28,790 research outputs found

    An Energy Balanced Dynamic Topology Control Algorithm for Improved Network Lifetime

    Full text link
    In wireless sensor networks, a few sensor nodes end up being vulnerable to potentially rapid depletion of the battery reserves due to either their central location or just the traffic patterns generated by the application. Traditional energy management strategies, such as those which use topology control algorithms, reduce the energy consumed at each node to the minimum necessary. In this paper, we use a different approach that balances the energy consumption at each of the nodes, thus increasing the functional lifetime of the network. We propose a new distributed dynamic topology control algorithm called Energy Balanced Topology Control (EBTC) which considers the actual energy consumed for each transmission and reception to achieve the goal of an increased functional lifetime. We analyze the algorithm's computational and communication complexity and show that it is equivalent or lower in complexity to other dynamic topology control algorithms. Using an empirical model of energy consumption, we show that the EBTC algorithm increases the lifetime of a wireless sensor network by over 40% compared to the best of previously known algorithms

    Rapid Prototyping of Topology Control Algorithms by Graph Transformation

    Get PDF
    Topology control algorithms are used to improve the energy efficiency (or other quality parameters) of wireless sensor networks. In this paper, we propose a model-driven rapid prototyping approach for the kTC topology control algorithm to enable the fast implementation and the evaluation of its different variants, and consequently, to accelerate the network quality experimentation cycle. In our approach, wireless sensor networks are described by graph-based models, and three variants of the kTC topology control algorithm are implemented by graph transformation, which are then executed on input network descriptions to derive modified topologies whose quality is then measured in several contexts to be able to assess the achieved network quality improvement

    Optimization of Wireless Sensor Network Lifetime by Deploying Relay Sensors

    Get PDF
    Topology control in wireless sensor networks helps to lower node energy consumption by reducing transmission power and by confining interference, collisions and consequently retransmissions. Decrease in node energy consumption implies probability of increasing network lifetime. In this paper, first we analyze popular topology control algorithms used for optimizing the power consumption in the wireless sensor network and later propose a novel technique wherein power consumption is traded with additional relay nodes. We introduce relay nodes to make the network connected without increasing the transmit power. The relay node decreases the transmit power required while it may increase end-to-end delay.  We design and analyze an algorithm that place an almost minimum number of relay nodes required to make network connected. We have implemented greedy version of this algorithm and demonstrated in simulation that it produces a high quality link. We use InterAvg, InterMax (no of nodes that can offer interference) MinMax, and MinTotal as metrics to analyze and compare various algorithms. Matlab and NS-2 are used for simulation purpose. Keywords: Energy saving, sensor networks, Interference, network connectivity, topology control

    Localized and Configurable Topology Control in Lossy Wireless Sensor Networks

    Get PDF
    Recent empirical studies revealed that multi-hop wireless networks like wireless sensor networks and 802.11 mesh networks are inherently lossy. This finding introduces important new challenges for topology control. Existing topology control schemes often aim at maintaining network connectivity that cannot guarantee satisfactory path quality and communication performance when underlying links are lossy. In this paper, we present a localized algorithm, called Configurable Topology Control (CTC), that can configure a network topology to different provable quality levels (quantified by worst-case dilation bounds in terms of expected total number of transmisssions) required by applications. Each node running CTC computes its transmission power solely based on the link quality information collected within its local neighborhood and does not assume that the neighbor locations or communication ranges are known. Our simulations based on a realistic radio model of Mica2 motes show that CTC yields configurable communication performance and outperforms existing topology control algorithms that do not account for lossy links

    Multicast Connections in Wireless Sensor Networks with Topology Control, Journal of Telecommunications and Information Technology, 2016, nr 1

    Get PDF
    The article explores the quality of multicast trees constructed by heuristic routing algorithms in wireless sensor networks where topology control protocols operate. Network topology planning and performance analysis are crucial challenges for wire and wireless network designers. They are also involved in the research on routing algorithms, and protocols for these networks. In addition, it is worth to emphasize that the generation of realistic network topologies makes it possible to construct and study routing algorithms, protocols and traffic characteristics for WSN networks

    Topology Control Algorithm considering Antenna Radiation Pattern in Three-Dimensional Wireless Sensor Networks

    Get PDF
    Topology control is a key issue of wireless sensor network to reduce energy consumption and communication collision. Topology control algorithms in three-dimensional space have been proposed by modifying existing two-dimensional algorithms. These algorithms are based on the theoretical assumption that transmission power is radiated equally to the all directions by using isotropic antenna model. However, isotropic antenna does not exist, which is hypothetical antenna to compare the real antenna performance. In the real network, dipole antenna is applied, and because of the radiation pattern, performance of topology control algorithm is degraded. We proposed local remapping algorithm to solve the problem and applied it to existing topology control algorithms. Simulation results show that our algorithm increases performance of existing algorithms and reduces power consumption

    A Distributed Geo-Routing Algorithm for Wireless Sensor Networks

    Get PDF
    Geographic wireless sensor networks use position information for greedy routing. Greedy routing works well in dense networks, whereas in sparse networks it may fail and require a recovery algorithm. Recovery algorithms help the packet to get out of the communication void. However, these algorithms are generally costly for resource constrained position-based wireless sensor networks (WSNs). In this paper, we propose a void avoidance algorithm (VAA), a novel idea based on upgrading virtual distance. VAA allows wireless sensor nodes to remove all stuck nodes by transforming the routing graph and forwarding packets using only greedy routing. In VAA, the stuck node upgrades distance unless it finds a next hop node that is closer to the destination than it is. VAA guarantees packet delivery if there is a topologically valid path. Further, it is completely distributed, immediately responds to node failure or topology changes and does not require planarization of the network. NS-2 is used to evaluate the performance and correctness of VAA and we compare its performance to other protocols. Simulations show our proposed algorithm consumes less energy, has an efficient path and substantially less control overheads

    Gossip Algorithms for Distributed Signal Processing

    Full text link
    Gossip algorithms are attractive for in-network processing in sensor networks because they do not require any specialized routing, there is no bottleneck or single point of failure, and they are robust to unreliable wireless network conditions. Recently, there has been a surge of activity in the computer science, control, signal processing, and information theory communities, developing faster and more robust gossip algorithms and deriving theoretical performance guarantees. This article presents an overview of recent work in the area. We describe convergence rate results, which are related to the number of transmitted messages and thus the amount of energy consumed in the network for gossiping. We discuss issues related to gossiping over wireless links, including the effects of quantization and noise, and we illustrate the use of gossip algorithms for canonical signal processing tasks including distributed estimation, source localization, and compression.Comment: Submitted to Proceedings of the IEEE, 29 page
    corecore