
    Modern power steering systems employ an electric motor drive system to provide torque assistance to the driver. The closed-loop mechanical system dynamics that impact stability, performance and steering feel are significantly impacted by the electrical dynamics of the actuator depending on the structure and tuning of the motor torque controller. This paper presents an integrated approach to the analysis of this electromechanical dynamic control interaction through mathematical modeling which is confirmed with simulations

    A general magnetic-energy-based torque estimator: validation via a permanent-magnet motor drive

    Get PDF
    This paper describes the use of the current–flux-linkage (ipsii{-}psi ) diagram to validate the performance of a general magnetic-energy-based torque estimator. An early step in the torque estimation is the use of controller duty cycles to reconstruct the average phase-voltage waveform during each pulsewidth-modulation (PWM) switching period. Samples over the fundamental period are recorded for the estimation of the average torque. The fundamental period may not be an exact multiple of the sample time. For low speed, the reconstructed voltage requires additional compensation for inverter-device losses. Experimental validation of this reconstructed waveform with the actual PWM phase-voltage waveform is impossible due to the fact that one is PWM in nature and the other is the average value during the PWM period. A solution to this is to determine the phase flux-linkage using each waveform and then plot the resultant ipsii{-}psi loops. The torque estimation is based on instantaneous measurements and can therefore be applied to any electrical machine. This paper includes test results for a three-phase interior permanent-magnet brushless ac motor operating with both sinusoidal and nonsinusoidal current waveforms

    Nonlinear state-observer techniques for sensorless control of automotive PMSM's, including load-torque estimation and saliency

    Get PDF
    The paper investigates various non-linear observer-based rotor position estimation schemes for sensorless control of permanent magnet synchronous motors (PMSMs). Attributes of particular importance to the application of brushless motors in the automotive sector, are considered e.g. implementation cost, accuracy of predictions during load transients, the impact of motor saliency and algorithm complexity. Emphasis is given to techniques based on model linearisation during each sampling period (EKF); feedback-linearisation followed by Luenberger observer design based on the resulting �linear� motor characteristics; and direct design of non-linear observers. Although the benefits of sensorless commutation of PMSMs have been well expounded in the literature, an integrated approach to their design for application to salient machines subject to load torque transients remains outstanding. Furthermore, this paper shows that the inherent characteristics of some non-linear observer structures are particularly attractive since they provide a phase-locked-loop (PLL)-type of configuration that can encourage stable rotor position estimation, thereby enhancing the overall sensorless scheme. Moreover, experimental results show how operation through, and from, zero speed, is readily obtainable. Experimental results are also employed to demonstrate the attributes of each methodology, and provide dynamic and computational performance comparisons

    Direct Flux Field Oriented Control of IPM Drives with Variable DC-Link in the Field-Weakening Region

    Get PDF
    This paper presents the direct flux control of an interior permanent-magnet (IPM) motor drive in the field-weakening region. The output torque is regulated by the coordinated control of the stator flux amplitude and the current component in quadrature with the flux, and it is implemented in the stator flux reference frame. The control system guarantees maximum torque production taking into account voltage and current limits, in particular in case of large dc-link variations. The field-oriented control does not necessarily require an accurate magnetic model of the IPM motor, and it is able to exploit the full inverter voltage at different dc-link levels with no additional voltage control loop. The feasibility of the proposed control method is investigated in discrete-time simulation, then tested on a laboratory rig, and finally implemented on board of an electric scooter prototype. The motor under test is an IPM permanent-magnet-assisted synchronous reluctance machine, with high-saliency and limited permanent-magnet flu

    Stator-Flux-Oriented Control of Synchronous Motors: A Systematic Design Procedure

    Get PDF
    This paper deals with stator-flux-oriented control of permanent-magnet (PM) synchronous motors and synchronous reluctance motors (SyRMs). The variables to be controlled are the stator-flux magnitude and the torque-producing current component, whose references are easy to calculate. However, the dynamics of these variables are nonlinear and coupled, potentially compromising the control performance. We propose an exact input-output feedback linearization structure and a systematic design procedure for the stator-flux-oriented control method in order to improve the control performance. The proposed controller is evaluated by means of experiments using a 6.7-kW SyRM drive and a 2.2-kW interior PM synchronous motor drive

    Design and Control of Electrical Motor Drives

    Get PDF
    Dear Colleagues, I am very happy to have this Special Issue of the journal Energies on the topic of Design and Control of Electrical Motor Drives published. Electrical motor drives are widely used in the industry, automation, transportation, and home appliances. Indeed, rolling mills, machine tools, high-speed trains, subway systems, elevators, electric vehicles, air conditioners, all depend on electrical motor drives.However, the production of effective and practical motors and drives requires flexibility in the regulation of current, torque, flux, acceleration, position, and speed. Without proper modeling, drive, and control, these motor drive systems cannot function effectively.To address these issues, we need to focus on the design, modeling, drive, and control of different types of motors, such as induction motors, permanent magnet synchronous motors, brushless DC motors, DC motors, synchronous reluctance motors, switched reluctance motors, flux-switching motors, linear motors, and step motors.Therefore, relevant research topics in this field of study include modeling electrical motor drives, both in transient and in steady-state, and designing control methods based on novel control strategies (e.g., PI controllers, fuzzy logic controllers, neural network controllers, predictive controllers, adaptive controllers, nonlinear controllers, etc.), with particular attention to transient responses, load disturbances, fault tolerance, and multi-motor drive techniques. This Special Issue include original contributions regarding recent developments and ideas in motor design, motor drive, and motor control. The topics include motor design, field-oriented control, torque control, reliability improvement, advanced controllers for motor drive systems, DSP-based sensorless motor drive systems, high-performance motor drive systems, high-efficiency motor drive systems, and practical applications of motor drive systems. I want to sincerely thank authors, reviewers, and staff members for their time and efforts. Prof. Dr. Tian-Hua Liu Guest Edito
    corecore