852 research outputs found

    Quantum Inference on Bayesian Networks

    Get PDF
    Performing exact inference on Bayesian networks is known to be #P-hard. Typically approximate inference techniques are used instead to sample from the distribution on query variables given the values ee of evidence variables. Classically, a single unbiased sample is obtained from a Bayesian network on nn variables with at most mm parents per node in time O(nmP(e)−1)\mathcal{O}(nmP(e)^{-1}), depending critically on P(e)P(e), the probability the evidence might occur in the first place. By implementing a quantum version of rejection sampling, we obtain a square-root speedup, taking O(n2mP(e)−12)\mathcal{O}(n2^mP(e)^{-\frac12}) time per sample. We exploit the Bayesian network's graph structure to efficiently construct a quantum state, a q-sample, representing the intended classical distribution, and also to efficiently apply amplitude amplification, the source of our speedup. Thus, our speedup is notable as it is unrelativized -- we count primitive operations and require no blackbox oracle queries.Comment: 8 pages, 3 figures. Submitted to PR

    Detection of entangled states supported by reinforcement learning

    Full text link
    Discrimination of entangled states is an important element of quantum enhanced metrology. This typically requires low-noise detection technology. Such a challenge can be circumvented by introducing nonlinear readout process. Traditionally, this is realized by reversing the very dynamics that generates the entangled state, which requires a full control over the system evolution. In this work, we present nonlinear readout of highly entangled states by employing reinforcement learning (RL) to manipulate the spin-mixing dynamics in a spin-1 atomic condensate. The RL found results in driving the system towards an unstable fixed point, whereby the (to be sensed) phase perturbation is amplified by the subsequent spin-mixing dynamics. Working with a condensate of 10900 {87}^Rb atoms, we achieve a metrological gain of 6.97 dB beyond the classical precision limit. Our work would open up new possibilities in unlocking the full potential of entanglement caused quantum enhancement in experiments

    Artificial Intelligence and Machine Learning for Quantum Technologies

    Get PDF
    In recent years, the dramatic progress in machine learning has begun to impact many areas of science and technology significantly. In the present perspective article, we explore how quantum technologies are benefiting from this revolution. We showcase in illustrative examples how scientists in the past few years have started to use machine learning and more broadly methods of artificial intelligence to analyze quantum measurements, estimate the parameters of quantum devices, discover new quantum experimental setups, protocols, and feedback strategies, and generally improve aspects of quantum computing, quantum communication, and quantum simulation. We highlight open challenges and future possibilities and conclude with some speculative visions for the next decade

    Modularized and Scalable Compilation for Double Quantum Dot Quatum Computing

    Full text link
    Any quantum program on a realistic quantum device must be compiled into an executable form while taking into account the underlying hardware constraints. Stringent restrictions on architecture and control imposed by physical platforms make this very challenging. In this paper, based on the quantum variational algorithm, we propose a novel scheme to train an Ansatz circuit and realize high-fidelity compilation of a set of universal quantum gates for singlet-triplet qubits in semiconductor double quantum dots, a fairly heavily constrained system. Furthermore, we propose a scalable architecture for a modular implementation of quantum programs in this constrained systems and validate its performance with two representative demonstrations, Grover's algorithm for the database searching (static compilation) and a variant of variational quantum eigensolver for the Max-Cut optimization (dynamic compilation). Our methods are potentially applicable to a wide range of physical devices. This work constitutes an important stepping-stone for exploiting the potential for advanced and complicated quantum algorithms on near-term devices.Comment: 10 pages, 4 figure

    Hybrid quantum-classical unsupervised data clustering based on the Self-Organizing Feature Map

    Full text link
    Unsupervised machine learning is one of the main techniques employed in artificial intelligence. Quantum computers offer opportunities to speed up such machine learning techniques. Here, we introduce an algorithm for quantum assisted unsupervised data clustering using the self-organizing feature map, a type of artificial neural network. We make a proof-of-concept realization of one of the central components on the IBM Q Experience and show that it allows us to reduce the number of calculations in a number of clusters. We compare the results with the classical algorithm on a toy example of unsupervised text clustering

    Optimized Compilation of Aggregated Instructions for Realistic Quantum Computers

    Full text link
    Recent developments in engineering and algorithms have made real-world applications in quantum computing possible in the near future. Existing quantum programming languages and compilers use a quantum assembly language composed of 1- and 2-qubit (quantum bit) gates. Quantum compiler frameworks translate this quantum assembly to electric signals (called control pulses) that implement the specified computation on specific physical devices. However, there is a mismatch between the operations defined by the 1- and 2-qubit logical ISA and their underlying physical implementation, so the current practice of directly translating logical instructions into control pulses results in inefficient, high-latency programs. To address this inefficiency, we propose a universal quantum compilation methodology that aggregates multiple logical operations into larger units that manipulate up to 10 qubits at a time. Our methodology then optimizes these aggregates by (1) finding commutative intermediate operations that result in more efficient schedules and (2) creating custom control pulses optimized for the aggregate (instead of individual 1- and 2-qubit operations). Compared to the standard gate-based compilation, the proposed approach realizes a deeper vertical integration of high-level quantum software and low-level, physical quantum hardware. We evaluate our approach on important near-term quantum applications on simulations of superconducting quantum architectures. Our proposed approach provides a mean speedup of 5×5\times, with a maximum of 10×10\times. Because latency directly affects the feasibility of quantum computation, our results not only improve performance but also have the potential to enable quantum computation sooner than otherwise possible.Comment: 13 pages, to apper in ASPLO
    • …
    corecore