28 research outputs found

    Feature preserving decimation of urban meshes

    Get PDF
    1 online resource (vii, 72 pages) : illustrations (chiefly colour), charts (chiefly colour)Includes abstract.Includes bibliographical references (pages 65-72).Commercial buildings as well as residential houses represent core structures of any modern day urban or semi-urban areas. Consequently, 3D models of urban buildings are of paramount importance to a majority of digital urban applications such as city planning, 3D mapping and navigation, video games and movies, among others. However, current studies suggest that existing 3D modeling approaches often involve high computational cost and large storage volumes for processing the geometric details of the buildings. Therefore, it is essential to generate concise digital representations of urban buildings from the 3D measurements or images, so that the acquired information can be efficiently utilized for various urban applications. Such concise representations, often referred to as “lightweight” models, strive to capture the details of the physical objects with less computational storage. Furthermore, lightweight models consume less bandwidth for online applications and facilitate accelerated visualizations. In this thesis, we provide an assessment study on state-of-the-art data structures for storing lightweight urban buildings. Then we propose a method to generate lightweight yet highly detailed 3D building models from LiDAR scans. The lightweight modeling pipeline comprises the following stages: mesh reconstruction, feature points detection and mesh decimation through gradient structure tensors. The gradient of each vertex of the reconstructed mesh is obtained by estimating the vertex confidence through eigen analysis and further encoded into a 3 X 3 structure tensor. We analyze the eigenvalues of structure tensor representing gradient variations and use it to classify vertices into various feature classes, e.g., edges, and corners. While decimating the mesh, fea ture points are preserved through a mean cost-based edge collapse operation. The experiments on different building facade models show that our method is effective in generating simplified models with a trade-off between simplification and accuracy

    Automatic manhole extraction from MMS data to update basemaps

    Get PDF
    Basemaps are the main resource used in urban planning, building and infrastructure asset management. Therefore, they must be accurate and up to date to better serve citizens, contractors, property owners and town planning departments. Traditionally, they have been updated by aerial photogrammetry, but this is not always possible and alternatives need to be sought. In such cases, a useful option for large scales is the mobile mapping system (MMS). However, automatic extraction from MMS point clouds is limited by the complexity of the urban environment. Therefore, the influence of the urban pattern is analysed in three zones with varied urban characteristics: areas with high buildings, open areas, and areas with a low level of urbanization. In these areas, the capture and automatic extraction of 3D urban elements is performed using commercial software, which is useful for some elements but not for manholes. The objective of this study is to establish a methodology for extracting manholes automatically and completing hidden buildings' corners, in order to update urban basemaps. Shape and intensity are the main detection parameters for manholes, whereas additional information from satellite image Quickbird is used to complete the buildings. The worst rate of detection for all the extracted urban elements was found in areas of high buildings. Finally, the article analyses the computing cost for manhole extraction, and the economic cost and time consume of the entire process, including the proposed methodolgy using an MMS point cloud and the traditional survey in this case.Peer ReviewedPostprint (updated version

    COMBINED VISUAL EXPLORATION OF 2D GROUND RADAR AND 3D POINT CLOUD DATA FOR ROAD ENVIRONMENTS

    Get PDF
    Ground-penetrating 2D radar scans are captured in road environments for examination of pavement condition and below-ground variations such as lowerings and developing pot-holes. 3D point clouds captured above ground provide a precise digital representation of the road’s surface and the surrounding environment. If both data sources are captured for the same area, a combined visualization is a valuable tool for infrastructure maintenance tasks. This paper presents visualization techniques developed for the combined visual exploration of the data captured in road environments. Main challenges are the positioning of the ground radar data within the 3D environment and the reduction of occlusion for individual data sets. By projecting the measured ground radar data onto the precise trajectory of the scan, it can be displayed within the context of the 3D point cloud representation of the road environment. We show that customizable overlay, filtering, and cropping techniques enable insightful data exploration. A 3D renderer combines both data sources. To enable an inspection of areas of interest, ground radar data can be elevated above ground level for better visibility. An interactive lens approach enables to visualize data sources that are currently occluded by others. The visualization techniques prove to be a valuable tool for ground layer anomaly inspection and were evaluated in a real-world data set. The combination of 2D ground radar scans with 3D point cloud data improves data interpretation by giving context information (e.g., about manholes in the street) that can be directly accessed during evaluation

    Remote Sensing for Land Administration

    Get PDF

    Towards a new generation of geographical information systems

    Full text link

    EG-ICE 2021 Workshop on Intelligent Computing in Engineering

    Get PDF
    The 28th EG-ICE International Workshop 2021 brings together international experts working at the interface between advanced computing and modern engineering challenges. Many engineering tasks require open-world resolutions to support multi-actor collaboration, coping with approximate models, providing effective engineer-computer interaction, search in multi-dimensional solution spaces, accommodating uncertainty, including specialist domain knowledge, performing sensor-data interpretation and dealing with incomplete knowledge. While results from computer science provide much initial support for resolution, adaptation is unavoidable and most importantly, feedback from addressing engineering challenges drives fundamental computer-science research. Competence and knowledge transfer goes both ways

    EG-ICE 2021 Workshop on Intelligent Computing in Engineering

    Get PDF
    The 28th EG-ICE International Workshop 2021 brings together international experts working at the interface between advanced computing and modern engineering challenges. Many engineering tasks require open-world resolutions to support multi-actor collaboration, coping with approximate models, providing effective engineer-computer interaction, search in multi-dimensional solution spaces, accommodating uncertainty, including specialist domain knowledge, performing sensor-data interpretation and dealing with incomplete knowledge. While results from computer science provide much initial support for resolution, adaptation is unavoidable and most importantly, feedback from addressing engineering challenges drives fundamental computer-science research. Competence and knowledge transfer goes both ways

    Urban Informatics

    Get PDF
    This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity
    corecore