340 research outputs found

    ํ† ํด๋กœ์ง€ ๊ฐ„์„ญ๊ด€๋ฆฌ์—์„œ ์ตœ๋Œ€ ํ† ํด๋กœ์ง€์™€ ์ž์œ ๋„์— ๊ด€ํ•œ ๋ถ„์„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€,2020. 2. ๋…ธ์ข…์„ .In this dissertation, four main contributions are given as i) design of maximal topology in topological interference management (TIM), ii) design of maximal topology matrix and generalized alliance construction, iii) topological interference management- treating interference as noise (TIM-TIN) decomposition, and iv) inter-cell interference coordination (ICIC) based on cell zooming are considered. First, we propose a method of alliance construction, which derives maximal topology by stipulating several conditions for message relationship in the alignment graph and conflict graph. Maximal topologies are the topologies of K-user interference channel, where any interference link cannot be added without degenerating current degrees of freedom (DoF). It is proved that a topology is maximal if and only if it is derived from the alliance construction. Through alliance construction, any maximal topologies achieving symmetric DoF 1/2 can be designed. Properties of alliance construction are derived such as the maximum number of alliances to be constructed for the given number of messages K and a method to partition messages into sub-alliances. Second, message relationship based on alliance construction is translated into topology matrix in TIM. Permutation of the topology matrix is used to demonstrate the characteristics of the alliances easily in the topology matrix. The conditions for maximal topology matrix (MTM) are characterized and the discriminant of topology matrix for maximality and transformation of non-MTM into MTM are proposed. Alliance construction is generalized by introducing generalized sub-alliances, which extends the range of topologies derived from alliance construction in the achievable DoFs. The analysis of generalized alliance construction in the topology matrix is also proposed. Third, TIM-TIN decomposition is proposed in order to handle with intermediate links in interference channel. The criterion how to separate interference links into TIM and TIN is proposed for generalized degrees of freedom (GDoF) performance. Since GDoF in TIN depends on the Hamiltonian path in graph of interference channel, it is NP-hard problem and the optimal solution is hard to be proposed for GDoF. Instead of the optimal solution, a method to derive sub-optimal solution is proposed using modified channel matrix (MCM) and simulation result will be followed to show the performance of the proposed decomposition. Lastly, ICIC for self organizing cellular network is proposed, where each base station (BS) is not able to share information through backhaul to perform conventional ICIC schemes.The proposed ICIC scheme is based on distributed cell zooming, where non-cooperative game theory is used. Further, it is shown that proposed scheme can efficiently handle inter-cell interference and coverage hole problem in self organizing network by simulation result.๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š”, i) ๋™๋งน ๊ฑด์„ค์„ ์ด์šฉํ•œ ํ† ํด๋กœ์ง€ ๊ฐ„์„ญ๊ด€๋ฆฌ์—์„œ ์ตœ๋Œ€ ํ† ํด๋กœ์ง€ ์„ค ๊ณ„, ii) ์ตœ๋Œ€ ํ† ํด๋กœ์ง€ ํ–‰๋ ฌ ์„ค๊ณ„ ๋ฐ ์ผ๋ฐ˜ํ™”๋œ ๋™๋งน ๊ฑด์„ค๊ณผ ์ด๋ฅผ ์ด์šฉํ•œ ์ž์œ ๋„ 1/2 ๋ฏธ๋งŒ์˜ ํ† ํด๋กœ์ง€ ์„ค๊ณ„, iii) TIM-TIN ๋ถ„๋ฆฌ ๊ธฐ๋ฒ• iv) ์…€ ๊ฐ„ ๊ฐ„์„ญ ์กฐ์ • (ICIC)์ด ์—ฐ๊ตฌ๋˜์—ˆ๋‹ค. ๋จผ์ €, ๊ธฐ์กด์˜ ์ •๋ ฌ ์ง‘ํ•ฉ์„ ํ™•์žฅ์‹œ์ผœ ๋‚ด์  ๊ฐˆ๋“ฑ์ด ์—†๊ณ  ์ง‘ํ•ฉ ๊ฐˆ๋“ฑ์„ ๋งŒ์กฑํ•˜๋Š” ๋ฉ”์„ธ์ง€๋“ค์˜ ์ง‘ํ•ฉ์ธ ๋™๋งน (alliance)์„ ์ •์˜ํ•œ๋‹ค. ๋™๋งน์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์ƒํ˜ธ ๋ถ€๋ถ„ ์ ๋Œ€๋ฅผ ๋งŒ์กฑํ•˜๋Š” ๋™๋งน ๊ฑด์„ค์„ ์ œ์•ˆํ•˜๊ณ  ์ด๋ฅผ ํ†ตํ•ด ์ตœ๋Œ€ ํ† ํด๋กœ์ง€๋ฅผ ์ƒ์„ฑํ•œ๋‹ค. ๋Œ€์นญ ์ž์œ ๋„๊ฐ€ 1/2์ธ ๋ชจ๋“  ์ตœ๋Œ€ ํ† ํด๋กœ์ง€๋Š” ๋™๋งน ๊ฑด์„ค์„ ํ†ตํ•ด ์„ค๊ณ„๊ฐ€ ๋œ๋‹ค๋Š” ๊ฒƒ์„ ์ฆ๋ช…ํ•œ๋‹ค. ๋˜ํ•œ ๋™๋งน ๊ฑด์„ค์„ ์ด์šฉํ•˜์—ฌ ๋™๋งน์˜ ์ตœ๋Œ€ ์ˆ˜, ๋™๋งน์œผ๋กœ ๋ฉ”์„ธ์ง€ ํ• ๋‹น ๋“ฑ ์ตœ๋Œ€ ํ† ํด๋กœ์ง€์˜ ํŠน์„ฑ์— ๊ด€ํ•œ ๋‚ด์šฉ์„ ์ œ์‹œํ•œ๋‹ค. ๋™๋งน ๊ฑด์„ค์„ ํ™œ์šฉํ•˜์—ฌ, ์ตœ๋Œ€ ํ† ํด๋กœ์ง€ ํŒ๋ณ„๊ณผ ๋ณ€ํ˜•์„ ์ œ์•ˆํ•œ๋‹ค. ๋‘ ๋ฒˆ์งธ๋กœ, ํ† ํด๋กœ์ง€์˜ ์ตœ๋Œ€์„ฑ์„ ๋ณด๋‹ค ์‰ฝ๊ฒŒ ๋ถ„์„ํ•˜๊ธฐ ์œ„ํ•ด, ์ •๋ ฌ-๊ฐˆ๋“ฑ ๊ทธ๋ž˜ํ”„ ์™€ ๊ด€๋ จ๋œ ๋™๋งน ๊ฑด์„ค์„ ํ† ํด๋กœ์ง€ ํ–‰๋ ฌ๋กœ ๋ณ€ํ˜•์‹œํ‚จ๋‹ค. ์ตœ๋Œ€ ํ† ํด๋กœ์ง€ ํ–‰๋ ฌ (maximal topology matrix; MTM)์˜ ํ•„์š” ์ถฉ๋ถ„ ์กฐ๊ฑด์„ ์œ ๋„ํ•˜๊ณ  MTM์˜ ํŒ๋ณ„๊ณผ ๋ณ€ํ˜• ์—ญ์‹œ ์ œ์•ˆํ•œ๋‹ค. ๋‚˜์•„๊ฐ€, ์ผ๋ฐ˜ํ™”๋œ ๋ถ€๋ถ„๋™๋งน์„ ํ†ตํ•ด ๋™๋งน ๊ฑด์„ค์„ ์ผ๋ฐ˜ํ™”ํ•˜๊ณ  1/n ์ž์œ ๋„๋ฅผ ์–ป๋Š” ํ† ํด๋กœ์ง€๋ฅผ ์„ค๊ณ„ํ•œ๋‹ค. ์ผ๋ฐ˜ํ™”๋œ ๋™๋งน ๊ฑด์„ค๋„ ํ–‰๋ ฌ ํ˜•ํƒœ๋กœ ํ‘œํ˜„๋˜๊ณ  ์ œ์•ˆํ•˜๋Š” ๊ธฐ๋ฒ•์—์„œ ์ž์œ ๋„ 1/n์„ ์–ป๋Š” ์ตœ๋Œ€ ํ† ํด๋กœ์ง€์˜ ์กฐ๊ฑด์„ ์ œ์‹œํ•œ๋‹ค. ์„ธ ๋ฒˆ์งธ๋กœ ์ผ๋ฐ˜ํ™” ์ž์œ ๋„ ํ•ฉ์˜ ์ฐจ์„ ํ•ด๋ฅผ ์œ„ํ•œ TIM-TIN ๋ถ„๋ฆฌ ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. TIM-TIN ๋ถ„๋ฆฌ์˜ ๊ธฐ์ดˆ์—์„œ ์‹œ์ž‘ํ•˜์—ฌ, TIM๊ณผ TIN์— ๊ฐ„์„ญ ๋งํฌ๋“ค์„ ๋ถ„๋ฐฐํ•˜๋Š” ๊ตฌ์ฒด์  ์ธ ๋ฐฉ๋ฒ•์„ ๋™๋งน ๊ฑด์„ค๊ณผ ๋ณ€ํ˜• ์ฑ„๋„ ํ–‰๋ ฌ (modified channel matrix; MCM)์„ ํ™œ์šฉํ•˜์—ฌ ์ œ์•ˆํ•œ๋‹ค. MCM์„ ์ด์šฉํ•˜์—ฌ ๊ฐ๊ฐ ๊ฐ„์„ญ ๋งํฌ๋“ค์ด ๊ฐ ์†ก์ˆ˜์‹  ์Œ์˜ ์ผ๋ฐ˜ํ™” ์ž์œ ๋„์— ๋Œ€ํ•œ ์ƒ๋Œ€์  ์˜ํ–ฅ์„ ์ธก์ •ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ์ž๊ฐ€ ์กฐ์งํ™” ์…€๋ฃฐ๋Ÿฌ ๋„คํŠธ์›Œํฌ๋ฅผ ์œ„ํ•œ ์…€ ๊ฐ„ ๊ฐ„์„ญ ์กฐ์ • ๊ธฐ๋ฒ•์ด ์ œ์•ˆ ๋˜์—ˆ๋Š”๋ฐ,๊ฐ๊ธฐ์ง€๊ตญ์€ ์ข…๋ž˜์˜ ์…€ ๊ฐ„ ๊ฐ„์„ญ ์กฐ์ •๋ฐฉ์‹์„ ์ˆ˜ํ–‰ํ•˜๊ธฐ ์œ„ํ•œ ์ •๋ณด๋ฅผ ๋ฐฑํ™€์„ ํ†ตํ•ด ๊ณต์œ ํ•  ์ˆ˜ ์—†๋Š” ์ƒํ™ฉ์—์„œ ๊ฐ„์„ญ์กฐ์ •์„ ์ˆ˜ํ–‰ํ•œ๋‹ค. ์ œ์•ˆ๋œ ์…€ ๊ฐ„ ๊ฐ„์„ญ ์กฐ์ • ๊ธฐ๋ฒ•์€ ๋น„ํ˜‘์กฐ์  ๊ฒŒ์ž„ ์ด๋ก ์ด ์‚ฌ์šฉ๋˜๋Š” ๋ถ„์‚ฐ ์…€ ํ™•๋Œ€ ๊ธฐ๋ฒ•์— ๊ธฐ๋ฐ˜์„ ๋‘๊ณ  ์žˆ๋‹ค. ๋˜ํ•œ, ์ œ์•ˆ ๋œ ๊ธฐ๋ฒ•์ด ์ž๊ฐ€ ์กฐ์งํ™” ์…€๋ฃฐ๋Ÿฌ ๋„คํŠธ์›Œํฌ์—์„œ ์…€ ๊ฐ„ ๊ฐ„์„ญ ๋ฐ ์ปค๋ฒ„๋ฆฌ์ง€ ๊ณต๋™ ๋ฌธ์ œ๋ฅผ ํšจ์œจ์ ์œผ๋กœ ์ฒ˜๋ฆฌ ํ•  ์ˆ˜ ์žˆ์Œ์„ ๋ชจ์˜ ์‹คํ—˜์„ ํ†ตํ•˜์—ฌ ๋ณด์ธ๋‹ค.1 INTRODUCTION 1 1.1 Background 1 1.2 Overview of Dissertation 6 1.3 Notations 7 2 Preliminaries 9 2.1 Degrees of Freedom 9 2.2 Interference Management 11 2.3 Graph Theory 14 2.4 Treating Interference as Noise with Power Allocation 15 2.5 CellZooming 18 3 Analysis of Maximal Topologies and Their DoFs in TIM 22 3.1 Introduction 22 3.2 Alliance Construction for Maximal Topologies 23 3.2.1 System Model: K-User Interference Channel 23 3.2.2 Definitions 24 3.2.3 Alliance 24 3.2.4 AllianceConstruction 26 3.3 Properties of Alliance Constructions 39 3.3.1 Beamforming Vector Design for Alliance Construction 39 3.3.2 Maximum Number of Alliances and Partition of Messages into Alliances 40 3.4 Discriminant and Transformation of Maximal Topologies 42 3.4.1 Discriminant of Maximal Topologies 42 3.4.2 Transformation of Maximal Topology 43 4 Maximal Topology Matrix and Generalized Alliance Construction 44 4.1 Introduction 44 4.2 Conditions for Maximal Topology Matrix 44 4.3 Discriminant and Transformation of MTM 47 4.4 Generalized Alliance Construction 49 4.4.1 Generalized Sub-Alliance 49 4.4.2 Topology Matrix for Generalized Alliance Construction 51 4.5 Topology Matrix for Generalized Alliance Construction 52 5 Multi-level Topological Interference Management 55 5.1 Introduction 55 5.2 Topological Interference Management 55 5.3 Treating Interference as Noise with Power Allocation. 56 5.3.1 System Model 56 5.4 TIM-TINDecomposition 57 5.4.1 Baseline 57 5.4.2 Separation Criterion 57 6 Inter-Cell Interference Coordination Based on Game Theory by Cell Zooming for Self-Organizing Cellular Network 61 6.1 Introduction 61 6.2 Non-CooperativeGameTheory 62 6.3 Design of Utility Function Based on Neighboring Signal Power Estimation 63 6.3.1 Design of Revenue Function 63 6.3.2 Design of Cost Function 64 6.3.3 Utility Function and Nash Equilibrium 66 6.3.4 Simulation Result 69 7 Conclusion 74 Abstract (In Korean) 79Docto

    ๋ฆฌ๋งŒ ์ตœ์ ํ™”์™€ ๊ทธ๋ž˜ํ”„ ์‹ ๊ฒฝ๋ง์— ๊ธฐ๋ฐ˜ํ•œ ์ € ๋žญํฌ ํ–‰๋ ฌ์™„์„ฑ ์•Œ๊ณ ๋ฆฌ๋“ฌ์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€,2020. 2. ์‹ฌ๋ณ‘ํšจ.์ตœ๊ทผ, ์ผ๋ถ€์˜ ๊ด€์ธก์น˜๋กœ๋ถ€ํ„ฐ ํ–‰๋ ฌ์˜ ๋ชจ๋“  ์›์†Œ๋“ค์„ ๋ณต์›ํ•˜๋Š” ๋ฐฉ๋ฒ•์œผ๋กœ ์ € ๋žญํฌ ํ–‰๋ ฌ ์™„์„ฑ (LRMC)์ด ๋งŽ์€ ์ฃผ๋ชฉ์„ ๋ฐ›๊ณ  ์žˆ๋‹ค. LRMC๋Š” ์ถ”์ฒœ ์‹œ์Šคํ…œ, ์œ„์ƒ ๋ณต์›, ์‚ฌ๋ฌผ ์ธํ„ฐ๋„ท ์ง€์—ญํ™”, ์˜์ƒ ์žก์Œ ์ œ๊ฑฐ, ๋ฐ€๋ฆฌ๋ฏธํ„ฐ ์›จ์ด๋ธŒ ํ†ต ์‹ ๋“ฑ์„ ํฌํ•จํ•œ ๋‹ค์–‘ํ•œ ์‘์šฉ๋ถ„์•ผ์—์„œ ์‚ฌ์šฉ๋˜๊ณ  ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” LRMC์— ๋Œ€ํ•ด ์—ฐ๊ตฌํ•˜์—ฌ LRMC์˜ ๊ฐ€๋Šฅ์„ฑ๊ณผ ํ•œ๊ณ„์— ๋Œ€ํ•œ ๋” ๋‚˜์€ ์ดํ•ด๋ฅผ ํ•  ์ˆ˜ ์žˆ๋„๋ก ๊ธฐ์กด ๊ฒฐ๊ณผ๋“ค์„ ๊ตฌ์กฐ์ ์ด๊ณ  ์ ‘๊ทผ ๊ฐ€๋Šฅํ•œ ๋ฐฉ์‹์œผ๋กœ ๋ถ„๋ฅ˜ํ•œ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ, ์ตœ์‹  LRMC ๊ธฐ๋ฒ•๋“ค์„ ๋‘ ๊ฐ€์ง€ ๋ฒ”์ฃผ๋กœ ๋ถ„๋ฅ˜ํ•œ ๋‹ค์Œ ๊ฐ๊ฐ ์˜๋ฒ”์ฃผ๋ฅผ ๋ถ„์„ํ•œ๋‹ค. ํŠนํžˆ, ํ–‰๋ ฌ์˜ ๊ณ ์œ ํ•œ ์„ฑ์งˆ๊ณผ ๊ฐ™์€ LRMC ๊ธฐ๋ฒ•์„ ์‚ฌ์šฉ ํ• ๋•Œ ๊ณ ๋ คํ•ด์•ผ ํ•  ์‚ฌํ•ญ๋“ค์„ ๋ถ„์„ํ•œ๋‹ค. ๊ธฐ์กด์˜ LRMC ๊ธฐ๋ฒ•์€ ๊ฐ€์šฐ์‹œ์•ˆ ๋žœ ๋คํ–‰๋ ฌ๊ณผ ๊ฐ™์€ ์ผ๋ฐ˜์ ์ธ ์ƒํ™ฉ์—์„œ ์„ฑ๊ณต์ ์ด์—ˆ์œผ๋‚˜ ๋งŽ์€ ์‹ค์ œ ์ƒํ™ฉ์—์„œ ๋Š”๋ณต์›ํ•˜๊ณ ์ž ํ•˜๋Š” ์ € ๋žญํฌ ํ–‰๋ ฌ์ด ๊ทธ๋ž˜ํ”„ ๊ตฌ์กฐ ๋˜๋Š” ๋‹ค์–‘์ฒด ๊ตฌ์กฐ์™€ ๊ฐ™์€ ๋น„์œ ํด๋ฆฌ๋“œ ๊ตฌ์กฐ๋ฅผ ๊ฐ€์งˆ ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์‹ค์ œ ์‘์šฉ์—์„œ LRMC์˜ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•ด ์ด ๋Ÿฐ์ถ”๊ฐ€์ ์ธ ๊ตฌ์กฐ๊ฐ€ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์ธ๋‹ค. ํŠนํžˆ, ์‚ฌ๋ฌผ ์ธํ„ฐ๋„ท ๋„คํŠธ์›Œ ํฌ์ง€์—ญํ™”๋ฅผ ์œ„ํ•œ ์œ ํด๋ฆฌ๋“œ ๊ฑฐ๋ฆฌ ํ–‰๋ ฌ ์™„์„ฑ ์•Œ๊ณ ๋ฆฌ๋“ฌ์„ ์ œ์•ˆํ•œ๋‹ค. ์œ ํด๋ฆฌ ๋“œ๊ฑฐ๋ฆฌ ํ–‰๋ ฌ์„ ๋‚ฎ์€ ๋žญํฌ๋ฅผ ๊ฐ–๋Š” ์–‘์˜ ์ค€์ •๋ถ€ํ˜ธ ํ–‰๋ ฌ์˜ ํ•จ์ˆ˜๋กœ ํ‘œํ˜„ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์–‘์˜ ์ค€์ •๋ถ€ํ˜ธ ํ–‰๋ ฌ๋“ค์˜ ์ง‘ํ•ฉ์€ ๋ฏธ๋ถ„์ด ์ž˜ ์ •์˜๋˜์–ด ์žˆ๋Š” ๋ฆฌ ๋งŒ๋‹ค์–‘์ฒด๋ฅผ ํ˜•์„ฑํ•˜๋ฏ€๋กœ ์œ ํด๋ฆฌ๋“œ ๊ณต๊ฐ„์—์„œ์˜ ์•Œ๊ณ ๋ฆฌ๋“ฌ์„ ์ ๋‹นํžˆ ๋ณ€ํ˜•ํ•˜ ์—ฌLRMC์— ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋‹ค. LRMC๋ฅผ ์œ„ํ•ด ์šฐ๋ฆฌ๋Š” ์ผค๋ ˆ ๊ธฐ์šธ๊ธฐ๋ฅผ ํ™œ์šฉ ํ•œ๋ฆฌ๋งŒ ๋‹ค์–‘์ฒด์—์„œ์˜ ์ง€์—ญํ™” (LRM-CG)๋ผ ๋ถˆ๋ฆฌ๋Š” ๋ณ€๊ฒฝ๋œ ์ผค๋ ˆ ๊ธฐ์šธ๊ธฐ ๊ธฐ ๋ฐ˜์•Œ๊ณ ๋ฆฌ๋“ฌ์„ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆํ•˜๋Š” LRM-CG ์•Œ๊ณ ๋ฆฌ๋“ฌ์€ ๊ด€์ธก๋œ ์Œ ๊ฑฐ๋ฆฌ ๊ฐ€ํŠน์ด๊ฐ’์— ์˜ํ•ด ์˜ค์—ผ๋˜๋Š” ์‹œ๋‚˜๋ฆฌ์˜ค๋กœ ์‰ฝ๊ฒŒ ํ™•์žฅ ๋  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์ธ๋‹ค. ์‹ค์ œ๋กœ ํŠน์ด๊ฐ’์„ ํฌ์†Œ ํ–‰๋ ฌ๋กœ ๋ชจ๋ธ๋ง ํ•œ ๋‹ค์Œ ํŠน์ด๊ฐ’ ํ–‰๋ ฌ์„ ๊ทœ์ œ ํ•ญ์œผ ๋กœLRMC์— ์ถ”๊ฐ€ํ•จ์œผ๋กœ์จ ํŠน์ด๊ฐ’์„ ํšจ๊ณผ์ ์œผ๋กœ ์ œ์–ด ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ถ„์„์„ ํ†ต ํ•ดLRM-CG ์•Œ๊ณ ๋ฆฌ๋“ฌ์ด ํ™•์žฅ๋œ Wolfe ์กฐ๊ฑด ์•„๋ž˜ ์›๋ž˜ ์œ ํด๋ฆฌ๋“œ ๊ฑฐ๋ฆฌ ํ–‰๋ ฌ ์—์„ ํ˜•์ ์œผ๋กœ ์ˆ˜๋ ดํ•˜๋Š” ๊ฒƒ์„ ๋ณด์ธ๋‹ค. ๋ชจ์˜ ์‹คํ—˜์„ ํ†ตํ•ด LRM-CG์™€ ํ™• ์žฅ๋ฒ„์ „์ด ์œ ํด๋ฆฌ๋“œ ๊ฑฐ๋ฆฌ ํ–‰๋ ฌ์„ ๋ณต๊ตฌํ•˜๋Š” ๋ฐ ํšจ๊ณผ์ ์ž„์„ ๋ณด์ธ๋‹ค. ๋˜ํ•œ, ๊ทธ๋ž˜ํ”„ ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜์—ฌ ํ‘œํ˜„๋  ์ˆ˜ ์žˆ๋Š” ์ € ๋žญํฌ ํ–‰๋ ฌ ๋ณต์›์„ ์œ„ ํ•œ๊ทธ๋ž˜ํ”„ ์‹ ๊ฒฝ๋ง (GNN) ๊ธฐ๋ฐ˜ ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ๊ทธ๋ž˜ํ”„ ์‹ ๊ฒฝ๋ง ๊ธฐ๋ฐ˜์˜ LRM C(GNN-LRMC)๋ผ ๋ถˆ๋ฆฌ๋Š” ๊ธฐ๋ฒ•์€ ๋ณต์›ํ•˜๊ณ ์ž ํ•˜๋Š” ํ–‰๋ ฌ์˜ ๊ทธ๋ž˜ํ”„ ์˜ ์—ญํŠน์ง•๋“ค์„ ์ถ”์ถœํ•˜๊ธฐ ์œ„ํ•ด ๋ณ€ํ˜•๋œ ํ•ฉ์„ฑ๊ณฑ ์—ฐ์‚ฐ์„ ์‚ฌ์šฉํ•œ๋‹ค. ์ด๋ ‡๊ฒŒ ์ถ”์ถœ ๋œํŠน์ง•๋“ค์„ GNN์˜ ํ•™์Šต ๊ณผ์ •์— ํ™œ์šฉํ•˜์—ฌ ํ–‰๋ ฌ์˜ ์›์†Œ๋“ค์„ ๋ณต์›ํ•  ์ˆ˜ ์žˆ๋‹ค. ํ•ฉ์„ฑ ๋ฐ ์‹ค์ œ ๋ฐ์ดํ„ฐ๋ฅผ ์‚ฌ์šฉํ•œ ๋ชจ์˜ ์‹คํ—˜์„ ํ†ตํ•˜์—ฌ ์ œ์•ˆํ•˜๋Š” GNN -LRMC์˜ ์šฐ์ˆ˜ํ•œ ๋ณต๊ตฌ ์„ฑ๋Šฅ์„ ๋ณด์˜€๋‹ค.In recent years, low-rank matrix completion (LRMC) has received much attention as a paradigm to recover the unknown entries of a matrix from partial observations. It has a wide range of applications in many areas, including recommendation system, phase retrieval, IoT localization, image denoising, milimeter wave (mmWave) communication, to name just a few. In this dissertation, we present a comprehensive overview of low-rank matrix completion. In order to have better view, insight, and understanding of potentials and limitations of LRMC, we present early scattered results in a structured and accessible way. To be specific, we classify the state-of-the-art LRMC techniques into two main categories and then explain each category in detail. We further discuss issues to be considered, including intrinsic properties required for the matrix recovery, when one would like to use LRMC techniques. However, conventional LRMC techniques have been most successful on a general setting of the low-rank matrix, say, Gaussian random matrix. In many practical situations, the desired low rank matrix might have an underlying non-Euclidean structure, such as graph or manifold structure. In our work, we show that such additional data structures can be exploited to improve the recovery performance of LRMC in real-life applications. In particular, we propose a Euclidean distance matrix completion algorithm for internet of things (IoT) network localization. In our approach, we express the Euclidean distance matrix as a function of the low rank positive semidefinite (PSD) matrix. Since the set of these PSD matrices forms a Riemannian manifold in which the notation of differentiability can be defined, we can recycle, after a proper modification, an algorithm in the Euclidean space. In order to solve the low-rank matrix completion, we propose a modified conjugate gradient algorithm, referred to as localization in Riemannian manifold using conjugate gradient (LRM-CG). We also show that the proposed LRM-CG algorithm can be easily extended to the scenario in which the observed pairwise distances are contaminated by the outliers. In fact, by modeling outliers as a sparse matrix and then adding a regularization term of the outlier matrix into the low-rank matrix completion problem, we can effectively control the outliers. From the convergence analysis, we show that LRM-CG converges linearly to the original Euclidean distance matrix under the extended Wolfes conditions. From the numerical experiments, we demonstrate that LRM-CG as well as its extended version is effective in recovering the Euclidean distance matrix. In order to solve the LRMC problem in which the desired low-rank matrix can be expressed using a graph model, we also propose a graph neural network (GNN) scheme. Our approach, referred to as graph neural network-based low-rank matrix completion (GNN-LRMC), is to use a modified convolution operation to extract the features across the graph domain. The feature data enable the training process of the proposed GNN to reconstruct the unknown entries and also optimize the graph model of the desired low-rank matrix. We demonstrate the reconstruction performance of the proposed GNN-LRMC using synthetic and real-life datasets.Abstract i Contents iii List of Tables vii List of Figures viii 1 Introduction 2 1.1 Motivation 2 1.2 Outline of the dissertation 5 2 Low-Rank Matrix Completion 6 2.1 LRMC Applications 6 2.1.1 Recommendation system 6 2.1.2 Phase retrieval 8 2.1.3 Localization in IoT networks 8 2.1.4 Image compression and restoration 10 2.1.5 Massive multiple-input multiple-output (MIMO) 12 2.1.6 Millimeter wave (mmWave) communication 12 2.2 Intrinsic Properties of LRMC 13 2.2.1 Sparsity of Observed Entries 13 2.2.2 Coherence 18 2.3 Rank Minimization Problem 22 2.4 LRMC Algorithms Without the Rank Information 25 2.4.1 Nuclear Norm Minimization (NNM) 25 2.4.2 Singular Value Thresholding (SVT) 28 2.4.3 Iteratively Reweighted Least Squares (IRLS) Minimization 31 2.5 LRMC Algorithms Using Rank Information 32 2.5.1 Greedy Techniques 34 2.5.2 Alternating Minimization Techniques 37 2.5.3 Optimization over Smooth Riemannian Manifold 39 2.5.4 Truncated NNM 41 2.6 Performance Guarantee 44 2.7 Empirical Performance Evaluation 46 2.8 Choosing the Right Matrix Completion Algorithms 55 3 IoT Localization Via LRMC 56 3.1 Problem Model 57 3.2 Optimization over Riemannian Manifold 61 3.3 Localization in Riemannian Manifold Using Conjugate Gradient (LRMCG) 66 3.4 Computational Complexity 71 3.5 Recovery Condition Analysis 73 3.5.1 Convergence of LRM-CG at Sampled Entries 73 3.5.2 Exact Recovery of Euclidean Distance Matrices 79 3.5.3 Discussion on A3 86 4 Extended LRM-CG for The Outlier Problem 92 4.1 Problem Model 94 4.2 Extended LRM-CG 94 4.3 Numerical Evaluation 97 4.3.1 Simulation Setting 98 4.3.2 Convergence Efficiency 99 4.3.3 Performance Evaluation 99 4.3.4 Outlier Problem 107 4.3.5 Real Data 107 5 LRMC Via Graph Neural Network 112 5.1 Graph Model 116 5.2 Proposed GNN-LRMC 116 5.2.1 Adaptive Model 119 5.2.2 Multilayer GNN 119 5.2.3 Output Model 122 5.2.4 Training Cost Function 123 5.3 Numerical Evaluation 123 6 Conculsion 127 A Proof of Lemma 6 129 B Proof of Theorem 7 131 C Proof of Lemma 8 134 D Proof of Theorem 9 136 E Proof of Lemma 10 140 F Proof of Lemma 12 141 G Proof of Lemma 13 142 H Proof of Lemma 14 144 I Proof of Lemma 15 146 J Proof of Lemma 17 151 K Proof of Lemma 19 154 L Proof of Lemma 20 156 M Proof of Lemma 21 158 Abstract (In Korean) 173 Acknowlegement 175Docto

    2023 IMSAloquium

    Get PDF
    Welcome to IMSAloquium 2023. This is IMSAโ€™s 36 th year of leading in educationalinnovation, and the 35th year of the IMSA Student Inquiry and Research (SIR) Program.https://digitalcommons.imsa.edu/archives_sir/1033/thumbnail.jp
    • โ€ฆ
    corecore