990 research outputs found

    Asymptotically Optimal Load Balancing Topologies

    Full text link
    We consider a system of NN servers inter-connected by some underlying graph topology GNG_N. Tasks arrive at the various servers as independent Poisson processes of rate Ξ»\lambda. Each incoming task is irrevocably assigned to whichever server has the smallest number of tasks among the one where it appears and its neighbors in GNG_N. Tasks have unit-mean exponential service times and leave the system upon service completion. The above model has been extensively investigated in the case GNG_N is a clique. Since the servers are exchangeable in that case, the queue length process is quite tractable, and it has been proved that for any Ξ»<1\lambda < 1, the fraction of servers with two or more tasks vanishes in the limit as Nβ†’βˆžN \to \infty. For an arbitrary graph GNG_N, the lack of exchangeability severely complicates the analysis, and the queue length process tends to be worse than for a clique. Accordingly, a graph GNG_N is said to be NN-optimal or N\sqrt{N}-optimal when the occupancy process on GNG_N is equivalent to that on a clique on an NN-scale or N\sqrt{N}-scale, respectively. We prove that if GNG_N is an Erd\H{o}s-R\'enyi random graph with average degree d(N)d(N), then it is with high probability NN-optimal and N\sqrt{N}-optimal if d(N)β†’βˆžd(N) \to \infty and d(N)/(Nlog⁑(N))β†’βˆžd(N) / (\sqrt{N} \log(N)) \to \infty as Nβ†’βˆžN \to \infty, respectively. This demonstrates that optimality can be maintained at NN-scale and N\sqrt{N}-scale while reducing the number of connections by nearly a factor NN and N/log⁑(N)\sqrt{N} / \log(N) compared to a clique, provided the topology is suitably random. It is further shown that if GNG_N contains Θ(N)\Theta(N) bounded-degree nodes, then it cannot be NN-optimal. In addition, we establish that an arbitrary graph GNG_N is NN-optimal when its minimum degree is Nβˆ’o(N)N - o(N), and may not be NN-optimal even when its minimum degree is cN+o(N)c N + o(N) for any 0<c<1/20 < c < 1/2.Comment: A few relevant results from arXiv:1612.00723 are included for convenienc

    Efficient Rare-Event Simulation for Multiple Jump Events in Regularly Varying Random Walks and Compound Poisson Processes

    Full text link
    We propose a class of strongly efficient rare event simulation estimators for random walks and compound Poisson processes with a regularly varying increment/jump-size distribution in a general large deviations regime. Our estimator is based on an importance sampling strategy that hinges on the heavy-tailed sample path large deviations result recently established in Rhee, Blanchet, and Zwart (2016). The new estimators are straightforward to implement and can be used to systematically evaluate the probability of a wide range of rare events with bounded relative error. They are "universal" in the sense that a single importance sampling scheme applies to a very general class of rare events that arise in heavy-tailed systems. In particular, our estimators can deal with rare events that are caused by multiple big jumps (therefore, beyond the usual principle of a single big jump) as well as multidimensional processes such as the buffer content process of a queueing network. We illustrate the versatility of our approach with several applications that arise in the context of mathematical finance, actuarial science, and queueing theory

    Performance Tuning of Streaming Applications via Search-space Decomposition

    Get PDF
    High-performance streaming applications are typically pipelined and deployed on architecturally diverse (hybrid)systems. Developers of such applications are interested in customizing components used, so as to benefit application performance. We present an efficient and automatic technique for design-space exploration of applications in this problem domain. We solve performance tuning as an optimization problem by formulating cost functions using results from queueing theory. This results in a mixed-integer nonlinear optimization problem which is NP-hard. We reduce the search complexity by decomposing the search space. We have developed a domain-specific decomposition technique using topological information of the application embodied in the queueing network models. Our analysis includes when our decomposition preserves optimality. Our preliminary empirical results confirm two-fold benefits--solving a problem that is currently not solvable using state-of-the-art solvers and in some problem instances, improving initial solution value from the solver by over two orders of magnitude

    Integrated performance evaluation of extended queueing network models with line

    Get PDF
    Despite the large literature on queueing theory and its applications, tool support to analyze these models ismostly focused on discrete-event simulation and mean-value analysis (MVA). This circumstance diminishesthe applicability of other types of advanced queueing analysis methods to practical engineering problems,for example analytical methods to extract probability measures useful in learning and inference. In this toolpaper, we present LINE 2.0, an integrated software package to specify and analyze extended queueingnetwork models. This new version of the tool is underpinned by an object-oriented language to declarea fairly broad class of extended queueing networks. These abstractions have been used to integrate in acoherent setting over 40 different simulation-based and analytical solution methods, facilitating their use inapplications
    • …
    corecore