1,469 research outputs found

    Topological surface state under graphene for two-dimensional spintronics in air

    Get PDF
    Spin currents which allow for a dissipationless transport of information can be generated by electric fields in semiconductor heterostructures in the presence of a Rashba-type spin-orbit coupling. The largest Rashba effects occur for electronic surface states of metals but these cannot exist but under ultrahigh vacuum conditions. Here, we reveal a giant Rashba effect ({\alpha}_R ~ 1.5E-10 eVm) on a surface state of Ir(111). We demonstrate that its spin splitting and spin polarization remain unaffected when Ir is covered with graphene. The graphene protection is, in turn, sufficient for the spin-split surface state to survive in ambient atmosphere. We discuss this result along with evidences for a topological protection of the surface state.Comment: includes supplementary informatio

    Feshbach shape resonance for high Tc superconductivity in superlattices of nanotubes

    Full text link
    The case of a Feshbach shape resonance in the pairing mechanism for high T c superconductivity in a crystalline lattice of doped metallic nanotubes is described. The superlattice of doped metallic nanotubes provides a superconductor with a strongly asymmetric gap. The disparity and different spatial locations of the wave functions of electrons in different subbands at the Fermi level should suppress the single electron impurity interband scattering giving multiband superconductivity in the clean limit. The Feshbach resonances will arise from the component single-particle wave functions out of which the electron pair wave function is constructed: pairs of wave functions which are time inverse of each other. The Feshbach shape resonance increases the critical temperature by tuning the chemical potential at the Lifshitz electronic topological transition (ETT) where the Fermi surface of one of the bands changes from the one dimensional (1D) to the two dimensional (2D) topology (1D/2D ETT).Comment: 6 pages, 4 figure

    Polaron excitations in fullerenes: Theory as pi-conjugated systems

    Full text link
    We review the recent theoretical treatment of fullerenes as pi-conjugated systems. Polaronic properties due to the Jahn-Teller type effects are mainly discussed. (1) A Su-Schrieffer-Heeger type electron-phonon model is applied to fullerenes: C_60 and C_70, and is solved with the adiabatic approximation to phonons. When the system (C_60 or C_70) is doped with one or two electrons (or holes), the additional charges accumulate along almost an equatorial line of the molecule. The dimerization becomes the weakest along the same line. Two energy levels, the occupied state and the empty state, intrude largely in the gap. The intrusion is larger in C_70 than in C_60. These are ``polarons'' in doped fullerenes. It is also found that C_60 and C_70 are related mutually with respect to electronical structures as well as lattice geometries. (2) We apply the model to the fullerene epoxide C_60O. It has the polaron-type lattice distortion around the oxygen, and also shows the energy level intrusion in the gap. (3) Optical properties of C_60 are calculated and discussed. In the absorption of the doped molecule, a new peak structure is present owing to the polaronic distortion. In the luminescence of the neutral C_60, the spacing between H_g(8)-phonon side-band peaks and the relative intensities agree well with experiments. In the dispersion of the third harmonic generation, the magnitudes of |chi^(3)| agree with those of experiments at the resonance of the lowest allowed transition as well as in the region away from the resonance.Comment: Review article in Prog. Theor. Phys., 14pages, 7 figure

    The topology of fullerenes

    Get PDF
    Fullerenes are carbon molecules that form polyhedral cages. Their bond structures are exactly the planar cubic graphs that have only pentagon and hexagon faces. Strikingly, a number of chemical properties of a fullerene can be derived from its graph structure. A rich mathematics of cubic planar graphs and fullerene graphs has grown since they were studied by Goldberg, Coxeter, and others in the early 20th century, and many mathematical properties of fullerenes have found simple and beautiful solutions. Yet many interesting chemical and mathematical problems in the field remain open. In this paper, we present a general overview of recent topological and graph theoretical developments in fullerene research over the past two decades, describing both solved and open problems. WIREs Comput Mol Sci 2015, 5:96–145. doi: 10.1002/wcms.1207 Conflict of interest: The authors have declared no conflicts of interest for this article. For further resources related to this article, please visit the WIREs website

    The Influence of Electro-Mechanical Effects on Resonant Electron Tunneling Through Small Carbon Nano-Peapods

    Full text link
    The influence of a fullerene molecule trapped inside a single-wall carbon nanotube on resonant electron transport at low temperatures and strong polaronic coupling is theoretically discussed. Strong peak to peak fluctuations and anomalous temperature behavior of conductance amplitudes are predicted and investigated. The influence of the chiral properties of carbon nanotubes on transport is also studied.Comment: 17 pages, 3 figures. Replaced with published version. Important changes. Open access: http://stacks.iop.org/1367-2630/10/04304
    • …
    corecore