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Performance Tuning of Streaming Applications via Search-space Decomposition

Shobana Padmanabhan, Roger D. Chamberlain, and Yixin Chen
Dept. of Computer Science and Engineering, Washington University in St. Louis

Abstract

High-performance streaming applications are typically
pipelined and deployed on architecturally diverse (hybrid)
systems. Developers of such applications are interested in
customizing components used, so as to benefit application
performance. We present an efficient and automatic tech-
nique for design-space exploration of applications in this
problem domain.

We solve performance tuning as an optimization prob-
lem by formulating cost functions using results from queue-
ing theory. This results in a mixed-integer nonlinear opti-
mization problem which is NP-hard. We reduce the search
complexity by decomposing the search space. We have de-
veloped a domain-specific decomposition technique using
topological information of the application embodied in the
queueing network models. Our analysis includes when our
decomposition preserves optimality. Our preliminary em-
pirical results confirm two-fold benefits—solving a problem
that is currently not solvable using state-of-the-art solvers
and in some problem instances, improving initial solution
value from the solver by over two orders of magnitude.

1 Introduction

In streaming applications, application data is fed for-
ward over apipelineof processing elements to achieve high
performance. Examples of streaming applications abound
in the areas of biosequence analysis, computer network-
ing, signal processing, video processing, image process-
ing, and computational science. Streaming applications
are sufficiently widespread that several programming lan-
guages have been developed for them, including Brook [4],
StreamIt [19], and X [11].

We define performance tuning as finding the best val-
ues for the different performance-related design parameters,
given performance goals and constraints. Examples of de-
sign parameters are sizes of buffers in the processing el-
ements, delivery size of messages communicated between
processing elements, mapping of processing and commu-
nication elements onto physical resources and choices of
algorithms. Performance tuning is hard because:

• The number of possible configurations is exponential
in the number of performance parameters. For our ex-
ample streaming sort application there are over1021

possible configurations.

• Performance goals are often multiple and conflicting.
For instance, it is typical to minimize application la-
tency (end-to-end execution time) while simultane-
ously maximizing application throughput (input data
rate), but these goals often conflict with each other.

Performance tuning has been an active research topic
in numerous application areas. For embedded applica-
tions, performance tuning has been researched using search
heuristics as well as standard and modified optimization
techniques [9, 10, 17]. A recent trend has been to model
the application’s performance analytically (mathematically)
and use the model with search heuristics. Examples of such
models includepredictivemodels [12, 14] and examples of
search heuristics include gradient ascent [14]. Predictive
models are based on regression or machine learning and
trained with empirical experimentation through simulation
or direct execution. Such models are general and hence can
be applied to any design space.

Our approach is to solve performance tuning as an op-
timization problem; for modeling cost functions, we pre-
fer queueing networks (QNs) over regression-based mod-
els. This is because pipelining in the streaming applica-
tions gives the application special structure and frequently
involves queueing between the processing elements. Exam-
ples of streaming applications that have been modeled us-
ing queueing networks include computer systems, computer
networking, software architecture, biosequence search, and
web servers [5, 13, 21].

The resulting optimization problem formulation is a
mixed-integer nonlinear problem (MINLP). A characteris-
tic of MINLP problems is that the search time is known
to grow exponentially with respect to the number of vari-
ables [3]. Further, the nonlinear functions in our optimiza-
tion problem are neither convex nor quasiconvex which
means there is no theory that guarantees finding a global
optimum. In practice, state-of-the-art solvers failed to find
even a feasible solution to our problem.



A popular approach with MINLP problems is to de-
compose the search space in order to obtain a better so-
lution from optimization [8]. However, the state-of-the-
art solvers [16] such as Bonmin, FilMINT, KNITRO, and
MINLP, fail to even find a feasible solution for our problem
formulation. It is a common practice to use domain-specific
information to guide decomposition [20]. However, no such
technique exists for our problem domain.

We have developed a domain-specific decomposition
technique that:

• Identifies and characterizes topological information in
the domain and uses it to guide the decomposition.

• Identifies the specific MINLP form of problems in the
domain.

• Results in a heuristic to order variables and constraints
so as to improve decomposability and handle compli-
cations. Our analysis includes when our decomposi-
tion preserves optimality.

We describe a preliminary empirical validation of the
benefits of our techniques. The two-fold benefits are: we
solve a problem that is currently not solvable using state-
of-the-art solvers, and for a relaxed version of the problem
that is solvable, we improve the initial solution value by
over two orders of magnitude.

2 Domain-specific decomposition

In general, a problem is considered decomposable if we
can arrange the variables and constraints such that a matrix
showing the presence of the variables in the different con-
straints has the canonicalJordan blockform [18]. This form
is illustrated in Figure 1. In this form, the objective function
also decomposes to correspond to the different blocks (i.e.,
we can solveObj1 along with the variables and constraints
forming block1 as an independent subproblem). Note that
decomposing this waypreservesoptimality.

A variable that prevents decomposition into blocks is tra-
ditionally referred to as a “complicating variable” (CV) and
a constraint that prevents decomposition is called a “com-
plicating constraint” (CC). The effects of these complica-
tions on the Jordan canonical form are shown in Figure 2
and Figure 3 respectively. Decomposition techniques ex-
ist for dealing with CVs and CCs [8]. For MINLP prob-
lems in particular, integer variables are treated as CVs and
if the resulting nonlinear program (NLP) is convex at least
locally, Benders decomposition is known to converge to an
optimal solution (or to some small duality gap). Another
approach with MINLP problems is to consider the nonlin-
ear constraints as CCs and apply the outer linearization al-
gorithm, provided the nonlinear constraints are inequalities

variables

constraints

minimize
Obj1 (v1) Obj2 (v2) Obj3 (v3)+ +

block1

block2

block3

Figure 1:Jordan block form of variable-constraint
matrix

variables

constraints

minimize
Obj1 (v1) Obj2 (v2) Obj3 (v3)+ +

block1

block2

Complicating variables (CVs)

Figure 2:Complicating variables (CVs)

and the objective function is linear (both of which can be
usually achieved through simple transformations).

In real-world streaming applications however, the num-
ber of CVs and CCs tend to exceed the number of non-
complicating variables and constraints making it very hard
to achieve decomposability. Hence, we have developed a
domain-specific decomposition technique that exploits the
pipelining structure of the streaming applications.

Domain-specific topological information We character-
ize the topological information about streaming applica-
tions modeled by queueing networks (QNs) as follows.

• ip = {ipi|ipi ∈ R+ ∪ {0}} is the set ofinput param-
eterswhose optimal settings are to be determined. In
practice, most of the parameters are integer- or binary-

variables

constraints

minimize
Obj1 (v1) Obj2 (v2) Obj3 (v3)+ +

block1

block2

CCs

Figure 3:Complicating constraints (CCs)



valued.

• var = {vari|vari ∈ R+ ∪ {0}} is the set ofdesign
variables in the optimization problem formulation that
correspond to the input parameters.nv = |var| and
v ∈ (R+ ∪ {0})nv is the vector formed by the vari-
ables invar. In most cases, the design variables are
the same as the input parameters. An example of de-
sign variables that are distinct from their correspond-
ing input parameters arises in the following context.
Let m ∈ Z+ be an input parameter that controlsmap-
ping choices. In our optimization model, we transform
m into a set of binary design variables, one for each
mapping choice, and constrain them so that only one
of them is selected.

• top ⊆ var is the set of design variables that result in
distinctalternativeQNs.nt = |top| andt is the vector
formed by the variables intop. We call these variables
topological variables, since they impact the topology
of the queueing network.

• der = {deri|deri ∈ R+ ∪ {0}} is the set ofderived
variables that depend on one or more elements invar.
nd = |der| andd is the vector formed by the variables
in der. der

⋂
var = Ø.

• met ⊆ der is the set ofperformance metrics(such as
application latency, throughput, power consumption,
etc.) that are being optimized.nm = |met| andmet is
the vector formed by the variables inmet.
metk = ok(v) : (R+ ∪ {0})nv −→ R+ ∪ {0} where
o is the vector of functions that definemet.

• z ∈ der is the cost function, also known as theobjec-
tive function.
z =

∑nm

k=1 Wk × metk : (R+ ∪ {0})nm −→
R+,

∑nm

k=1 Wk = 1

• ivar ⊆ der is the set ofintermediary variables
(IVs). nq = |ivar| andq is the vector formed by the
variables inivar. ivar = der −met− {z}.
Intermediary variables may arise for a number of rea-
sons: (1) application developers maybe interested in
the values of IVs for debugging purposes; (2) IVs can
codify abstractions in the performance models such
as QNs; and (3) IVs may help some search heuris-
tics. For example, MINLP solvers using cutting-plane
based algorithms, such as FilMINT [1], tend to work
better with linear cost functions while solvers using the
interior-point algorithm tend to work better with linear
constraints [3].

• mu ⊆ ivar is the set of meanservicerates at each
queueing station. nu = |mu| and µ is the vector
formed by the variables inmu.

µj = uj(v) : (Z+ ∪ {0})nv −→ R+ whereu is the
vector of functions that defineµ.

• lam ⊆ ivar is the set of meanjob arrival rates at
each queueing station.nl = |lam| andλ is the vec-
tor formed by the variables inlam. λ are related by a
system of linear expressions with a unique solution (in
terms of the input parameterλin ∈ var).
λj = lj(λin, t) : R+∪{0}×Znt

+ −→ R+∪{0}, λin ∈
v wherel is the vector of functions that defineλ.

• sq ⊆ var is the set ofSingle-QS (SQ)variables. Each
element ofsq is in the domain of only oneuj(·). ns =
|sq| ands is the vector formed by the variables insq.

• mq ⊆ var is the set ofMulti-QS (MQ) variables.
Each element ofmq is in the domain of more than one
uj(·). nx = |mq| andm is the vector formed by the
variables inmq.

• ul is a vector ofmodel constraintsthat restricts every
λj < µj for the system to bestable.

Topologies of streaming applications are restricted to di-
rected acyclic graphs while QN topologies are annotated di-
graphs. Annotations on each digraph include, at the mini-
mum, expressions for each ofµ, λ, ando. Each node of
the digraph represents aqueueing station(QS) which is a
service facility with its queue. Each edge represents the
communication link between two nodes.

Domain-specific MINLP form The general form of the
optimization function of a streaming application modeled
using queueing networks is as follows. The nonlinear func-
tions may not be continuous or differentiable.

min
z

nm∑
1

Wk × ok(v),
k∑
1

Wk = 1

subject to u(v) = 0
l(λin, t) = 0
ul(λ, µ) ≤ 0 (1)

The presence oft is a discovery from our experimen-
tation described in Section 4. There maybe multiple QNs
for a given application topology. Iftop 6= Ø, we use a set
of binary variables to model the QNs resulting from every
variable int. In that case, there exist (equality) constraints
to choose only one of the binary variables from each set.

Domain-specific complicating variables and optimality
It is our observation that the topological variablest are spe-
cial complicating variables in that decomposing by them
results in completelyindependentsubproblems by defini-
tion. That means resolving solutions from the subproblems



is trivial because we only need to identify the minimum val-
ued solution. That also means decomposing by these vari-
ables will preserve optimality.

On the other hand,λ and multi-QS variables (m) are
complicating variables that will have to be resolved if de-
composed over. Becauseλ are constrained byµ through
ul, µ have the same effect on decomposition as theλ. In
our ongoing work, we handle this case by implementing
branch-and-bound where we use the variable-constraint or-
dering described below to determine the branching order.

Domain-specific variable-constraint ordering To iden-
tify decomposability, we have developed the following
heuristic to order the variables and constraints our variable-
constraint matrix gets closer to the canonical Jordan block
form as mentioned at the beginning of this section.

1. Start withsq. If multiple elements insq, include them
in the order of the pipeline which is also the order of
the queueing stations in the QN model. Include first
all the variables fromsq that concern a given QS. For
example, include all SQ variables that affectQS0 and
then include all SQ variables that affectQS1 etc.

2. Include MQ variables relating, increasingly, to one or
more QS variables. When relating to multiple other
QS variables, they are ordered in the direction of the
application’s pipeline.

3. Include variables fromtop, ivar, met, and finallyz.

4. Order the constraints, starting withu and thenl. In-
clude the constraints, again, in the direction of the
pipeline. For example, include the constraints that are
isolated toQS0 before including those forQS1 and so
on. If all the constraints inu and l span QSs, then,
include them so that the constraints for relating fewer
QS variables are before the ones relating more QS vari-
ables.

5. Follow with the equality and inequality constraints of
ul, o, and then the binary constraints fort.

We use the ordering of variables and constraints to guide
our decomposition of the search space. For the complicat-
ing variables that are elements oftop, our decomposition
works as follows.

1. Start with the CV that appears in the most number of
constraints and evaluate each of its values as an inde-
pendent subproblem (i.e., branch on the CV).

2. For each subproblem at this step, we decompose the
subproblem by the next CV.

3. Repeat until we have decomposed all the CVs.

Split

Sort (1)

Sort (2)
MergeRead 

input

(1)

(2)

(3)

(4)

Send 
output

Split

Sort (1)

Sort (2)
MergeRead 

input

(1)

(2)

(3)

(4)

Send 
output

Figure 4:A streaming sort application
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Sort (1)

Sort (2)

Sort (3)

Sort (4)

Send 
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Split (1)
Read 
input

Split (3)

Split (2)

Merge (2)

Merge (1)(1)

(2)
(5)

(6)

(3)

(4)
(11)

(12)

(9)

(10)

(7)

(8)

Figure 6:A streaming sort application with 4 sort
blocks

By the nature of applications in our problem domain, we do
not expect all CVs to be fromtop. Dealing with CVs not
in top is our ongoing work. We are implementing a branch-
and-bound algorithm guided by the ordering of variables
and constraints discussed above.

3 Example Application

Our example application is a streaming (parallel) sort.
Although sorting is a simple application, it is prototypical
of how streaming applications get parallelized for high per-
formance. In addition, the number and type of performance-
related parameters for streaming sort on our deployment
platform is also prototypical.

In streaming sort, input data issplit into parts and each
part is sent to asort instantiation. This application topology
is shown in Figure 4. The sort instantiation is referred to as
a sort “block” in the parlance of Auto-Pipe [11]. The sort
blocks execute in parallel and when done, each block sends
its output to amergeblock. The merge block then merges
its inputs and sends out the sorted data. The edges between
the blocks are communicationlinks. A “column” refers to
all the blocks or links at the same level in Figure 4.

The set of design variables,var, along with their char-
acterization, bounds and constraints, for streaming sort are
enumerated in Figure 5. Note that thenumber of sort blocks,
denoted by2N , controls the degree of parallelization which
in turn controls the tradeoff between application latency and
throughput, reflected in a change in the application topology
as illustrated in Figure 6.

Mappingof the application blocks and edges onto avail-
able physical resources is an important concern during ap-
plication deployment. Here, we consider only a few inter-
esting and prototypical mappings. The choices are repre-
sented by the binary variablesm0, m1, mCR, mIR which
are constrained to have only one of them be true.m0 models



Variable Symbol Ranges and Constraints

Number of elements to be sorted 2B SZ B SZ = K, K ∈ Z+ (e.g.,20).
Number of sort blocks 2N N = 1, 2, 3, ...,B SZ

2
; N ∈ top

Index of split columns j j = 0, 2, ..., 2N − 1
of link columns left of sort column j = 1, 3, ..., 2N − 1
of sort column j = 2N
of link columns right of sort column j = 2N + 1, 2N + 3, ..., 4N − 1
of merge columns j = 2N + 2, 2N + 4, ..., 4N
Compute resource type binary: cpuj or fpgaj j = 0, 2, ..., 4N ; cpuj + fpgaj = 1
Communication resource type binary:smemj or gigej j = 1, 3, ..., 4N − 1; smemj + gigej = 1
Number of compute resources nResj j = 0, 2, ..., 4N ; ∀j, nResj ≥ 1

∀ split columns:nResj ≤ 2
j
2 ; ∀ sort columns:nResj ≤ 2

j
2

∀ merge columns:nResj ≤ 2
4i−j

2

Number of communication resources nResj j = 1, 3, ..., 4N − 1; ∀ j, nResj ≥ 1

∀ links left of sort:nResj ≤ 2
j+1
2

∀ links right of sort:nResj ≤ 2
4i−j+1

2

Mapping choices binary:m0, m1, mCR, mIR m0 + m1 + mCR + mIR = 1; eachmi ∈ top

System-wide comm message size 2M M = 0, 1, ...,MUB whereMUB ≤ N andMUB = K, K ∈ Z+ (e.g.,14)
Sort algorithm (only withcpuj mapping) binary:alg1 or alg2 m1(fpga[0] + alg1 + alg2)

+(1−m1)(fpga[j] + alg1 + alg2) = 1, j = 2N
Input mean job arrival rate λin ∈ R+ By solvingul

Figure 5:Performance-related parameters of streaming sort

when every block in the application gets its own set of re-
sources,m1 models when all compute blocks share a single
resource,mCR models when all split blocks share a single
computation resource, andmIR models when the commu-
nication links into and out of the sort blocks are shared. The
variables controlling both the number of sort blocks and the
mapping are topology variables, elements oftop.

Queueing network model Queuing network models rep-
resent a system as an interconnected set ofqueueing stations
and customers (jobs) serviced by those queueing stations.
Each queueing station has one or moreservers. Queuing
stations are conventionally labeled with the notationa/b/s,
wherea andb represent the distribution of interarrival and
service times respectively; ands represents the number of
servers. The model we use initially is the classicM/M/1
model whereM is an exponential (memoryless or Marko-
vian) distribution.

If in a BCMP queueing network each station has an in-
finite queue, it follows from the equivalence property that
(under steady-state conditions) each station can beanalyzed
independently [2]. Here, we restrict ourselves to M/M/1
BCMP networks with infinite buffers and FIFO queueing
discipline. We make these assumptions only to prevent
complicating the analytical expressions. Inherently, our
work can handle relaxation of each of these assumptions as
long as there are known results in queueing theory to han-
dle the relaxation. See, e.g., [13] for approaches to handling
finite queue sizes and/or phase-type service distributions.

For the sort application, we begin with the application

Comm

1, 2
Sort Merge

Comm

3, 4
Split

Figure 7:Queuing network model

Split Comm Sort

Merge

.5

.5

Figure 8:Queueing network has feedback when
communication edges to/from sort blocks are shared

topology shown in Figure 4. The queueing network model
for this topology is shown in Figure 7. Note that we model
eachcolumnas an individual queueing station. Some map-
ping choices change the queueing network’s topology. An
example of such a mapping choice ismIR. The resulting
queueing network in illustrated in Figure 8, where the server
“Comm” is handling all of the communication both into and
out of the “Sort” server.

Cost functions and validation Recall from Section 2 that
expressions forµ are given byu and are generally input
by the application developer. For our example application,
we derived these expressions based on first principles and



validated them to be within 1% of the published empirical
results [6, 7]. As an example,l is expressed as follows.

λj = λin for j = 1, 2, ..., 2N − 2 (2)

λj = 2λin for j = 2N − 1
λj = λin for j = 2N

λj = (1−m1) · λin for j = 2N + 1
λj = λin for j = 2N + 2, 2N + 3, ..., 4N

The expression for the mean service rate of the sort blocks
is shown below. TheCs in the equation are constants.

µj = [cpu0(
alg1 × C5× nRes0

2B SZ log( 2B SZ

2
j
2

)
(3)

+
alg2 × C6× nRes0

22B SZ
)

+fpga0(
C7× nRes0

2B SZ
)] · [m1] +

[cpuj(
alg1 × C5× nResj

2B SZ log(2B SZ

2
j
2

)
)

+
alg2 × C6× nResj

22B SZ
)

+fpgaj(
C7× nResj

2B SZ
)] · [1−m1],

j ∈ {sortIndex}

Formulate optimization problem We use the standard
weighted sum[15] technique to combine the multiple (nor-
malized) performance objectives (met from Section 2) as
shown in equation 4. Note that if we optimized only the
application’s throughput, given by1λin

, the problem degen-
erates to identifying thebottleneckin the pipeline.

minimize W1 × Latency + W2 × 1
λin

,

2∑
1

Wi = 1 (4)

We use the equivalence property of M/M/1 BCMP net-
works with infinite buffers and a FIFO queueing disci-
pline [2] to define themets. Accordingly, latency is given
by:

Latency =
4N∑

j=0

1
µj − λj

(5)

As the example equations above illustrate, the equations
are highly nonlinear and the state-of-art-solvers we men-
tioned earlier are unable to find even a feasible, much less
optimum, solution. The number of variables and constraints
in the original problem range from (50, 30) to (399, 3077)
as we increaseN from 1 to 13. This corresponds to2N = 2
to 8192 sort blocks, given a batch size of214 elements per
sort.

QS0 QS1
QS2 QS3 QS4 topIV met, z

u0, ul0, ..

u1, ul1, ..

u2, ul2, ..

u3, ul3, ..

u4, ul4, ..

l

bin con on t

o
obj fn

Figure 9:Matrix of variables and constraints for
streaming sort

Variables other thanµ, λ, Latency, andThroughput
are integer-valued, making the problem mixed-integer.
The expression for latency, handling of multiple mapping
choices, and handling the number of sort blocks as a vari-
able all make the problem nonlinear, and some of the non-
linear functions are nonconvex and non-quasiconvex.

4 Preliminary empirical results

We first categorize the variables and use the categories
to order the variables and constraints to achieve decompos-
ability per our heuristic described in Section 2. The result-
ing matrix structure is shown in Figure 9. The matrix shows
significant decomposable parts but it also shows the pres-
ence of many complicating variables and constraints.

We first decompose the complicating variableN and
thenm. N determines the number of sort blocks, andm
is the set of mapping choices. Letp be the original problem
that evaluates all values ofN and all the mapping choices
simultaneously. Letpi denote the subproblem obtained by
decomposingp by fixing N at i (which implies the number
of sort blocks is2i) but considers all the mapping choices.
Then, we decompose eachpi based onm. We denote the
subproblem ofpi that considers onlym0 by pi 1, only m1

by pi 2, only mCR by pi 3, and onlymIR by pi 4. The
relationship among the subproblems in the hierarchical de-
composition is shown in Figure 10.

The objective function values (equally-weighted sum of
application latency and job interarrival time to sort a batch
of a million 64-bit elements) from the solutions of each of
the subproblems, as solved by FilMINT [1], are presented in
Figure 11 (up toN = 9), Recall that the solution to the orig-
inal problem is simply the minimum of the solutions from
all the subproblems. This minimum value is highlighted



p1_1 p1_2 p1_3 p1_4 …
m0 mCRm1 mIR

p

N = 1

…p1 p2 p13

N = 2 N = 13

p13_1 p13_2 p13_3 p13_4

m0 mCRm1 mIR

Figure 10:Decomposition of search space of
streaming sort application

N all m m0 m1 mCR mIR

1 305.3 305.3 1117.2 305.3 305.0
2 299.1 299.0 1737.8 426.5 299.1
3 No soln 299.0 2313.1 No soln 298.8
4 298.9 299.1 2849.2 No soln 298.9
5 299.1 298.9 3355.8 931.0 298.9
6 No soln 298.9 3841.4 No soln 298.9
7 298.9 No soln 4312.9 No soln No soln
8 298.9 298.9 4772.9 No soln No soln
9 No soln 299.1 5225.9 No soln 298.9

Figure 11:Objective function values (in ms) in the
subproblems when optimizing application latency and

throughput equally

in the figure, and its configuration is shown in Figure 12.
”No soln” in Figure 11 means the solver failed to converge
to a feasible solution for that problem instance. Note that
there is no additional benefit to increasing parallelism be-
yond N = 3 for our optimization because the split and
merge blocks become the bottleneck. It is also the reason
why many solutions are close to the minimum–the minor
differences are due to variations in queueing delays.

Analysis of empirical results The solver runtime for the
different subproblems ranged from 20 ms to approximately
7 s and hence the overhead from decomposition is not a con-
cern for this problem. Although we are solving many sub-
problems instead of just one (original) problem, each sub-
problem is progressively less complex. After decomposing,
the number of variables and constraints in any subproblem
is no more than 380 and 326, respectively.

The solution of every subproblem through our heuristic
is not guaranteed to be necessarily a local optimum because
the cost functions and some constraints still remain non-
convex in the subproblems. For our example application,
an example of solution to a subproblem not being a local
optimum is the subproblemp3 0. The solution hasM = 4
but increasingM to 5 in a neighborhood search lowers the
objective function value from 299.02 to 298.87 ms. While
the difference between these two values is actually not truly

Variable Value in the solution configuration

Res. type for each compute column = FPGA

Computation res. type determines communication res. type

Number of resources per column (nResj or nResj )
nRes0 1
nRes1, nRes2 2 each
nRes3, nRes4 4 each
nRes5, nRes6 8 each
nRes7 0
nRes8, nRes9 4 each
nRes10, nRes11 2 each
nRes12 1

M = 14 (i.e., message size =214 Bytes)

Bottleneck mean service rate (num. of 64-bit elems per ms)
The final merge,µj 10,986

Input mean job arrival rate (num. of 64-bit elems per ms)
λin 4,513

Figure 12:Configuration corresponding to the best
solution when optimizing application latency and

throughput equally (N = 3, m = mIR)

significant from the point of view of the application devel-
oper (i.e., the performance models are very unlikely to be
accurate to that many significant digits), it is significant that
the solver is unable to find even a local optimum.

Our solution is indeed sensitive to the application’s
performance goals. For instance, rather than optimizing
equally for both application latency and throughout, if we
increase the weight on throughput to0.9 and reduce the
weight on latency to0.1, the recommended configuration
changes from(N = 3,m = mIR) to (N = 4, m = m0)
with a corresponding objective function value of 184.5 ms.

Problem variation In the problem instance we have con-
sidered so far, the communication architecture depends on
the resource type selected for the processing elements. For
example, in Figure 4 if a software implementation is used
for each of the split and sort blocks, the communication ar-
chitecture can be shared memory or Gigabit Ethernet, but if
one of the ends is mapped instead to an FPGA, the commu-
nication architecture is automatically set to PCI-X.

The formulation for these constraints, however, is highly
nonlinear and therefore we relaxed these constraints (and
simultaneously changed a number of the constants) to form
a variation of the problem that we call “relaxed streaming
sort.” The solver does manage to solve this relaxed version
of the problem. Here, using our decomposition heuristic
improves the initial solution by 480-fold as shown in Fig-
ure 13. In the figure, solution values are denoted bys and
solver runtimes are denoted byt. The subproblemp4 1 giv-
ing the improvement is highlighted. The subproblems and
their solutions are indexed using the same convention as
above.
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Figure 13:Results after decomposing relaxed
streaming sort

5 Conclusions and Future Work

We have presented a heuristic for automatic application-
specific performance tuning of streaming applications mod-
eled using queueing networks by developing a domain-
specific decomposition technique using topological infor-
mation embodied in the queueing network models. Our pre-
liminary empirical results show two-fold benefits—solving
a problem that is currently not solvable by the state-of-the-
art solvers, and for some problem instances improving the
initial solution by over two orders of magnitude.

In performing a neighborhood search on the solution of
the optimization problem of some problem instances for our
example application, we observed that the reported solution
was not even a local optimum. This is expected given that
some of the functions in our optimization problem are not
convex. An easy fix would be to search the neighborhood of
the solution reported by the solver. More interesting would
be if we can identify topological information that will guide
us to partition such that the resulting optimization solution
is at least a local optimum. In addition, we are pursuing
a wider application set to verify the effectiveness of these
ideas across a large domain of problems.
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