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Localized and Configurable Topology Control

in Lossy Wireless Sensor Networks
Guoliang Xing; Chenyang Lu; Robert Pless

Abstract

Wireless sensor networks (WSNs) introduce new challenges to topology control due to the prevalence of lossy

links. We propose a new topology control formulation for lossy WSNs. In contrast to previous deterministic models,

our formulation captures the stochastic nature of lossy links and quantifies the worst-case path quality in a network.

We develop a novel localized scheme called Configurable Topology Control (CTC). The key feature of CTC is

its capability of flexibly configuring the topology of a lossyWSN to achieve desired path quality bounds in a

localized fashion. Furthermore, CTC can incorporate different control strategies (per-node/per-link) and optimization

criteria. Simulations using a realistic radio model of Mica2 motes show that CTC significantly outperforms an

representative traditional topology control algorithm called LMST in terms of both communication performance and

energy efficiency. Our results demonstrate the importance of incorporating lossy links of WSNs in the design of

topology control algorithms.

keywords: Lossy Sensor Networks, Topology Control, Link Quality; Dilation of Transmission Count; Localized

Algorithms

Technical area: Sensor Networks

I. I NTRODUCTION

Recent years have seen the deployment of wireless sensor networks (WSNs) for a variety of applications such as

environmental monitoring, precision agriculture, and perimeter security. The key to the success of these applications

lies in the ability of the WSNs to support reliable communication over long periods of time without wired power

supplies. Recent empirical studies [1], [2], [3] revealed that the quality of wireless links in WSNs suffer from

significant variations with time and environments, which has introduced a major challenge to achieving reliable

and power-efficient multi-hop communication. Lossy links can result in severe degradation in communication

performance and excessive energy wastage. Zhao et al. [1] reported that a third of the links in a test-bed composed

of 60 Mica motes experienced more than30% packet loss even under light workloads. Consequently, up to80%

of the total energy consumption of the radio was attributed to packet loss [1].

Guoliang Xing is with City University of Hong Kong, E-mail: glxing@cityu.edu.hk; Chenyang Lu and Robert Pless are with Washington

University in St. Louis, E-mail:{lu,pless}@cse.wustl.edu. A short version of this paper will appear atthe 16th International Conference on

Computer Communications and Networks (ICCCN 2007).



Topology control is a key technique to reducing network transmission power while maintaining desired network

properties. A multitude of topology control algorithms [4]have been proposed for wireless ad hoc networks.

However, WSNs introduce important new challenges that havenot been adequately addressed by existing solutions.

Firstly, recent empirical studies [1], [5] revealed the prevalence of lossy and asymmetric links in WSNs. Moreover,

receivers with a same distance to a sender experience highlyvariable reception performance. These findings

contradict the widely adopted deterministic link models. Hence, topology control needs to adopt more realistic

network models that capture the lossy nature of WSNs.

Secondly, most topology control schemes aim at maintainingconnectivity based network properties. However,

connectivity alone doesnot suffice to provide satisfactory communication performancewhen the network is lossy.

Communication along a lossy network path may result in excessive packet loss and energy waste. To address the

issue of link unreliability, new topology control metrics need to be devised.

Thirdly, different WSN applications require different levels of topology quality in a network. For example, code

dissemination requires highly reliable packet delivery inorder to ensure consistency among all nodes [6], while

sporadic data loss is tolerable for data collection in denseWSNs since sensor data usually has high redundancy

[7]. Therefore, topology control must minimize the power consumption of the network while achieving the desired

path quality required by the application.

This paper makes the following main contributions. (1) We propose a new formulation of topology control

problem for lossy WSNs based on a new metric calleddilation of transmission count (DTC). In sharp contrast to

earlier metrics based on deterministic link models, DTC captures the stochastic nature of lossy links and quantifies

the worst-case path quality of a network topology. (2) We propose a set of novel, localizedconfigurable topology

control (CTC) algorithms that can achieve different DTC bounds. CTC has three salient features. First, it can

provide path quality assurance over lossy and asymmetric links in WSNs. Furthermore, it enables applications

to achieve desired tradeoff between transmission power andpath quality based on their specific requirements.

Finally, it can handle network dynamics efficiently. (3) We conducted extensive simulations based on a realistic

link model [8] that captures lossy link characteristics of Mica2 motes. Our results show that CTC significantly

outperforms a representative topology control scheme called LMST [9] in terms of delivery rate, data latency and

energy consumption.

The rest of the paper is organized as follows. Section II reviews related work. Section III provides a new

formulation for the topology control problem in lossy networks. Section IV presents the design and theoretical

analysis of the CTC algorithms. Section V discusses how our approach can be extended when the assumption on

the monotone link property is relaxed. Section VI presents the simulation results. Section VII concludes the paper.

II. RELATED WORK

Topology control aims at maintaining desirable propertiesof wireless ad hoc networks (e.g., connectivity and

power efficiency). We refer to [4] for a comprehensive surveyon the existing topology control algorithms. They fall

into two basic classes: per-link control [10], [11], [12], [13], [14] and per-node control [15], [9], [16], [17], [18],
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[19]. In per-link control, a node can use different transmission power for different receivers. In contrast, a node in

per-node control uses the same transmission power for different receivers. Per-node control simplifies the design of

neighbor management and the underlying MAC protocol while per-link control may result in more energy saving.

Compared to earlier algorithms, localized and fault-tolerant topology control schemes are more suitable for lossy

WSNs because they are more robust against network dynamics.Several algorithms [20], [21], [22] can mitigate

the impact of lossy links by maintaining K-connectivity of the network. While K-connectivity may improve the

reliability of a network topology to some extent, it does notprovide assurance of path quality because lossy links

may exist on multiple paths.

XTC [23] preserves links based on certain ordering of the neighbors. Link quality is one of the ordering metrics.

Although XTC assumes a general graph model and constructs topologies with good average spanner property, it does

not provide path quality assurance. Moreover, XTC cannot configure a topology to different quality levels required

by applications. Recently, a lightweight algorithm calledATPC [24] is proposed to achieve reliable topologies in

lossy WSNs. ATPC is designed to maintain per-hop link quality only. It cannot achieve desired path quality over

multiple hops, nor can it flexibly configure a network to different quality levels.

Moscibroda et al. [25] studied the limitations of traditional network models and analyzed the impact of topology

control on link scheduling based on a physical Signal-to-Interference-plus-Noise-Ratio (SINR) model. In contrast to

the previous deterministic graph models, we adopt a networkmodel suitable for lossy WSNs, and propose solutions

to handle the impact of network dynamics on topology control.

The metric of dilation of transmission count in this paper isrelated to thestretch factorin graph spanner problems.

We refer to [26] for a review of the existing centralized algorithms for constructing graph spanners. Recently,

localized algorithms have also been proposed [27], [28], [29]. However, they are only applicable to geometric

network models based on circular radio ranges. In contrast,our algorithms are based on a general network model

that accounts for lossy and asymmetric links.

III. PROBLEM FORMULATION

In this section, we first introduce a network model that captures the lossy nature of WSNs. We then provide new

formulation of the topology control problem for lossy WSNs.

A. Network Model

Each node can transmit at any power from a discrete setS = {Pi|1 ≤ i ≤ n}. Pi > Pj ⇔ i > j. For example,

the CC1000 radio on Mica2 motes [30] can transmit at 32 different power levels. We note that our algorithms in

Section IV do not require that all nodes have the same set of tunable power. Thetransmission count, Ru,v,i, is

defined as the expected number of transmissions needed for nodeu to successfully send a packet tov at powerPi.

Note thatRu,v,i may not equalRv,u,i due to link asymmetry. The transmission count of a link can beestimated

based on the physical or empirical model of the radio [8], [3], [2], or using a link estimator [5], [31] that collects
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the transmission statistics online. We assume the use of a simple automatic repeat request (ARQ) mechanism at

the MAC layer as follows. A sender drops a data packet afterT transmissions if no acknowledgement is received.

A power assignmentΩ = {Pi|Pi ∈ S} assigns a transmission power for every node in the network ifthe per-node

topology control is used, or for every link if the per-link topology control is used. The network induced byΩ is

denoted by a directed graphGΩ(V, E). V includes all nodes in the network.E = {(u, v, i) | Ru,v,i ≤ T ; u, v ∈

V ; Pi ∈ Ω}. Note that there exist multiple links fromu to v at different power levels. We ignore the links with a

transmission count greater thanT . The transmission count of a pathis the sum of the transmission counts of all

the links on the path.

We note that the above network model is very general. First, it does not assume deterministic transmission ranges

or homogeneous radios. Second, it can capture realistic network properties such as lossy and asymmetric links.

Third, it can incorporate empirical measurements (e.g., the transmission count of a link) that reflect dynamic nature

of wireless links.

In this paper, we mainly focus on the WSNs that experience little interference or contention caused by concurrent

transmissions. Accordingly, we assume that higher transmission power leads to better link quality (and hence a lower

transmission count),i.e., Pi > Pj ⇒ Ru,v,i < Ru,v,j . This assumption is referred to asmonotone link quality. This

assumption is justified by the fact that higher transmissionpower alleviates the impact of path fading and noise, which

always results in better link quality when the interferenceis low. This property has been observed in several recent

empirical studies on WSNs [32], [31]. Many sensor networks in practice only impose light workload and hence the

interference among neighboring nodes is low. For instance,in the WSN deployed at Great Duck Island for habitat

monitoring [7], each of the 98 motes wakes up every 20 minutesto send its data to the base station. Many other

representative applications (e.g., precision agriculture and cargo tracking) also have low data rates. Furthermore,

interference can be eliminated or significantly reduced by scheduling interfering nodes to communicate at different

times. For example, TDMA MAC protocols [33], [34], [35] can schedule the channel access of neighboring nodes

to avoid contention. Recent interference-aware scheduling algorithms such as [36] and DCQS [37] can schedule

transmissions while avoiding both contention and interference in WSNs. Our topology control algorithms will work

particularly well for WSNs which has light load and/or uses interference-aware scheduling to minimize network

contention and interference. Nevertheless, the monotone link property may not hold temporarily due to dynamics

in such networks (e.g., occasional contention and interference may occur when a TDMA scheduling algorithm is in

transient sate caused by node failures). We discuss in Section V how to extend our approach when the assumption

of monotone link property is relaxed.

Finally, we assume nodes are stationary. Note that most existing WSNs are composed of stationary nodes. We

note that the quality of a link may still fluctuate even when nodes are not mobile due to the environmental noise.

B. Topology Control Problems

The problem of topology control has different formulationscorresponding to different control strategies and

optimization metrics. In this paper, we consider bothper-nodeand per-link power control strategies. While per-
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node control assigns each node a single power, per-link control may assign a node different power for different

links originating from it. We consider two optimization metrics: min sum that minimizes the total power of all

nodes or links in the network, andmin max that minimizes the maximum power among all nodes or links. The

min max metric may lead to a longer network lifetime by balancingthe power consumption of different nodes. We

first formulate the problem with per-node control and the minsum metric, and then extend the formulations to the

other cases.

GM denotes the topology where each node is assigned the maximumpower.GM achieves the best path quality

among all topologies under any possible power assignment when the network workload is light.GΩ represents the

topology induced by the power assignmentΩ. We define thedilation of transmission count (DTC)of GΩ as the

maximumratio of the minimum transmission count between any two nodes in GΩ to that between the same nodes

in GM . DTC quantifies the worst-case degradation in network’s path quality under a power assignment relative to

the maximum-power case. This metric closely relates to communication performance like reliability, throughput,

and delay. Recent empirical studies [38], [5] showed that transmission count significantly outperforms the hop count

in multi-hop routing in lossy wireless networks.

The problem can be formulated as follows when themin summetric is used. Given a DTC boundt ≥ 1 specified

by the application, the objective is to choose a power assignmentΩ with the minimum sum while the DTC bound

of the induced topology underΩ is no greater thant:

Ω = argmin
∑

Pi∈Ω

Pi, subject to

max
u,v∈V

ΓGΩ
(u, v)

ΓGM
(u, v)

≤ t (1)

Note thatΩ may include a transmission power for each node or link depending whether the the per-node control or

per-link control strategy is used.ΓGX
(u, v) denotes the minimum transmission count fromu to v in the network

under power assignmentX . When the metric ismin max, the minimization objective in the above formulation needs

to be replaced bymaxPi∈Ω Pi.

As discussed in Section II, per-node control simplifies the design of neighbor management and the underlying

MAC protocol while per-link control may result in more energy saving. Themin max metric can minimize the

total network power consumption while themin max balance the power consumption of different nodes and may

lead to better network lifetime. Our algorithm can be easilyconfigured to perform different control strategies and

minimization metrics. This feature allows the applicationflexibly configure the behavior of topology control to

meet its needs.

The network topologies under the above formulations can improve the performance of several representative

routing approaches. It has been shown in [5], [38], [39] thatexpected transmission count outperforms hop-count-

based routing metrics in terms of reliability, delay and throughput when links are lossy. Therefore, the network

topology with bounded DTC allows the transmission-count-based routing protocols [5], [38], [39] to achieve desired
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performance in lossy WSNs. In addition, our formulations preserve the power-efficient routes in a lossy network,

which allows power-aware routing protocols to minimize theenergy wasted by packet retransmissions. Finally, the

network topologies under themin max formulations can enhance the capability of power-aware routing protocols

to extend network lifetime via load balancing.

C. Centralized Solutions

We now discuss possible centralized solutions for our problems and their hardness.

a) Solutions for the min max Formulations.: When the metric ismin max, both the per-link and per-node

topology control can be solved optimally in polynomial time. According to the monotone link property, power

increase of a link or a node does not result in the increase of the network DTC, which implies that there must exist

an optimal solution in which all nodes or links are assigned the same power when the maximum power among all

nodes (per-node control) or links (per-link control) is minimized. Hence an optimal power assignment can be found

through a binary search on all possible power levels, which can be done inO(log|S|) time. For each power level,

the DTC of the network can be computed inO(|V | · |E| · log|V |) time using the Dijkstra’s algorithm [40]. Hence the

minimum power level that yields the required DTC bound can befound in O(|V | · |E| · log|V | · log|S|). However,

the resultant topology may unnecessarily waste energy as all nodes are forced to have the same transmission power.

Minimizing the number of the maximum-power nodes in the optimal power assignment is NP-hard [19]. Moreover,

such a strategy can not be implemented in a localized fashionbecause excessive synchronization and information

exchange would be needed among nodes in order to find a uniformpower for all nodes under the DTC constraint.

b) Hardness of the min sum Formulations: When the metric ismin sum, both the per-node and per-link

topology control problems are NP-hard. Specifically, the special case of themin sum per-node control problem

where the transmission count of all links is one and the required DTC bound is large is equivalent to minimizing

the total node power while achieving strong network connectivity. This problem has been shown to be NP-hard

[41].

An NP-hard special case of themin sumper-link control problem can be constructed as follows. Forevery two

nodesu andv in the network, add an edge fromu to v (with transmission count one) if there exists a power level

Pu,v at whichu can reachv. Let Pu,v be the weight of the edge. Then our problem becomes, for a given graph and

a constantt > 1, find the subgraph with the minimum total edge weights under that constraint that the shortest path

between any two nodes is no longer thant times of that in the original graph. This problem has been studied as the

minimum weight t-spanner and been proven to be NP-hard. It was shown in [42] that it is hard to findO(log|V |)

approximations for this problem.

In this paper, we propose a set of localized solutions which only require the information of each node’s local

neighborhood. Localized algorithms are highly desirable in WSNs whose topologies may change dynamically due

to node/link failures and fluctuations of link quality [2]. Centralized solutions can be prohibitively expensive in

such WSNs due to the need for gathering the topology and link quality information of the whole network.
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IV. T HE LOCALIZED CTC ALGORITHMS

In this section, we present a set of localized Configurable Topology Control (CTC) algorithms. The key challenge

for the design of CTC is to achieve the required DTC bound on the global network topology quality in a localized

fashion. We first introduce the following theorem.

Theorem 1:The network topologyGΩ induced by power assignmentΩ has a DTC boundt if for each link

(x, y, i) in topologyGM where each node is assigned the maximum power,GΩ contains a path fromx to y whose

total transmission counts is no higher thant times of the transmission count of the link. That is:

∀(x, y, i) ∈ E(GM ), ΓGΩ
(x, y) ≤ t · Rx,y,i =⇒ max

u,v∈V

ΓGΩ
(u, v)

ΓGM
(u, v)

≤ t (2)

whereΓGX
(u, v) denotes the minimum total transmission counts fromu to v in the network topology induced by

power assignmentX .

Proof: SupposeΥ represents the shortest path (in term of transmission count) from nodeu to v in GM :

u = u0, u1, u2, · · · , un−1, un = v. For each link(ul, uj, k) (wherek is the transmission power level oful) on

Υ, the total transmission counts of the shortest path fromul to uj in GΩ must be lower thant · Rx,y,i. Hence,

concatenating such path inGΩ for each link onΥ results in a path no longer thant times of the total transmission

counts ofΥ. Since this holds for every pair of two nodes in the network, the DTC bound ofGΩ is no more than

t.

According to Theorem 1, CTC achieves the DTC bound by replacing each max-power link with a low-power

path that has a bounded transmission count relative to the replaced link. This strategy can be implemented in a

localized fashion since a replacement path is likely located within the neighborhood of the replaced link in a dense

network. However, the challenge is to ensure the replacement paths found by different nodes are consistent. The

key featureof CTC is that it ensures this consistency in a localized fashion without any decision exchange among

neighboring nodes.

We first describe the concept of neighborhood used by CTC. We then illustrate the basic idea of CTC using

an example, followed by the detailed description of CTC. Finally we present the theoretical analysis of CTC and

describe extensions to CTC for handling several practical issues in WSNs.

A. Neighborhood

CTC uses a two-hop neighborhood graph that is constructed from link quality information. Nodev is nodeu’s

one-hop neighbor if there exists at least one link,(u, v, i) wherePi ∈ S, Ru,v,i ≤ T , from u to v. The one-hop

neighborhood graph ofu includesu and all the one-hop neighbors ofu, and all the links fromu to its neighbors.

The two-hop neighborhood graph of nodeu is the union of the one-hop neighborhood graphs ofu andu’s neighbors.

We useNi(u) = (Vi(u), Ei(u)) (i = 1, 2) to denote the one-hop and two-hop neighborhood graphs atu.

Although links may be asymmetric, we require the neighborhood relation to be symmetric,i.e., (u, v, i) ∈

E1(u) ⇔ (v, u, j) ∈ E1(v). Each nodeu can enforce this requirement by pruning the links to the neighbors who

do not includeu within their one-hop neighborhood.
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In order to constructN2(u), nodeu needs to collect the transmission counts of the links withinits two-hop

neighborhood at different power levels. Each node can measure transmission counts of its one-hop links based

on data or hello messages, and exchange them with its one-hopneighbors. Efficient algorithms for neighborhood

discovery and link quality estimation have been proposed inearlier work [5], [31] and is not the focus of this paper.
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Fig. 1. The execution of two algorithms with a required DTC bound of 3. (a) illustrates a naive algorithm in which each node only replaces

its own max-power links. (b) illustrates the CTC algorithm with the minsum metric. Each link is labeled bypower / transmission count. max

represents the maximum transmission power. Solid links represent the actual links after the execution of the algorithm. The max-power links

and their corresponding replacement paths are labeled by the same symbols.

B. An Illustrative Example

We now illustrate the basic idea of CTC using a example depicted in Fig. 1. We will describe how CTC is

executed at three nodesa, b, andc when per-node control and the minsum metric are used. For clarity, Fig. 1 only

shows a subset of the links that exist between nodesa ∼ e. The DTC bound required by the application is3.

We first describe a naive localized algorithm that may resultin conflicting power assignments. Each node in

this algorithm independently replaces each of the max-power links that originate from it with a low-power path

whose transmission count satisfies the DTC bound. Fig. 1(a) depicts a possible output after the executions ata,

b, andc. Node b replaces the max-power link(b, e, max) with path (b, a, 4) → (a, e, 1). The transmission count

of the new path is1.1 + 2.4 = 3.5, which is lower than triple of that of(b, e, max). Similarly, nodesa and c

replace(a, e, max) with (a, e, 1), and(c, d, max) with (c, a, 2) → (a, d, 3), respectively. Notice thata is assigned

two different power,3 and1, on the three replacement paths. If each node sets its power independently according

to the replacement paths it finds,a will choose a power of1 as it is not aware of the existence of the other

replacement paths. As a result, the actual quality of the link from a to e is lower than required by the path found by

c. Consequently, the path fromc to d has a dilation of(2.1 + 1.9)/1.2 = 3.3 that violates the required DTC bound

of 3. This problem is caused by the inconsistency of the local paths found by different nodes. An simple solution

is to have nodes exchange their local solutions with their neighbors. However, such solution is not desirable due

to the communication overhead and convergence latency.

We now discuss how CTC solves this problem. The basic idea is that, in addition to replacing its own max-power

links, each node also computes its power assigned by its neighbors on their local paths. As a result, it always

chooses a power no lower than any power assigned by itself andits neighbors, which preserves the dilation of all

replacement paths.
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Specifically, a node finds a replacement path for each max-power link in its two-hop neighborhood. The replace-

ment path must yield the minimum total power among all possible paths that satisfy the dilation constraint. For

instance, the replacement path of(b, e, max) is (b, a, 4) → (a, e, 1), which has the minimum total power among

all paths fromb to e with a dilation no greater than 3. Nodea starts with the lowest power, and once finds a new

replacement path that includes itself, it increases its power to match its power assigned on the path if necessary.

As shown in Fig. 1(b), nodea first assigns itself a power of1 after replacing(a, e, max) and(b, e, max), and then

increases its power to3 after finding the replacement path for(c, d, max). As a result, all replacement paths are

preserved aftera executes the algorithm.

We can see from Fig. 1(b) that all the nodes on a replacement path find the same path when they replace the

same max-power link. For example, the path(c, a, 2) → (a, d, 3) is found by bothc anda to replace(c, d, max) in

their local executions. As a result, the dilation of the pathis preserved asa andc will assign their power no lower

than the values on the path. We offer a rigorous proof of the correctness of a generalized algorithm in Section IV-E.

C. Per-node Power Control

We now present CTC with per-node control. We first describe the algorithm with the minsum metric, and then

discuss how it can be modified to adopt the minmax metric. For each max-power link, CTC finds a replacement

path composed of up tod low power links in the node’s two-hop neighborhood.d is referred to assearch depth

hereafter. A larger search depth increases the opportunityfor CTC to find lower power assignments at the cost of

higher computation complexity.

CTC executed at nodeu with the minsum metric is depicted in Fig. 2. To enforce consistent powerassignments

on the replacement paths found by different nodes,u invokes the functionLabelSet(v)for each nodev ∈ V1(u)

including itself. In doing so,u essentially “simulates” the execution of the algorithm at all nodes within its one-hop

neighborhood. FunctionLabelSet(v)finds the replacement paths with DTC boundt for all the max-power links that

originate fromv. Special care needs to be taken at this step since a node has different neighborhood view from its

neighbors. The key is that if a node lies on a replacement pathfound by its neighbors, it should also find the same

path in its own execution of CTC. Onceu finds a replacement path that includes itself, it increases its power to

match its power assigned on the path if necessary.

The functionLabelSetextends the Generalized Permanent Labeling Algorithm (GPLA) [43] for the shortest path

problem with time window (SPPTW). A special case of SPPTW, the weight-constrained shortest path (WCSP)

problem, resembles our problem. Each link in a WCSP problem has two weights in different metrics. The goal is to

find the shortest path between two nodes in terms of one weightmetric under the constraint that the total weights

of the other metric is bounded. The power and transmission count of a local path correspond to the two different

weight metrics in a WCSP problem.

LabelSet(v)extends GPLA in several important aspects. First, while GPLA finds a single best path between two

nodes,LabelSet(v)finds the best replacement paths fromv to all its neighbors. Second, a set of constraints are added

in the search process to ensure that different nodes will findconsistent replacement paths for the same max-power
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link. As shown in Section IV-E, this property is important for ensuring the correctness of CTC. Finally, in addition

to minimizing the total power of a replacement path, we also extend GPLA to incorporate other optimization metrics

like min max.

Input: t, d, N1(u), N2(u)

Output: power(u)

power(u) = min;

for v ∈ V1(u) call LabelSet(v); end

function LabelSet(v)

1) W = t · max{Rv,w,max|(v, w, max) ∈ E1(v)}. SetLv = {(0, 0)} andLi = ∅ for all i ∈ V1(v) − {v}.

2) If all labels have been marked, go to 5); else choosei ∈ V1(v) that has an unmarked label(Rq
i , P

q
i ) with minimal Rq

i .

3) For each link(i, j, k) ∈ E2(u) do

Lj = Lj ∪ {(Rq
i + Ri,j,k, P

q
i + Pk)}, if the following conditions are met:

R
q
i + Ri,j,k ≤ W (3)

|q| < d (4)

j ∈
\

k∈V1(v)

V1(k) (5)

∄(Rq
j , P

q
j ) ∈ Lj ,

(Rq
j ≤ R

q
i + Ri,j,k) ∧ (P q

j ≤ P
q
i + Pk) (6)

4) Mark label(Rq
i , P

q
i ). Go to step 2.

5) For each link(v, w, max) in E1(v), do:

a) Find the label(Rq
w, P

q
w) in Lw such thatRq

w ≤ t · Rv,w,max and has the minimalP q
w.

b) If there exists au’s link (u, z, k) ∈ q andpower(u) < Pk, power(u) = Pk.

Fig. 2. The per-node CTC executed atu with the min sum metric.

LabelSet(v)is a dynamic programming procedure in which the partial paths found are stored bylabelson nodes.

Specifically, a label on nodei is a tuple(Rq
i , P

q
i ) whereq corresponds to a path fromv to i, andRq

i andP q
i are

the transmission count and total power of the path respectively. Such a path is a candidate replacement path for the

max-power link fromv to i, and can also be a partial path on the replacement paths for the links fromv to other

neighbors.Li represents the set of labels oni that corresponds to all such partial paths.

The procedure starts by initializingv’s label set to{(0, 0)} and all the label sets on other nodes to be empty.

Then the algorithm executes in iterations. In each iteration (composed of step 2 to 4), an existing label(Rq
i , P

q
i )

with minimum transmission count is extended along all outgoing links of nodei, which corresponds to extending

the partial pathq to all possible next-hop nodes (step 3). The label ismarkedafter all next-hop nodes are examined

(step 4). The search process initiated fromv terminates if all labels on the nodes withinV1(v) have been marked.

Step 3 extends label(Rq
i , P

q
i ) along a link(i, j, k) by adding the transmission count and power of(i, j, k) to Rq

i

andP q
i respectively. The link will be added to the label set ofj, if the constraints (3)-(6) are met.
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Constraint (3) requires that the total transmission count of the expanded path must be smaller thanW which is

t times the maximum transmission count of all the max-power links originated fromv. This constraint reduces the

search space by eliminating the paths that would have a dilation higher thant. Constraint (4) limits the maximum

hop count of a path tod. Constraint (5) enforces that all nodes on a path must be located within one hop of each

other. As shown in Section IV-E, this constraint is criticalfor ensuring the consistency in the power assignments

computed by different nodes.

Constraint (6) ensures that there does not exist a label on the next-hop node that represents a better path than the

extended path. A pathX is better than pathY if and only if X has a lower transmission countand lower power

thanY . If (6) does not hold, we keep the paths with higher power but lower transmission count, or the paths with

higher transmission count but lower power, since both typesof paths may satisfy constraint (3) and evolve into

valid replacement paths in following iterations. It can be seen that this property allowsLabelSetto find theoptimal

replacement path (e.g., with the minimum total power) underconstraints (3)-(5).

At the end of the procedure, for each max-power link(v, w, max), the replacement path is the path that has the

minimum total power among all paths that satisfy the dilation constraint (see step 5.a). Note that such a path must

exist since in the worst case the max-power link(v, w, max) will be found. Finally, if nodeu (that executes the

algorithm) lies on the replacement path, it sets the power tothe max of its current power and the power on the

path.

Minimizing the maximum power on a replacement path may lead to more balanced power on different nodes.

We modify CTC depicted in Fig. 2 as follows to adopt the minmax metric. In a label(Rq
i , P

q
i ), instead of storing

the total power of pathq in P q
i , we redefineP q

i as the maximum power of the links onq. Accordingly, constraint

(6) needs to be changed to∄(Rq
j , P

q
j ) ∈ Lj , (Rq

j ≤ Rq
i + Ri,j,k) ∧ (P q

j ≤ max(P q
i , Pk)).

D. Per-link Power Control

Different from per-node control that restricts a node to a fixed power, per-link control allows a node to use different

power to transmit to different neighbors. As a result, per-link control may lead to more energy saving. An advantage

of the algorithm depicted in Fig. 2 is that it can be easily modified to use per-link control. Specifically, nodeu

stores a power valuepower(u, v) with an initial value of minimum power for each of its one-hopneighbors,

v ∈ V1(u). In addition, step 5.b needs to be modified as follows: If there existsu’s link (u, z, k) ∈ q and

power(u, z) < Pk, power(u, z) = Pk. Notice that both per-node and per-link control share the same procedure for

searching replacement paths (step 1 to 4 of functionLabelSetin Fig. 2). Hence, the same modification introduced in

Section IV-C can also be used to adopt different optimization metrics, including minsum and minmax, in per-link

control.

E. Correctness of CTC

We now prove the correctness of CTC. We first show that CTC withper-node control and the minsum metric

achieves the required dilation bound. We then extend this result to per-link control and the minmax metric.
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Theorem 2:SupposeM is the power assignment where each link is assigned the maximum power,Ω is the

power assignment produced by the CTC algorithm with a DTC bound t ≥ 1. Then the networkGΩ satisfies the

DTC boundt: maxu,v∈V
ΓGΩ

(u,v)

ΓGM
(u,v) ≤ t.

Proof: To prove the theorem, it suffices to show that any link inGM , say(v, w, max), is replaced by a path

in GΩ with a dilation no greater thant. We prove that this holds after the execution of CTC at each node.

Supposev finds a replacement pathF v
v,w for (v, w, max). Note thatF v

v,w corresponds to the label(Rq
w, P q

w)

found by v at step 5.a. According to step 5.a,F v
v,w must have a dilation no greater thant. Hence, it remains to

be shown that this path is preserved by the power choices madeby other nodes on the path in their executions of

CTC. Suppose(x, y, i) is an arbitrary link on pathF v
v,w. That is,v assigns powerPi to x. In the following we will

show that the replacement path for(v, w, max) found in nodex’s execution of CTC,F x
v,w, is exactlyF v

v,w, and

hence the power ofx is no lower than the power assigned onF v
v,w.

We define graphGx(v, w) = (V x(v, w), Ex(v, w)) as follows.

V x(v, w) =
⋂

k∈F x
v,w

V1(k)

Ex(v, w) =
⋃

(a,b ∈V x(v,w))∧((a,b,i)∈E1(a))

(a, b, i)

Gx(v, w) includes all the nodes shared by the one-hop neighborhoods of the nodes on pathF x
v,w . HenceGx(v, w) ⊆

N2(v). In other words, all the replacement paths found byx for (v, w, max) are included in the two-hop neigh-

borhood ofv. On the other hand, according to step 5.a of CTC in Fig. 2,F x
v,w is theoptimal replacement path (in

terms of total power) among all possible paths withinN2(v) that satisfy the dilation bound and constraints (3) and

(4). As a result, nodex choosesF v
v,w as the replacement path for(v, w, max) within its execution of CTC. That

is, F x
v,w = F v

v,w and hence the power ofx decided byx itself is the same as assigned byv on pathF x
v,w.

We have shown that each replacement path found byv for (v, w, max) is preserved after all the nodes on the

path compute their power assignments in their local executions of CTC. That is, each max-power link is replaced

by a path with a dilation no greater thant after the execution of CTC at each node. Therefore, the resultant network

has a DTC no greater thant.

We note that similar arguments can prove the correctness of CTC with per-link control or the minmax metric.

This is because, the nodes on a replacement path will find the same path as long as the the path is optimal (in

terms of the minsum or minmax metric) within the two-hop neighborhood of the originator of the link.

F. Time Complexity of CTC

We now analyze the time complexity of CTC. Suppose the numberof links in each node’s two-hop neighborhood

is bounded by|E2|. ProcedureLabelSet(v) without constraints (4) and (5) is similar to the original GPLA algorithm

that has a complexity ofO(|E2|W ) whereW is t times the maximum transmission count fromv to its one-hop

neighbors. Since we only keep the labels that satisfy constraint (6), there is at most one label kept for each value of
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transmission counts. That is, a node has at mostW labels. Hence, in step 2, a link is processed at mostW times.

Summing the number of times an link is processed over all links gives a time complexity ofO(|E2|W ). We note

that this complexity is pseudo-polynomial as it depends onW .

On the other hand, the actual time complexity ofLabelSet(v) is lower due to the constraints (4) and (5) in

Fig. 2. Specifically, (4) requires the number of hops of a pathto be smaller thand. Suppose the number of

nodes within a one-hop neighborhood is bounded by|V1|, the total number of link processing inLabelSet is

bounded byO(|V1|
d−1). Hence the time complexity ofLabelSetis bounded byO(min(|V1|

d−1, |E2|W )). Since

LabelSetis invoked for each one-hop neighbor, the overall time complexity of the generalized CTC algorithm is

O(|V1| · min(|V1|
d−1, |E2|W )). We note that this complexity result is an upper bound, whichdoes not consider

constraint (5). Although this bound is exponential ind, we show experimentally that small search depth, (e.g.,

choosingd = 2 or 3) gives a very good performance in Section VI.

G. Extensions

We now discuss extensions to CTC that can deal with several practical issues in WSNs.

1) Handling node and link dynamics:In a real-world WSN, nodes and links often exhibit various dynamics

that may cause the network topology to violate the dilation bound. We now discuss how CTC can handle three

important types of dynamics: node failure, link failure, and link quality variation. Thanks to its localized nature, a

key advantage of CTC is that it can maintain required DTC bound via local repair in face of network dynamics.

CTC can detect node failure and link changes based on hello messages used for neighborhood maintenance and

link quality estimation. Alternatively, CTC may be notifiedon demand by the feedback from the MAC layer (e.g.,

successive transmission failures on a link). In order to preserve the DTC bound for the network when a node fails,

only the nodes within one hop from the failed node need to execute CTC again with the updated neighborhood

information. This is because, as discussed in Section IV-E,all the nodes on a replacement path are one hop from

each other. Therefore, only one-hop neighbors of the failednode need to recompute their replacement paths. That

is, a node failure only requires local repair to the network topology. This feature allows CTC to scale effectively for

large-scale WSNs. Similarly, when the link fromu to v fails or experiences quality degradation, only the one-hop

neighbors ofu need to rerun CTC to maintain the DTC bound.

The link fromu to v may also experience quality increase due to reduced environmental interference, or a higher

power assignment ofu after rerunning CTC for a local repair. In such a case, the neighbors ofu rerun CTC to lower

their power assignments only if the link quality increase exceeds a threshold. The threshold reduces the propagation

of power reassignments and should be determined based on thedesirable trade-off between topology stability and

power saving. We note that such propagation of power reassignments is needed only for power optimizations. It is

not needed for preserving the DTC bound, which can be achieved via local repair.

A more efficient mechanism to handle node and link dynamics ispossible at higher storage cost. Each node can

store the replacement paths for each max-power link in its two-hop neighborhood, and only update the affected
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replacement paths in presence of link or node failures. The storage cost isO(|E1| · d) whereE1 ared are one-hop

neighborhood and the search depth of CTC, respectively.

2) Integration with sleep management:CTC aims at reducing transmission power consumption of a network.

Another significant source of power consumption is idle listening. CTC can be combined with a sleep management

protocol to minimize the energy consumed by both transmission and idle listening. Existing sleep management

schemes fall into two basic classes: backbone maintenance and sleep scheduling. A backbone maintenance protocol

constructs a backbone composed of a small number of active nodes and schedules the other nodes to sleep. The

active nodes on the backbone can run CTC to reduce the transmission power consumption and achieve bounded

dilation on the backbone topology while other nodes can reduce the idle listening power consumption through

sleeping. In a sleep scheduling protocol, each node operates in a schedule composed of active and asleep intervals.

In such a case, each node can run CTC to reduce the power consumed for packet transmissions during the active

intervals.

Input: t, d, N1(u), N2(u)

Output: power(u, v) (v ∈ E1(u))

power(u, v) = min;

for v ∈ V1(u)

T (v) = {(v, w, i)|i = max(v,x,j)∈E1(v) j}

call LabelSet(v)

end

function LabelSet(v)

1) W = t · max{Rv,w,i|(v, w, i) ∈ T (v)}. SetLv = {(0, 0)} andLi = ∅ for all i ∈ V1(v) − {v}.

2) If all labels have been marked, go to 5); else choosei ∈ V1(v) that has an unmarked label(Rq
i , P

q
i ) with minimal Rq

i .

3) For each link(i, j, k) ∈ E2(u) do

Lj = Lj ∪ {(Rq
i + Ri,j,k, P

q
i + Pk)}, if the following conditions are met:

R
q
i + Ri,j,k ≤ W

|q| < d

j ∈
\

k∈V1(v)

V1(k)

∄(Rq
j , P

q
j ) ∈ Lj ,

(Rq
j ≤ R

q
i + Ri,j,k) ∧ (P q

j ≤ P
q
i + Pk)

4) Mark label(Rq
i , P

q
i ). Go to step 2.

5) For each link(v, w, i) in T (v), do:

a) Find the label(Rq
w, P

q
w) in Lw such thatRq

w ≤ t · Rv,w,i and has the minimalP q
w.

b) If there exists au’s link (u, z, k) ∈ q andRu,z,i > Ru,z,k, power(u, z) = Pk.

Fig. 3. The extended per-link CTC (with themin sum metric) for non-monotone link property.
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V. RELAXING THE ASSUMPTION OFMONOTONE L INK PROPERTY

In this work we mainly focus on WSNs that do not experience significant interference as a result of light workload

and/or TDMA scheduling techniques. Accordingly, we assumethe monotone link property, i.e., the transmission

count of a link decreases with the transmission power. However, such a property may not hold due to network

dynamics such as the occasional network contention in the transient state of a TDMA scheduling algorithm. We

now discuss how per-link CTC can be extended when the assumption of monotone link property is relaxed.

When the monotone link property does not hold, the definitionof DTC bound relative to the maximum power

topology needs to modified. SupposeG represents the network graph in which there exist multiple links between

two nodes corresponding to the communication links using different transmission power. The weight of each link

from nodeu to nodev at transmission powerPi is the transmission countRu,v,i. SupposeGopt ⊆ G represents the

shortest-path spanning tree ofG. ObviouslyGopt is theoptimal network topology in term of transmission counts.

GΩ represents the network graph under power assignmentΩ where each link is assigned a power. We redefine the

DTC of GΩ as themaximumratio of the minimum total transmission counts between any two nodes inGΩ to that

between the same nodes inGopt. Then the per-link topology control problem can be formulated as follows:

Ω = argmin
∑

Pi∈Ω

Pi, subject to

max
u,v∈V

ΓGΩ
(u, v)

ΓGopt
(u, v)

≤ t (7)

The above formulation assumes per-link topology control and cannot be easily extended to the case of per-node

control. This is because, all the links originated from a node are assigned the same power under per-node control,

hence the change of a node’s power may increase the transmission count of one network path and decrease another

at the same time. In other words, when the monotone link property does not hold, the optimal topology that contains

the shortest paths among all nodes in the network may not exist. Seeking appropriate formulation for the per-node

control in such a case is left for future work.

Per-link CTC can be extended as follows to accommodate the new problem formulation. Nodeu creates a set

T (v) for each of its one-hop neighborsv including itself.T (v) includes a link fromv to each one-hop neighborw

that has the minimum transmission count among all links fromv to w. Then nodeu invokes functionLabelSet(v)

to find a low-power replacement path for each link inT (v). The modified CTC algorithm is shown in Fig. 3. The

function LabelSet(v) is similar to the one shown in Fig. 2 because the dynamic programming procedure used to

find the replacement paths does not assume any relationship between the transmission power and the corresponding

transmission count of a link. The major difference is in step5 where the transmission power of a link is changed

to the one used on the replacement path if the new transmission count is lower.

The correctness of the extended CTC can be shown as follows. SupposeGr = (V,
⋃

v∈V T (v)). Apparently,

Gr ⊆ G. According to the definition ofT (v), each edge(u, v, i) in Gr has the lowest transmission count among

all edges fromu to v in G. Therefore, the shortest-path spanning tree ofG, Gopt, is a subgraph ofGr because
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any edge(u, v, j) of Gopt must also be an edge ofGr. Otherwise, the edge fromu to v in Gr represents a better

edge, which contradicts the definition of shortest-path spanning tree. The rest of the proof requires to show that

each edge inGr has a replacement path with a dilation bound of at mostt after the execution of CTC. This can

be shown by the same argument in the proof of Theorem 2 in Section IV-E, because the dynamic programming

procedure (steps 2-4) in CTC used to find replacement paths remain unchanged.

VI. EVALUATION

We have evaluated CTC through two sets of simulations. We first study the network topology produced by CTC

using a simple simulator, and then evaluate CTC through realistic packet-level simulations using an open-source

WSN simulator called Prowler [44]. To create a realistic simulation environment, we implemented the probabilistic

link model from USC [8] in both simulators. The USC model characterizes the transitional region in the reception

performance of low-power radios on Mica2 motes based on a log-normal propagation model. Previous experiments

showed that the USC model produces lossy and asymmetric links that approximate those in the networks of Mica2

motes [8].

A. Quality of Network Topology

In this section, we evaluate the topologies produced by CTC using a simple simulator. The transmission count

of each link is computed according to the link model from USC [8].

In each simulation, nodes are uniformly deployed in a150× 150 m2 region. The number of nodes is 100 unless

indicated otherwise. Each data point presented is the average of five different networks. Its90% confidence interval

is also shown. Each node can transmit at 11 different power levels from -20 dbm to 10 dbm, at an increment of 2

dbm1.

We compare CTC against an existing topology control algorithm called LMST [9]. Each node running LMST

builds a minimum spanning tree (in term of Euclidean distance) within its neighborhood and reduces its transmission

power to reach only the neighbors on the tree. LMST is a representative localized topology control algorithm that

is shown in [9] to outperform several earlier algorithms such as CBTC [15] and R&M [10].

The original design of LMST relies on a common maximum communication range of nodes and does not

consider link quality. The notion of communication range isnot applicable to lossy WSNs. We extend LMST to

handle lossy networks as follows. A node includes another node in its one-hop neighborhood only when there exists

a transmission power level at which the link yields a transmission count lower than the preset threshold. In other

words, all links with a transmission count higher than the the threshold are blacklisted. Then each node builds a

MST based on the transmission power of links within its one-hop neighborhood. Although a low threshold allows

a node to find more neighbors and construct a MST with lower power, the resulting DTC can be very high due to

1The Chipcon CC1000 radio on Mica2 motes supports 32 power levels. While we only use 11 power levels in our simulations, using more

power levels may further improve the performance and configurability of the network at the cost of higher overhead.
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the low quality links on the MST. On the other hand, although ahigher threshold achieves a lower dilation bound

by only including good links on the MST, it can potentially eliminate too many links and cause network partitions.

Our extensive simulations showed that a threshold of1.67 in LMST yields the best communication performance

without causing network partitions in our settings.

We first vary the search depth of CTC from2 to 5 to evaluate its impact on the topology quality. For each

combination of optimization metric and search depth, we measure the DTC of the network topology configured by

each algorithm. Each setting is denoted asCTC-control-metric-depth. For example,CTC-node-mm-3hoprepresents

the per-node control algorithm with the minmax metric with a search depth of 3 hops.

Fig. 4 shows the measured DTC under CTC-node with different search depths when the required dilation ranges

from 1.5 to 5.5. CTC-node-ms yields the same DTC1.5 irrespective the search depth. This is because the minsum

metric can lead to unbalanced node power on replacement paths. As a result, a node is often assigned high power,

because it lies on many replacement paths. When the search depth increases, CTC-node-mm achieves a better

configurability as it can find replacement paths with lower power. Fig. 4 shows that CTC-node can produce highly

configurable network topologies with the minmax metric even when the search depth is as low as 3. Note that a

small search depth is desirable as the time complexity of CTCincreases with the search depth.
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Fig. 5 shows the measured DTC under the CTC-link algorithms.Similar to CTC-node-ms, CTC-link-ms yields the

same DTC irrespective of the search depth. We can see that CTC-link demonstrates a higher degree of configurability

than CTC-node. This is because per-link control allows a node to use different transmission power when it lies on

multiple replacement paths. Furthermore, a search depth ofonly 2 enables CTC-link to achieve a high degree of

configurability at low computation cost. Overall our results show that the CTC-link algorithms can provide more

efficient and flexible topology control than the CTC-node algorithms.

Fig. 6 compares the DTC of CTC and LMST algorithms under different node densities. LMST-2.5 and LMST-

1.67 represent the LMST algorithm with a transmission countthreshold of 2.5 and 1.67, respectively. Under all node

densities, CTC consistently produces topologies that satisfy the required quality bounds. In contrast, the DTC of

LMST has a high variation for different networks with the same density, and is heavily affected by node densities.

This is because LMST tends to connect nodes with short and low-power links that are more likely to be lossy.

This result shows that connectivity-based topology control algorithms cannot provide guaranteed path quality in
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lossy WSNs as they do not account for link quality. The DTC of LMST decreases with a lower transmission count

threshold, because the links retained by each node become more reliable. However, a lower transmission count

threshold may cause a node to blacklist too many links resulting network partition. It is therefore difficult to choose

a transmission count threshold for LMST that achieves both low DTC and network connectivity under different

network settings. We set the minimum transmission count threshold to 1.67 in the following simulations as it results

in the lowest DTC without partitioning the network under oursettings.
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Fig. 7. Packet delivery ratio
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Fig. 8. Average delay of the received packets
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Fig. 9. Transmission energy consumption

B. Simulation Settings on Prowler

Prowler [44] is an open-source WSN simulator that has a layered event-driven structure similar to TinyOS. The

MAC layer employs a CSMA/CA scheme similar to B-MAC [45]. Themaximum number of retransmissions before

dropping a packet is 3. DSDV [46] is used as the routing layer.We modified DSDV [46] to use transmission count

as the routing metric, which is more suitable than hop count in lossy wireless networks [5], [39], [38].

The node distributions are the same as in the first set of simulations. The node bandwidth is40 Kbps. The data

packet size is 120 bytes. Each node runs an online link estimator similar to the one described in [5] to estimate

the link quality in its two-hop neighborhood. The network follows a traffic pattern common in data collection

applications [7]. Every source sends a packet to a base station every5 minutes. The base station is located in the

right border of the region. Sources are randomly chosen fromthe left60% of the region to increase the distance to

the base station. We vary the number of sources from 5 to 50. Each result is the average of 10 different network

topologies with a90% confidence interval. Each run lasts 80 minutes of simulated time.

C. Performance Results

We evaluate both communication performance and energy consumption of different algorithms. We evaluate two

CTC algorithms: ctc-node-mm with a required DTC bound of 2, and ctc-link-ms with a required DTC bound of

3. The search depth is set to 3. Besides LMST, we also use the network topology where each node transmits

at the maximum power as a baseline, which is denotedMAX-POWER. As light load is used in our simulations,

MAX-POWER yields the best performance in terms of delay and delivery ratio.
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Fig. 7 shows the data delivery ratio under each algorithm. Similar to MAX-POWER, all CTC algorithms delivered

over 95% of the total packets to the base station. LMST yields the lowest delivery ratio due to the lossy links on

its topology.

Fig. 8 shows the average delay of the packets received by the base station. LMST yields the highest delay

because a packet often experiences retransmissions over lossy links. Both CTC algorithms achieve lower delay than

LMST. Furthermore, the delay under CTC increases with a higher DTC bound. This result shows that CTC enables

applications to effectively control the network performance by adjusting the DTC bound.

Fig. 9 shows the transmission energy consumed by different algorithms. CTC-link performs slightly better than

CTC-node. Interestingly, although LMST assignslower power than the other algorithms, the network consumes

almost the same amount ofenergyunder LMST as under MAX-POWER. This is because, the links on LMST’s

topology are less reliable resulting in more energy wasted for packet retransmissions. Therefore, the benefit of lower

power is offset by the increase in the number of transmissions in lossy networks. In contrast, CTC-link-ms reduces

the energy consumption by27% ∼ 36% compared with MAX-POWER. This result demonstrates the importance

of considering lossy link models in both the design and evaluation of topology control algorithms.
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Fig. 10. The standard deviation of transmission energy of all nodes.

Fig. 10 shows the standard deviation of nodes’ transmissionenergy consumption in a typical run. The variation of

the energy consumption affects the lifetime of the network before partition. Both CTC-node and CTC-link achieve

significantly lower variation in nodes’ energy consumptionthan LMST when source density is high. They also

achieve much more balanced energy consumption in the network than MAX-POWER under all source densities.

This result indicates that CTC can effectively prolong the lifetime of the network.

VII. C ONCLUSION

In this paper, we first provide a new formulation of the topology control problem that captures the stochastic

nature of WSNs. We then propose the Configurable Topology Control (CTC) approach for lossy WSNs. The key

novelty of CTC lies in its capability of configuring a networktopology to achieve desired path quality bounds in a

lossy network through localized algorithms. We present four CTC algorithms that combine per-node/per-link power

control with two metrics for power assignment. Realistic simulations based on the characteristics of Mica2 motes
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show that CTC can provide desired tradeoff between power consumption and network performance according to

application requirements. Furthermore, CTC outperforms LMST in terms of both communication performance and

energy consumption. Our results demonstrate the importance of incorporating lossy link models in the design of

topology control algorithms for WSNs.
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