

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Ph.D. DISSERTATION

A STUDY OF LOW-RANK MATRIX
COMPLETION ALGORITHM BASED
ON RIEMANNIAN OPTIMIZATION
AND GRAPH NEURAL NETWORK

리만최적화와그래프신경망에기반한저랭크
행렬완성알고리듬에관한연구

BY

Nguyen Trung Luong
FEBRUARY 2020

DEPARTMENT OF ELECTRICAL AND
COMPUTER ENGINEERING

COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY

Abstract

In recent years, low-rank matrix completion (LRMC) has received much attention

as a paradigm to recover the unknown entries of a matrix from partial observations.

It has a wide range of applications in many areas, including recommendation system,

phase retrieval, IoT localization, image denoising, milimeter wave (mmWave) commu-

nication, to name just a few. In this dissertation, we present a comprehensive overview

of low-rank matrix completion. In order to have better view, insight, and understanding

of potentials and limitations of LRMC, we present early scattered results in a structured

and accessible way. To be specific, we classify the state-of-the-art LRMC techniques

into two main categories and then explain each category in detail. We further discuss

issues to be considered, including intrinsic properties required for the matrix recov-

ery, when one would like to use LRMC techniques. However, conventional LRMC

techniques have been most successful on a general setting of the low-rank matrix, say,

Gaussian random matrix. In many practical situations, the desired low rank matrix

might have an underlying non-Euclidean structure, such as graph or manifold struc-

ture.

In our work, we show that such additional data structures can be exploited to im-

prove the recovery performance of LRMC in real-life applications. In particular, we

propose a Euclidean distance matrix completion algorithm for internet of things (IoT)

network localization. In our approach, we express the Euclidean distance matrix as a

function of the low rank positive semidefinite (PSD) matrix. Since the set of these PSD

matrices forms a Riemannian manifold in which the notation of differentiability can

be defined, we can recycle, after a proper modification, an algorithm in the Euclidean

space. In order to solve the low-rank matrix completion, we propose a modified con-

jugate gradient algorithm, referred to as localization in Riemannian manifold using

conjugate gradient (LRM-CG). We also show that the proposed LRM-CG algorithm

i

can be easily extended to the scenario in which the observed pairwise distances are

contaminated by the outliers. In fact, by modeling outliers as a sparse matrix and then

adding a regularization term of the outlier matrix into the low-rank matrix completion

problem, we can effectively control the outliers. From the convergence analysis, we

show that LRM-CG converges linearly to the original Euclidean distance matrix under

the extended Wolfe’s conditions. From the numerical experiments, we demonstrate

that LRM-CG as well as its extended version is effective in recovering the Euclidean

distance matrix.

In order to solve the LRMC problem in which the desired low-rank matrix can

be expressed using a graph model, we also propose a graph neural network (GNN)

scheme. Our approach, referred to as graph neural network-based low-rank matrix

completion (GNN-LRMC), is to use a modified convolution operation to extract the

features across the graph domain. The feature data enable the training process of the

proposed GNN to reconstruct the unknown entries and also optimize the graph model

of the desired low-rank matrix. We demonstrate the reconstruction performance of the

proposed GNN-LRMC using synthetic and real-life datasets.

keywords: low-rank matrix completion, Frobenius norm minimization, localization,

Riemannian optimization, graph neural network.

student number: 2015-30751

ii

Contents

Abstract i

Contents iii

List of Tables vii

List of Figures viii

1 Introduction 2

1.1 Motivation . 2

1.2 Outline of the dissertation . 5

2 Low-Rank Matrix Completion 6

2.1 LRMC Applications . 6

2.1.1 Recommendation system . 6

2.1.2 Phase retrieval . 8

2.1.3 Localization in IoT networks 8

2.1.4 Image compression and restoration 10

2.1.5 Massive multiple-input multiple-output (MIMO) 12

2.1.6 Millimeter wave (mmWave) communication 12

2.2 Intrinsic Properties of LRMC . 13

2.2.1 Sparsity of Observed Entries 13

2.2.2 Coherence . 18

iii

2.3 Rank Minimization Problem . 22

2.4 LRMC Algorithms Without the Rank Information 25

2.4.1 Nuclear Norm Minimization (NNM) 25

2.4.2 Singular Value Thresholding (SVT) 28

2.4.3 Iteratively Reweighted Least Squares (IRLS) Minimization . . 31

2.5 LRMC Algorithms Using Rank Information 32

2.5.1 Greedy Techniques . 34

2.5.2 Alternating Minimization Techniques 37

2.5.3 Optimization over Smooth Riemannian Manifold 39

2.5.4 Truncated NNM . 41

2.6 Performance Guarantee . 44

2.7 Empirical Performance Evaluation 46

2.8 Choosing the Right Matrix Completion Algorithms 55

3 IoT Localization Via LRMC 56

3.1 Problem Model . 57

3.2 Optimization over Riemannian Manifold 61

3.3 Localization in Riemannian Manifold Using Conjugate Gradient (LRM-

CG) . 66

3.4 Computational Complexity . 71

3.5 Recovery Condition Analysis . 73

3.5.1 Convergence of LRM-CG at Sampled Entries 73

3.5.2 Exact Recovery of Euclidean Distance Matrices 79

3.5.3 Discussion on A3 . 86

4 Extended LRM-CG for The Outlier Problem 92

4.1 Problem Model . 94

4.2 Extended LRM-CG . 94

4.3 Numerical Evaluation . 97

iv

4.3.1 Simulation Setting . 98

4.3.2 Convergence Efficiency . 99

4.3.3 Performance Evaluation . 99

4.3.4 Outlier Problem . 107

4.3.5 Real Data . 107

5 LRMC Via Graph Neural Network 112

5.1 Graph Model . 116

5.2 Proposed GNN-LRMC . 116

5.2.1 Adaptive Model . 119

5.2.2 Multilayer GNN . 119

5.2.3 Output Model . 122

5.2.4 Training Cost Function . 123

5.3 Numerical Evaluation . 123

6 Conculsion 127

A Proof of Lemma 6 129

B Proof of Theorem 7 131

C Proof of Lemma 8 134

D Proof of Theorem 9 136

E Proof of Lemma 10 140

F Proof of Lemma 12 141

G Proof of Lemma 13 142

H Proof of Lemma 14 144

v

I Proof of Lemma 15 146

J Proof of Lemma 17 151

K Proof of Lemma 19 154

L Proof of Lemma 20 156

M Proof of Lemma 21 158

Abstract (In Korean) 173

Acknowlegement 175

vi

List of Tables

2.1 The SVT Algorithm . 29

2.2 The IRLS Algorithm . 33

2.3 The ADMiRA Algorithm . 36

2.4 Truncated NNM . 42

2.5 Summary of the NNM-based LRMC algorithms. 47

2.6 Summary of the FNM-based LRMC algorithms. 48

2.7 MSE results for different problem sizes where rank(M) = 5, and p =

2× DOF . 52

2.8 Image recovery via LRMC for different noise levels ρ. 54

3.1 Computational complexity of LRM-CG for each iteration. 71

4.1 Computational complexity of the matrix completion algorithms in re-

covery of n× n rank-k matrix. 105

4.2 Localization errors with real measurements. 110

5.1 RMSE performance of the matrix completion algorithms using Netflix

dataset. 125

vii

List of Figures

2.1 Recommendation system application of LRMC. Entries of M̂ are then

simply rounded to integers, achieving 97.2% accuracy. 7

2.2 Localization via LRMC. The Euclidean distance matrix can be recov-

ered with 92% of distance error below 0.5m using 30% of observed

distances. 9

2.3 Image reconstruction via LRMC. Recovered images achieve peak SNR

≥ 32dB and structural similarity index (SSIM) at least 0.95. 11

2.4 LRMC with colored entries being observed. The dotted boxes are used

to compute: (a) linear coefficients and (b) unknown entries. 14

2.5 An illustration of the worst case of LRMC. 16

2.6 Coherence of matrices in (2.10) and (2.11): (a) maximum and (b) min-

imum. 19

2.7 Outline of LRMC algorithms. Depending on the availability of the

rank, we can naturally classify LRMC techniques to two main cate-

gories: the techniques with and without the rank information 24

2.8 Phase transition of LRMC algorithms. 50

2.9 Running times of LRMC algorithms in noiseless scenario (40% of en-

tries are observed). 50

2.10 MSE performance of LRMC algorithms in noisy scenario with SNR =

20 dB (70% of entries are observed). 53

viii

2.11 MSE performance of LRMC algorithms in noisy scenario with SNR =

50 dB (70% of entries are observed). 53

3.1 Sensor nodes deployed to measure not only environment information

but also their pairwise distances. The observed distances are repre-

sented by two-sided arrows. The shadow spheres represent the radio

communication range of the sensor nodes. 58

3.2 Illustration of (a) the tangent space TYỸ and (b) the retraction operator

RY at a point Y in the embedded manifold Ỹ 62

3.3 Riemannian gradient gradf(Y) is defined as the projection of the Eu-

clidean gradient ∇Yf(Y) onto the tangent space TYỸ while the Eu-

clidean gradient is a direction for which the cost function is reduced

most in Rn×n, Riemannian gradient is the direction for which the cost

function is reduced most in the tangent space TYỸ 68

3.4 The sampling parameter p gets close to 1 as r increases. Here, elements

of xi are i.i.d. random variables according to the uniform distribution

over unit interval. 81

3.5 The Euclidean distance matrix D can be recovered with overwhelming

probability in (a) 2D and (b) 3D Euclidean space when r is large. . . . 84

3.6 Suppose that the sensor node 4 is inside the triangle formed by three

sensor nodes 1, 2, and 3. Then for a given r, it can be shown that

d14 ≤ max(d12, d13), and thus P (d14 ≤ r|d12 ≤ r, d13 ≤ r) = 1

which is not necessarily equivalent to P (d14 ≤ r). 87

3.7 The condition (3.42) holds true with overwhelming probability when

the radio communication range r is large. 89

4.1 Outliers might reduce the localization accuracy: (a) accurately recon-

structed locations when there is no outlier and (b) inaccurate locations

in the presence of outliers . 93

ix

4.2 The MSE performance of LRM-CG for k = 2 (2-dimensional location

vectors). 100

4.3 The MSE performance of the matrix completion algorithms for sce-

nario without observation error for (a) 2-dimensional and (b) 3-dimensional

location vectors. 101

4.4 The RMSE performance of the algorithms in presence of observation

errors for (a) 2-dimensional and (b) 3-dimensional location vectors. . 102

4.5 The RMSLE performance of the algorithms for 3-dimensional location

vectors. 104

4.6 Running time as a function of the number of sensor nodes: (a) the con-

ventional matrix completion algorithms and the proposed LRM-CG

and (b) SDP-based algorithm. Since the running time of SDP-based

algorithm is much higher than that of the other algorithms, we sepa-

rate the results into two plots. 106

4.7 The MSLE performance of LRM-CG in terms of (a) outlier ratio θ and

(b) average connection per node (for θ = 0.1). 108

4.8 Histograms of the localization error ‖x̂i − xi‖2 when the outlier ratio

θ satisfies (a) θ = 0.1 and (b) θ = 0.3. 109

5.1 User graph with nodes indexed by user IDs and edges to show the

correlation between the users’ favorite products. 113

5.2 (a) Graph model of M = UVT and (b) the value of each node updated

based on the local connectivity of this node. Each row ui or vj is the

vector-valued representation at each node. Nt(ui) is the t-hop neigh-

bors of ui, the nodes with the shortest path to ui not being greater than

t. In GNN, a polynomial filter of degree 3 affects on a local area of ui,

i.e., N3(ui). 115

5.3 Block diagram of the proposed GNN-LRMC. 118

5.4 RMSE performance of the LRMC algorithms. 124

x

5.5 Accuracy performance of the LRMC algorithms. 124

xi

Notation

‖A‖ the spectral norm (i.e., the largest singular value) of A

‖A‖∗ the nuclear norm (i.e., the sum of singular values) of A

‖A‖F the Frobenius norm of A

AT ∈ Rn2×n1 the transpose of A

AH ∈ Cn2×n1 the conjugate transpose of A

diag(A) ∈ Rn vector formed by the diagonal entries of A

rank(A) the rank of A

Sym(A) the symmetric component of A, i.e., 1/2(A + AT)

Skew(A) the skew-symmetric component of A, i.e., 1/2(A−AT)

vec(A) the vectorization of A

〈A,B〉 = tr(ATB) the inner product of A,B ∈ Rn1×n2

A�B the Hadamard product of A,B ∈ Rn1×n2

Q⊥ ∈ Rn×(n−k) an orthogonal complement of Q ∈ Rn×k

Id the d-dimensional identity matrix

0 matrix with all-zero entries

1 matrix with all-one entries

ai ∈ Rn1 the i-th column of A ∈ Rn1×n2

ei the i-th vector of the standard basis in Rn

diag(a) ∈ Rn×n diagonal matrix formed by a

eye(a) diagonal matrix with the main diagonal being a

σi(A) the i-th largest singular value of A

∇Yf(Y) the Euclidean gradient of f(Y), i.e., [∇Yf(Y)]ij =
∂f(Y)
∂yij

g ◦ f the composite mapping of two mappings f and g

1

Chapter 1

Introduction

1.1 Motivation

In the era of big data, the low rank matrix has become a useful and popular means to

express two-dimensional information. One well-known example is the rating matrix in

the recommendation systems that represents users’ tastes on products [1]. Since users

expressing similar ratings on multiple products tend to have the same interest for a new

product, columns associated with users sharing the same interest are highly likely to

be the same, resulting in the low rank structure of the rating matrix. Another example

is the Euclidean distance matrix formed by the pairwise distances of a large number

of sensor nodes. Since the rank of an Euclidean distance matrix in the k-dimensional

Euclidean space is at most k + 2 (if k = 2, then the rank is 4), this matrix can be

readily considered as a low-rank matrix [2, 3].

One major benefit of the low rank matrix representation is that the essential infor-

mation, expressed in terms of degree of freedom, in the matrix is much smaller than

the total number of entries. Therefore, even though the number of observed entries is

small, we still have a chance to recover the whole matrix. There are variety of scenar-

ios where the number of observed entries of a matrix is tiny. In the recommendation

systems, for example, users are recommended to submit the feedback in a form of rat-

2

ing number, e.g., 1 to 5 for the purchased product. However, users often do not want

to leave a feedback and thus the rating matrix will have many missing entries. In the

example of IoT networks, sensor nodes have a limitation on the radio communica-

tion range or the power outage so that only small portion of entries in the Euclidean

distance matrix are available.

When there is no restriction on the rank of a matrix, the problem to recover un-

known entries of the matrix from partial observed entries is ill-posed. This is because

any value can be assigned to unknown entries, which in turn means that there are in-

finite number of matrices that agree with the observed entries. As a simple example,

consider the following 2× 2 matrix with one unknown entry marked ?

M =


 1 5

2 ?


 . (1.1)

If M is a full rank, i.e., the rank of M is two, then any value can be assigned to

?. Whereas, if M is a low-rank matrix (the rank is one in this trivial example), two

columns differ by only a constant and hence unknown element ? can be easily de-

termined using a linear relationship between two columns (? = 10). This example is

obviously simple, but the fundamental principle to recover a large dimensional matrix

is essentially not much different from this and the low-rank constraint plays a central

role in recovering unknown entries of the matrix.

In recent years, low rank matrix completion (LRMC) has become a powerful

and attractive tool to complete the low rank matrices using a subset of entries. This

paradigm has been received much attention ever since the works of Fazel [4], Candes

and Recht [5], and Candes and Tao [6]. Over the years, various LRMC techniques

have been proposed [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]. These in-

clude convex optimization, singular value thresholding (SVT), alternating minimiza-

tion, heuristic greedy technique, alternating steepest descent, and optimization over

Riemannian manifolds, to name just a few.

Basically, the LRMC problem can be modeled as a rank minimization problem to

3

find the lowest rank matrix given the observed entries. However, since the rank func-

tion is nonlinear, non-convex, and non-smooth, it is computationally infeasible to solve

the rank minimization problem directly. In fact, it is known that the rank minimization

problem is a NP-hard problem. Over the years, various approaches relaxing the rank

constraint have been proposed. Roughly speaking, depending on the way of using the

rank information, LRMC techniques can be classified into two main categories: the

LRMC using the rank information and those without the rank information.

When one tries to understand LRMC, there are fundamental issues and principles

that one needs to be aware of. There are two key properties characterizing the LRMC

problem: the sparsity of the observed entries and the incoherence of the matrix. Spar-

sity indicates that an accurate reconstruction of the undersampled matrix is possible

even when the number of observed entries is very small, while incoherence indicates

that nonzero entries of the matrix should be spread out widely for the efficient recovery

of a low-rank matrix.

Further, when the desired low-rank matrix has an underlying structure, such as

graph or manifold, we want to make the most of the given structure to maximize profits

in terms of performance and computational complexity. In particular, to cope with the

Euclidean distance matrix completion in which the Euclidean distance matrix has an

underlying Riemannian structure, we cast the LRMC problem into the unconstrained

optimization problem on a Riemannian manifold. Advantage of Riemannian manifold

is that the notion of differentiability is well-defined and hence many useful ingredients

for solving optimization problems can be used in the design of the LRMC algorithm.

We also propose a graph neural network (GNN)-based scheme to reconstruct the

low-rank matrix with underlying graph structure. In our approach, we use a modified

convolutional filter to extract the meaningful features across the graph domain. These

features can then be used in a neural network-based output model to justify the graph

model mismatch and eventually update the desired low-rank matrix.

4

1.2 Outline of the dissertation

In Chapter 2, we study the LRMC problem and its practical significance. We present

its wide range of applications and the state-of-the-art LRMC techniques. We also dis-

cuss the intrinsic properties required for the matrix recovery and present the recovery

performance guarantee of the LRMC techniques. In Chapter 3, we propose the LRM-

CG algorithm to reconstruct the Euclidean distance matrix of IoT sensor nodes by

exploiting the low-rank structure and Riemannian manifold structure of PSD matri-

ces. From the convergence analysis, we present the extended Wolfe’s conditions under

which the recovery performance of LRM-CG is guaranteed. In Chapter 4, we pro-

pose an extended LRM-CG to solve the outlier problem and also examine the recovery

performance of both LRM-CG and its extended version. In Chapter 5, we propose

a GNN-based LRMC algorithm to reconstruct the rating matrix using its underlying

graph structure. Chapter 6 is the conclusion and the future research.

Parts of the material in Chapter 2 appear in [22]. Parts of Chapter 3 and 4 appear

in [23]. Parts of Chapter 5 appear in [24].

5

Chapter 2

Low-Rank Matrix Completion

2.1 LRMC Applications

In recent years, LRMC has received much attentions as a mean to recover the matrix

accurately from small number of observed entries as long as the rank of a matrix is

sufficiently small. Notable LRMC applications are as follows.

2.1.1 Recommendation system

In 2006, the online DVD rental company Netflix announced a contest to improve the

quality of the company’s movie recommendation system. The company released a

training set consisting of ratings of more than 17,000 movies by more than 2.5 million

users. The number of known entries is only about 1%, each entry an integer from 1 to

5 [1]. The training data can be represented in a large dimensional matrix in which the

row and columns are indexed by user IDs and movie names, respectively. The primary

goal of the recommendation system is to estimate the users’ interests on products using

the sparsely sampled rating matrix. Since many users sharing the same interests in key

factors (e.g., the type, the price, and the appearance of the movie) often have the same

ratings on the movies. Hence, the ratings of those users might form a low-rank column

space, resulting in the low-rank model of the rating matrix (see Fig. 2.1).

6

0

1

2

3

4

5

(a)

Netflix rating matrix with each entry an integer

from 1 to 5 and zero for unknown

W
ha

t t
he

 #
$*

! D
o

W
e

K
no

w
!?

, 2
00

4
7

S
ec

on
ds

, 2
00

5
Im

m
or

ta
l B

el
ov

ed
, 1

99
4

N
ev

er
 D

ie
 A

lo
ne

, 2
00

4
Li

lo
 a

nd
 S

tit
ch

, 2
00

2
S

om
et

hi
ng

's
 G

ot
ta

 G
iv

e,
 2

00
3

A
qu

a
T

ee
n

H
un

ge
r

F
or

ce
: V

ol
. 1

, 2
00

0
S

pi
tfi

re
 G

ril
l,

19
96

R
ud

ol
ph

 th
e

R
ed

-N
os

ed
 R

ei
nd

ee
r,

 1
96

4
T

he
 W

ea
th

er
 U

nd
er

gr
ou

nd
, 2

00
2

D
ra

go
nh

ea
rt

, 1
99

6
C

on
go

, 1
99

5
Ji

ng
le

 A
ll

th
e

W
ay

, 1
99

6
S

ilk
w

oo
d,

 1
98

3
M

os
tly

 M
ar

th
a,

 2
00

2
S

pa
rt

an
, 2

00
4

D
up

le
x

(W
id

es
cr

ee
n)

, 2
00

3
R

am
bo

: F
irs

t B
lo

od
 P

ar
t I

I,
19

85
S

ta
r

T
re

k:
 V

oy
ag

er
: S

ea
so

n
1,

 1
99

5
T

he
 G

am
e,

 1
99

7
S

w
ee

t N
ov

em
be

r,
 2

00
1

A
 L

itt
le

 P
rin

ce
ss

, 1
99

5
H

us
ba

nd
s

an
d

W
iv

es
, 1

99
2

R
ic

ha
rd

 P
ry

or
: L

iv
e

on
 th

e
S

un
se

t S
tr

ip
, 1

98
2

F
am

e,
 1

98
0

T
he

 C
ho

ru
s,

 2
00

4
F

un
ny

 F
ac

e,
 1

95
7

R
es

er
vo

ir
D

og
s,

 1
99

2
D

ea
th

 to
 S

m
oo

ch
y,

 2
00

2
A

irp
la

ne
 II

: T
he

 S
eq

ue
l,

19
82

X
2:

 X
-M

en
 U

ni
te

d,
 2

00
3

T
ak

in
g

Li
ve

s,
 2

00
4

T
he

 D
ee

r
H

un
te

r,
 1

97
8

S
ta

r
T

re
k:

 D
ee

p
S

pa
ce

 N
in

e:
 S

ea
so

n
5,

 1
99

6
T

ha
t '

70
s

S
ho

w
: S

ea
so

n
1,

 1
99

8
Im

po
st

or
, 2

00
0

C
ha

pp
el

le
's

 S
ho

w
: S

ea
so

n
1,

 2
00

3
T

he
 C

oo
ko

ut
, 2

00
4

G
ro

ss
 A

na
to

m
y,

 1
98

9
W

om
an

 o
f t

he
 Y

ea
r,

 1
94

2
N

or
th

 b
y

N
or

th
w

es
t,

19
59

M
ic

ha
el

 M
oo

re
's

 T
he

 A
w

fu
l T

ru
th

: S
ea

so
n

2,
 2

00
1

S
tu

ar
t L

itt
le

 2
, 2

00
2

A
 N

ig
ht

 a
t t

he
 O

pe
ra

, 1
93

5
T

he
 H

un
ch

ba
ck

 o
f N

ot
re

 D
am

e
II,

 2
00

1
G

ho
st

 D
og

: T
he

 W
ay

 o
f t

he
 S

am
ur

ai
, 2

00
0

C
ha

rlo
tte

's
 W

eb
, 1

97
3

H
er

bi
e

R
id

es
 A

ga
in

, 1
97

4
T

he
 F

in
al

 C
ou

nt
do

w
n,

 1
98

0
P

ar
en

th
oo

d,
 1

98
9

Customer ID: 6
 7

 79
 134
 188
 199
 481
 561
 684
 769
 906

 1310
 1333
 1409
 1427
 1442
 1457
 1500
 1527
 1626
 1830
 1871
 1897
 1918
 2000
 2128
 2213
 2225
 2307
 2455
 2469
 2678
 2693
 2757
 2787
 2794
 2807
 2878
 2892
 2905
 2976
 3039
 3186
 3292
 3321
 3363
 3458
 3595
 3604
 3694

(b)

Submatrix M of size 50 × 50

(c)

Observed matrix Mo (70% of known entries of M)

(d)

Reconstructed matrix M̂ via LRMC using Mo

Figure 2.1: Recommendation system application of LRMC. Entries of M̂ are then

simply rounded to integers, achieving 97.2% accuracy.

7

2.1.2 Phase retrieval

Phase retrieval is known as the problem to recover a signal (not necessarily sparse)

from the magnitude of its observation. It is an important problem in X-ray crys-

tallography and quantum mechanics since only the magnitude of the Fourier trans-

form is measured in these applications [7]. Consider the unknown time-domain signal

m = [m0 · · · mn−1] and suppose its measured magnitude of the Fourier transform is

given by

|zω| =
1√
n

∣∣∣∣∣
n−1∑

t=0

mte
−j2πωt/n

∣∣∣∣∣ , ω ∈ Ω, (2.1)

where Ω is the set of sampled frequencies. If we denote

fω =
1√
n

[1 e−j2πω/n · · · e−j2πω(n−1)/n]H (2.2)

and M = mmH , then (2.1) can be expressed as

|zω|2 = |〈fω,m〉|2 = tr(fHω mmHfω) = tr(mmHfωfHω) = 〈M,Fω〉, (2.3)

where Fw = fwfHw is the rank-1 matrix of the waveform fω. Using (2.3), we can

reformulate the phase retrieval problem as the problem to reconstruct the rank-1 matrix

M in the positive semi-definite (PSD) cone [7]:

min
X

rank(X)

subject to 〈M,Fω〉 = |zω|2, ω ∈ Ω

X � 0.

(2.4)

The desired signal m can then be computed via the eigenvalue decomposition of M.

2.1.3 Localization in IoT networks

In big data era, internet of things (IoT) has a wide range of applications including

healthcare, automatic metering, environmental monitoring (temperature, pressure, mois-

ture), surveillance, to name just a few [25, 26, 2]. In most of IoT applications, the

8

(a)

Partially observed distances of sensor nodes due to limitation of radio communication range r

(b)

RSSI-based observation error of 1000

sensor nodes in an 100m× 100m area

(c)

Reconstruction error

Figure 2.2: Localization via LRMC. The Euclidean distance matrix can be recovered

with 92% of distance error below 0.5m using 30% of observed distances.

9

location information of sensor nodes is often needed to make a proper action, such

as fire alarm, energy transfer, emergency request, on the data center. In network lo-

calization (a.k.a. cooperative localization), each sensor node measures the pairwise

distances with its adjacent nodes and then sends it to the data center. Then the data

center constructs a map of sensor nodes using the collected distance information [27].

Due to various reasons, such as the power outage of a sensor node or the limitation of

radio communication range (see Fig. 2.2), only small number of distance information

is available at the data center. Also, in the vehicular networks, it is not easy to measure

the distance of all adjacent vehicles when a vehicle is located at the dead zone. An

example of the observed Euclidean distance matrix is

Mo =




0 d2
12 d2

13 ? ?

d2
21 0 ? ? ?

d2
31 ? 0 d2

34 d2
35

? ? d2
43 0 d2

45

? ? d2
53 d2

54 0




,

where dij is the pairwise distance between two sensor nodes i and j. Since the rank

of Euclidean distance matrix M is at most k+2 in the k-dimensional Euclidean space

(k = 2 or k = 3) [3, 23], the problem to reconstruct M can be well-modeled as the

LRMC problem.

2.1.4 Image compression and restoration

Image compression and restoration is a well-known problem to recover a “true” image

from an observed image that has been corrupted by some noise process (e.g., dirt or

scribble). One simple solution is to replace the contaminated pixels with the interpo-

lated version of adjacent pixels. A better way is to exploit intrinsic domination of a

few singular values in an image. In fact, one can readily approximate an image to the

low-rank matrix without perceptible loss of quality. By using clean (uncontaminated)

pixels as observed entries, an original image can be recovered via the low-rank matrix

10

Original image Image with noise and scribbles Reconstructed image

Figure 2.3: Image reconstruction via LRMC. Recovered images achieve peak SNR ≥
32dB and structural similarity index (SSIM) at least 0.95.

11

completion.

2.1.5 Massive multiple-input multiple-output (MIMO)

By exploiting hundreds of antennas at the basestation (BS), massive MIMO can offer a

large gain in capacity. In order to optimize the performance gain of the massive MIMO

systems, the channel state information at the transmitter (CSIT) is required [28]. One

way to acquire the CSIT is to let each user directly feed back its own pilot observation

to BS for the joint CSIT estimation of all users [29]. In this setup, the MIMO channel

matrix H can be reconstructed in two steps: 1) finding the pilot matrix Y using the least

squares (LS) estimation or linear minimum mean square error (LMMSE) estimation

and 2) reconstructing H using the model Y = HΦ where each column of Φ is the

pilot signal from one antenna at BS [30, 31]. Since the number of resolvable paths P is

limited in most cases, one can readily assume that rank(H) ≤ P [29]. In the massive

MIMO systems, P is often much smaller than the dimension of H due to the limited

number of clusters around BS. Thus, the problem to recover H at BS can be solved via

the rank minimization problem subject to the linear constraint Y = HΦ [31].

2.1.6 Millimeter wave (mmWave) communication

In mmWave-based wireless system, training beamforming finding the beamformer-

combiner pair of the highest channel gain is required to compensate the path loss

of the mmWave frequency bands [32]. One way to estimate the mmWave channel is

based on its sparse scattering nature. Specifically, let B and C be full-rank matrices

constructed by all vectors in the pre-determined beamforming/combining codebooks B
and C, respectively. The observation matrix Yo of the combined signal at the receiver

can be expressed as Yo = BHHC + N where H is the channel matrix and N is the

matrix of noise [33]. Since mmWave channels spread in the form of clusters of paths

over the angular domains (e.g., angle of arrival (AoA) and angle of departure (AoD))

in many practical cases, it can be shown that the rank of Y = BHHC is less than

12

the sparsity level of the channel [34, 33]. The problem to recover H is now equivalent

to the problem to reconstruct the low-rank matrix Y from its noisy version Yo since

H = (BH)−1YC−1.

Other than these, there are a bewildering variety of applications of LRMC in wire-

less communication, such as millimeter wave (mmWave) channel estimation [32, 33],

topological interference management (TIM) [35, 36, 37, 38] and mobile edge caching

in fog radio access networks (Fog-RAN) [39, 40].

2.2 Intrinsic Properties of LRMC

There are two key properties characterizing the LRMC problem: 1) sparsity of the

observed entries and 2) incoherence of the matrix. Sparsity indicates that an accurate

recovery of the undersampled matrix is possible even when the number of observed

entries is very small. Incoherence indicates that nonzero entries of the matrix should

be spread out widely for the efficient recovery of a low-rank matrix. In this section, we

go over these issues in detail.

2.2.1 Sparsity of Observed Entries

Sparsity expresses an idea that when a matrix has a low rank property, then it can

be recovered using only a small number of observed entries. Natural question arising

from this is how many elements do we need to observe for the accurate recovery of the

matrix. To answer this question, we need a notion of a degree of freedom (DOF). The

DOF of a matrix is defined as the number of freely chosen variables in the matrix. For

example, one can easily see that the DOF of the rank-one matrix in (1.1) is 3 since one

entry can be determined after observing three. As an another example, we consider the

13

Figure 2.4: LRMC with colored entries being observed. The dotted boxes are used to

compute: (a) linear coefficients and (b) unknown entries.

14

following rank-one matrix

M =




1 3 5 7

2 6 10 14

3 9 15 21

4 12 20 28



. (2.5)

Suppose we observe all entries of one column and one row. Then it is true that the rest

can be determined by a simple linear relationship between these. Specifically, if we

observe the first row and the first column, then the first and the second columns differ

by the factor of three so that as long as we know one entry in the second column, the

rest would be recovered. Thus, the DOF of M is 4 + 4 − 1 = 7. Following lemma

generalizes our observations.

Lemma 1 The DOF of a square n× n matrix with rank r is 2nr− r2. Also, the DOF

of n1 × n2-matrix is (n1 + n2)r − r2.

Proof: Since the rank of a matrix is r, we can freely choose values for all entries

of the r columns, resulting in nr degrees of freedom for the first r column. Once

r independent columns, say m1, · · ·mr, are constructed, then each of the rest n − r
columns can be expressed as a linear combinations of the first r columns (e.g., mr+1 =

α1m1 + · · ·+ αrmr) so that r linear coefficients (α1, · · ·αr) can be freely chosen in

these columns. Adding nr and (n− r)r, we have the desired result. Generalization to

n1 × n2 matrix is straightforward. �

This lemma says that if n is large and r is small enough (e.g., r = O(1)), essential

information in a matrix is just in the order of n, DOF= O(n), which is clearly much

smaller than the total number of entries of the matrix. Appealingly, the DOF is the

minimum requirement of observed entries to reconstruct a matrix. If the number of

observed entries is less than the DOF (i.e., m < 2nr − r2), the matrix is unrecover-

able. In Fig. 2.4, we illustrate how to recover a low-rank matrix when the number of

observed entries equals the DOF. In this figure, we assume that blue colored entries are

15

r

r

(r, l)

Figure 2.5: An illustration of the worst case of LRMC.

16

observed.1 In essence, unknown entries of the matrix are found in two-step process.

First, we identify the linear relationship between the first r columns and the rest. For

example, the (r + 1)-th column can be expressed as a linear combination of the first r

columns. That is,

mr+1 = α1m1 + · · ·+ αrmr. (2.6)

Since the first r entries of m1, · · ·mr+1 are observed (see Fig. 2.4(a)), we have r un-

knowns (α1, · · · , αr) and r equations so that we can identify the linear coefficients

α1, · · ·αr with the computational cost O(r3) of an r× r matrix inversion. Once these

coefficients are identified, we can reconstruct the unknown entriesmr+1,r+1 · · ·mr+1,n

of mr+1 using the linear combination in (2.6) (see Fig. 2.4(b)). By repeating this step

for the rest of columns, we can reconstruct all unknown entries with O(rn2) compu-

tational complexity2.

Now, an astute reader might notice that this strategy will not work if one entry of

the column (or row) is unobserved. As illustrated in Fig. 2.5, if only one entry in the

r-th row, say (r, l)-th entry, is unobserved, then one cannot recover the l-th column

simply because the matrix in Fig. 2.5 cannot be converted to the matrix form in Fig.

2.4(b). Obviously, the measurement size being equal to the DOF is a necessary condi-

tion for the accurate recovery of the rank-r matrix. This seems like a depressing news.

However, DOF is in any case important since it is a fundamental limit (lower bound)

of the number of observed entries to ensure the exact recovery of the matrix. Recent

results show that the DOF is not much different from the number of measurements

ensuring the recovery of the matrix [5, 41].3

1Since we observe the first r rows and columns, we have 2nr − r2 observations in total.
2For each unknown entry, it needs r multiplication and r − 1 addition operations. Since the number

of unknown entries is (n− r)2, the computational cost is (2r− 1)(n− r)2. Recall thatO(r3) is the cost

of computing (α1, · · · , αr) in (2.6). Therefore, the total cost is O(r3 + (2r − 1)(n− r)2) = O(rn2).
3In [41], it has been shown that the required number of entries to recover the matrix using the nuclear-

norm minimization is in the order of n1.2 when the rank is O(1).

17

2.2.2 Coherence

If nontrivial entries of a low-rank matrix are concentrated in a certain region, we gen-

erally need a large number of observations to recover the matrix. In contrast, if the

entries are spread out widely, then the matrix can be recovered with a relatively small

number of entries. For example, consider the following two rank-one matrices in Rn×n

M1 =




1 1 0 · · · 0

1 1 0 · · · 0

0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0




, M2 =




1 1 1 · · · 1

1 1 1 · · · 1

1 1 1 · · · 1
...

...
...

. . .
...

1 1 1 · · · 1




.

The matrix M1 has only four nonzero entries at the top-left corner. Suppose n is large,

say n = 1000, and all entries but the four elements in the top-left corner are observed

(99.99% of entries are known). In this case, even though the rank of a matrix is just

one, there is no way to recover this matrix since the information bearing entries is

missing. This tells us that although the rank of a matrix is very small, one might not

recover it if nonzero entries of the matrix are concentrated in a certain area.

In contrast to the matrix M1, one can accurately recover the matrix M2 with the

minimum requirement of known entries, only 2n− 1 (= DOF) known entries. In other

words, one row and one column are enough to recover M2). One can deduce from

this example that the spread of observed entries is important for the identification of

unknown entries.

In order to quantify this, we need to measure the concentration of a matrix, check-

ing the concentration in both row and column directions. This can be done by checking

the concentration in the left and right singular vectors. Recall that the SVD of a matrix

is

M = UΣVT =

r∑

i=1

σiuiv
T
i , (2.7)

18

Figure 2.6: Coherence of matrices in (2.10) and (2.11): (a) maximum and (b) mini-

mum.

19

where U = [u1 · · · ur] and V = [v1 · · · vr] are the matrices constructed by the

left and right singular vectors, respectively, and Σ is the diagonal matrix whose diag-

onal entries are σi. From (2.7), we see that the concentration on the vertical direction

(concentration in the row) is determined by ui and that on the horizontal direction

(concentration in the column) is determined by vi. For example, if one of the standard

basis vector ei, say e1 = [1 0 · · · 0]T , lies on the space spanned by u1, · · ·ur while

others (e2, e3, · · ·) are orthogonal to this space, then it is clear that nonzero entries of

the matrix are only on the first row. In this case, clearly one cannot infer the entries of

the first row from the sampling of the other row.

The coherence, a measure of concentration in a matrix, is formally defined as [41]

µ(U) =
n

r
max

1≤i≤n
‖PUei‖2, (2.8)

where ei is standard basis and PU is the projection onto the range space of U. Since

the columns of U = [u1 · · · ur] are orthonormal, we have

PU = UU† = U(UTU)−1UT = UUT .

Note that both µ(U) and µ(V) are needed to check the concentration on the vertical

and horizontal directions.

Lemma 2 (Maximum and minimum value of µ(U)) µ(U) satisfies

1 ≤ µ(U) ≤ n

r
. (2.9)

20

Proof: The upper bound is quite clear since the `2-norm of the projection is not

greater than the original vector (‖PUei‖22 ≤ ‖ei‖22). The lower bound is because

max
i
‖PUei‖22 ≥

1

n

n∑

i=1

‖PUei‖22

=
1

n

n∑

i=1

eTi PUei

=
1

n

n∑

i=1

eTi UUTei

=
1

n

n∑

i=1

r∑

j=1

|uij |2

=
r

n
,

where the first equality is due to the idempotency of PU (i.e., P TUPU = PU) and the

last equality is because
∑n

i=1 |uij |2 = 1. �

Coherence is maximized when the nonzero entries of a matrix are concentrated

in a row (or column). For example, consider the matrix whose nonzero entries are

concentrated on the first row

M =




3 2 1

0 0 0

0 0 0


 . (2.10)

Note that the SVD of M is

M = σ1u1v
T
1 = 3.8417




1

0

0


 [0.8018 0.5345 0.2673].

Then, U = [1 0 0]T , and thus ‖PUe1‖2 = 1 and ‖PUe2‖2 = ‖PUe3‖2 = 0. As shown

in Fig. 2.6(a), the standard basis e1 lies on the space spanned by U while others are

orthogonal to this space so that the maximum coherence is achieved (maxi ‖PUei‖22 =

1 and µ(U) = 3).

21

In contrast, coherence is minimized when the nonzero entries of a matrix are spread

out widely. For instance, we consider the matrix

M =




2 1 0

2 1 0

2 1 0


 . (2.11)

In this case, the SVD of M is

M = 3.8730




−0.5774

−0.5774

−0.5774


 [−0.8944 − 0.4472 0].

Then, we have

PU = UUT =
1

3




1 1 1

1 1 1

1 1 1


 ,

and thus ‖PUe1‖22 = ‖PUe2‖2 = ‖PUe3‖2 = 1
3 . As illustrated in Fig. 2.6(b),

‖PUei‖2 is the same for all standard basis vector ei, achieving lower bound in (2.9)

and the minimum coherence (maxi ‖PUei‖22 = 1
3 and µ(U) = 1). It can be shown

that the number of measurements to recover the low-rank matrix is proportional to the

coherence of the matrix [5, 6, 41].

2.3 Rank Minimization Problem

The most straightforward and intuitive way to model the LRMC problem is known as

the rank minimization problem:

min
X

rank(X)

subject to xij = mij , (i, j) ∈ Ω,

(2.12)

wheremij is the entries of the desired low-rank matrix M and Ω is the index set of ob-

served entries. For example, from the example in (1.1)), we have Ω = {(1, 1), (1, 2), (2, 1)}.

22

Alternatively, we can express the problem (2.12) based on the sampling operator PΩ

defined as

[PΩ(A)]ij =




aij if (i, j) ∈ Ω

0 otherwise,

where aij is the (i, j)-th entry of A. Using PΩ, the problem (2.12) can be equivalently

formulated as

min
X

rank(X)

subject to PΩ(X) = PΩ(M).

(2.13)

A possible simple way to solve the rank minimization problem (2.13) is based on the

combinatorial search. In this approach, we start with the assumption that rank(M) =

1. Then, any two columns of M are linearly dependent and thus we have the system

of equations mi = αi,jmj for some αi,j ∈ R. The solution of this equation system

is also the solution of (2.13) since rank(M) = 1 is the smallest rank matrix satisfying

the constraints4. If the system has no solution for the rank-one assumption, we move

to the next assumption of rank(M) = 2. In this case, we solve the new system of

equations mi = αi,jmj + αi,kmk. This procedure is repeated until the solution is

found. Obviously, the combinatorial search strategy would not be feasible for most

practical scenarios since it has an exponential complexity in the problem size [42]. For

example, when M is an n×n matrix, it is not difficult to check that the number of the

system expressions to be solved is O(n2n).

As a cost-effective alternative, various low-rank matrix completion (LRMC) algo-

rithms have been proposed over the years. Depending on the availability of the rank

information, the LRMC algorithms can be classified into two main categories: 1) those

without the rank information and 2) those exploiting the rank information. In the next

sections, we provide an in depth discussion of two categories (see the outline of LRMC

algorithms in Fig. 2.7).
4Since the observed entries of M are supposed to be nonzero, rank(M) > 0.

23

Matrix Completion Techniques

Rank minimization technique

Nuclear norm minimization (NNM)

Frobenius norm minimization (FNM)

NNM via convex optimization

Singular value thresholding (SVT)

Iteratively reweighted least squares (IRLS)
minimization

Alternating minimization technique

Heuristic greedy algorithm

Optimization over smooth Riemannian manifold

Truncated NNM

When the rank is unknown

When the rank is known

Figure 2.7: Outline of LRMC algorithms. Depending on the availability of the rank,

we can naturally classify LRMC techniques to two main categories: the techniques

with and without the rank information

24

2.4 LRMC Algorithms Without the Rank Information

In this section, we explain the LRMC algorithms that do not require the rank informa-

tion of the original low-rank matrix.

2.4.1 Nuclear Norm Minimization (NNM)

NNM is known as the most popular convex relaxation of the rank minimization prob-

lem. Since the rank minimization problem (2.13) is NP-hard [4], it is computationally

intractable when the dimension of a matrix is large. To overcome this, one common

trick is to replace the non-convex objective function with its convex surrogate, convert-

ing the combinatorial search problem into a convex optimization problem. There are

two clear advantages in solving the convex optimization problem: 1) a local optimum

solution is globally optimal and 2) there are many efficient polynomial-time convex

optimization solvers (e.g., interior point method [43] and semi-definite programming

(SDP) solver).

In this approach, the nuclear norm ‖X‖∗, the sum of the singular values of X, has

been widely used as a convex surrogate of rank(X) [5]:

min
X

‖X‖∗

subject to PΩ(X) = PΩ(M)

(2.14)

In fact, it has been shown that the nuclear norm is the convex envelope (the “best”

convex approximation) of the rank function on the set {X ∈ Rn1×n2 : ‖X‖ ≤ 1}
[4].5 Note that the relaxation from the rank function to the nuclear norm is conceptually

analogous to the relaxation from `0-norm to `1-norm in compressed sensing (CS) [44,

45, 46].
5For any function f : C → R, where C is a convex set, the convex envelope of f is the largest convex

function g such that f(x) ≥ g(x) for all x ∈ C. Note that the convex envelope of rank(X) on the set

{X ∈ Rn1×n2 : ‖X‖ ≤ 1} is the nuclear norm ‖X‖∗ [4].

25

In order to solve (2.14), we first recast it as a semidefinite program (SDP). We

recall that the standard form of an SDP is

min
Y

〈C,Y〉

subject to 〈Ak,Y〉 ≤ bk, k = 1, · · · , l

Y � 0

(2.15)

where C is a given matrix, and {Ak}lk=1 and {bk}lk=1 are given sequences of ma-

trices and constants, respectively. There are two main steps to reformulate the NNM

problem in (2.14) as the standard SDP form in (2.15). First, since minX ‖X‖∗ =

minX(mint:‖X‖∗≤t t) = min(X,t):‖X‖∗≤t t, we convert the NNM problem in (2.14)

into the epigraph form as

min
X,t

t

subject to ‖X‖∗ ≤ t,

PΩ(X) = PΩ(M).

(2.16)

Next, we transform the constraints in (2.16) to match with the standard form

in (2.15). Note that ‖X‖∗ ≤ t if and only if there are symmetric matrices W1 ∈
Rn1×n1 and W2 ∈ Rn2×n2 such that [4, Lemma 2]

tr(W1) + tr(W2) ≤ 2t and


W1 X

XT W2


 � 0. (2.17)

Then, by denoting Y =


W1 X

XT W2


 ∈ R(n1+n2)×(n1+n2) and M̃ =


 0 M

MT 0




where 0s×t is the (s× t)-dimensional zero matrix, the problem in (2.16) can be refor-

mulated as

min
Y,t

2t

subject to tr(Y) ≤ 2t,

Y � 0,

P
Ω̃

(Y) = P
Ω̃

(M̃),

(2.18)

26

where P
Ω̃

(Y) =


 0 PΩ(X)

(PΩ(X))T 0


 is the extended sampling operator. We now

consider the equality constraint (P
Ω̃

(Y) = P
Ω̃

(M̃)) in (2.18). One can easily see that

this condition is equivalent to

〈Y, eie
T
j+n1
〉 = 〈M̃, eie

T
j+n1
〉, (i, j) ∈ Ω, (2.19)

where {e1, · · · , en1+n2} be the standard ordered basis of Rn1+n2 . Let Ak = eie
T
j+n1

and 〈M̃, eie
T
j+n1
〉 = bk for each of (i, j) ∈ Ω. Then,

〈Y,Ak〉 = bk, k = 1, · · · , |Ω|, (2.20)

and thus (2.18) can be reformulated as

min
Y,t

2t

subject to tr(Y) ≤ 2t

Y � 0

〈Y,Ak〉 = bk, k = 1, · · · , |Ω|.

(2.21)

For example, we consider the case where the desired matrix M is given by M =
1 2

2 4


 and the index set of observed entries is Ω = {(2, 1), (2, 2)}. In this case,

A1 = e2e
T
3 , A2 = e2e

T
4 , b1 = 2, and b2 = 4. (2.22)

In the final step, one can express (2.21) in a concise form as

min
Y

tr(Y)

subject to 〈Y,Ak〉 = bk, k = 1, · · · , |Ω|

Y � 0.

(2.23)

The problem (2.23) can be solved by the off-the-shelf SDP solvers such as SDPT3 [47]

and SeDuMi [48] using interior-point methods [49, 50, 51, 52, 53, 54]. It has been

27

shown that the computational complexity of SDP techniques is O(n3) where n =

max(n1, n2) [53]. Also, it has been shown that under suitable conditions, the output

M̂ of SDP satisfies ‖M̂ −M‖F ≤ ε in at most O(nω log(1
ε)) iterations where ω is

a positive constant [54]. Alternatively, one can reconstruct M by solving the equiva-

lent nonconvex quadratic optimization form of the NNM problem [55]. Note that this

approach has computational benefit since the number of primal variables of NNM is

reduced from n1n2 to r(n1 + n2) (r ≤ min(n1, n2)). Interested readers may refer

to [55] for more details.

2.4.2 Singular Value Thresholding (SVT)

While the solution of the NNM problem in (2.14) can be obtained by solving (2.23),

this procedure is computationally burdensome when the size of the matrix is large. As

an effort to mitigate the computational burden, the singular value thresholding (SVT)

algorithm has been proposed [10]. In essence, the key idea of this approach is to add

the regularization term into the objective function of the NNM problem:

min
X

τ‖X‖∗ +
1

2
‖X‖2F

subject to PΩ(X) = PΩ(M),

(2.24)

where τ is the regularization parameter. In [10, Theorem 3.1], it has been shown that

the solution to the problem (2.24) converges to the solution of the NNM problem as

τ →∞.6

Let L(X,Y) be the Lagrangian function associated with (2.24), i.e.,

L(X,Y) = τ‖X‖∗ +
1

2
‖X‖2F + 〈Y, PΩ(M)− PΩ(X)〉 (2.25)

where Y is the dual variable. Also, let X̂ and Ŷ be the primal and dual optimal solu-
6In practice, a large value of τ has been suggested (e.g., τ = 5n for an n × n low rank matrix) for

the fast convergence of SVT. For example, when τ = 5000, it requires 177 iterations to reconstruct a

1000×1000 matrix of rank 10 [10].

28

Table 2.1: The SVT Algorithm

Input observed entries PΩ(M),

a sequence of positive step sizes {δk}k≥1,

a regularization parameter τ > 0,

and a stopping criterion T

Initialize iteration counter k = 0

and Y0 = 0n1×n2 ,

While T = false do

k = k + 1

[Uk−1,Σk−1,Vk−1] = svd(Yk−1)

Xk = Uk−1 diag({(σi(Σk−1)− τ)+}i})VT
k−1 using (2.30)

Yk = Yk−1 + δk(PΩ(M)− PΩ(Xk))

End

Output Xk

29

tions. Suppose that the strong duality holds true [43]. Then, we have

max
Y

min
X
L(X,Y) = L(X̂, Ŷ) = min

X
max
Y
L(X,Y). (2.26)

The SVT algorithm finds X̂ and Ŷ in an iterative fashion with the updated expressions

given as

Xk = arg min
X
L(X,Yk−1), (2.27a)

Yk = Yk−1 + δk
∂L(Xk,Y)

∂Y
, (2.27b)

where {δk}k≥1 is a sequence of positive step sizes. Note that (2.27a) can be expressed

as

Xk = arg min
X

τ‖X‖∗ +
1

2
‖X‖2F − 〈Yk−1, PΩ(X)〉

(a)
= arg min

X
τ‖X‖∗ +

1

2
‖X‖2F − 〈PΩ(Yk−1),X〉

(b)
= arg min

X
τ‖X‖∗ +

1

2
‖X‖2F − 〈Yk−1,X〉

= arg min
X

τ‖X‖∗ +
1

2
‖X−Yk−1‖2F , (2.28)

where (a) is because 〈PΩ(A),B〉 = 〈A, PΩ(B)〉 and (b) is because Yk−1 vanishes

outside of Ω (i.e., PΩ(Yk−1) = Yk−1) by (2.27b). Due to the inclusion of the nuclear

norm, finding out the solution Xk of (2.28) seems to be difficult. However, thanks to

the intriguing result of Cai et al., we can easily obtain the solution.

Theorem 3 ([10, Theorem 2.1]) Let Z be a matrix whose singular value decomposi-

tion (SVD) is Z = UΣVT . Define t+ = max{t, 0} for t ∈ R. Then,

Dτ (Z) = arg min
X

τ‖X‖∗ +
1

2
‖X− Z‖2F , (2.29)

where Dτ is the singular value thresholding operator defined as

Dτ (Z) = U diag({(σi(Σ)− τ)+}i})VT . (2.30)

30

By Theorem 3, the right-hand side of (2.28) is Dτ (Yk−1). Thus, the update equations

for Xk and Yk are given by

Xk = Dτ (Yk−1), (2.31a)

Yk = Yk−1 + δk(PΩ(M)− PΩ(Xk)). (2.31b)

From (2.31a) and (2.31b), one can notice that the SVT algorithm is computationally

efficient since we only need the truncated SVD and elementary matrix operations in

each iteration. In fact, let rk be the number of singular values of Yk−1 being greater

than the threshold τ . Also, we suppose {rk} converges to the rank of the original

matrix, i.e., limk→∞ rk = r. Then the computational complexity of SVT isO(rn1n2).

Note also that the iteration number to achieve the ε-approximation7 is O(1√
ε
) [10]. In

Table 2.1, we summarize the SVT algorithm. For the details of the stopping criterion

of SVT, see [10, Section 5].

Over the years, various SVT-based techniques have been proposed [9, 56, 57]. In

[56], an iterative matrix completion algorithm using the SVT-based operator called

proximal operator has been proposed. Similar algorithms inspired by the iterative hard

thresholding (IHT) algorithm in CS have also been proposed [9, 57].

2.4.3 Iteratively Reweighted Least Squares (IRLS) Minimization

Yet another simple and computationally efficient way to solve the NNM problem is

the IRLS minimization technique [58, 59]. Note that the NNM problem can be recast

using the least squares minimization as

min
X,W

‖W 1
2 X‖2F

subject to PΩ(X) = PΩ(M),

(2.32)

7By ε-approximation, we mean ‖M̂ −M∗‖F ≤ ε where M̂ is the reconstructed matrix and M∗ is

the optimal solution of SVT.

31

where W = (XXT)−
1
2 . It can be shown that (2.32) is equivalent to the NNM problem

(2.14) since we have [58]

‖X‖∗ = tr((XXT)
1
2) = ‖W 1

2 X‖2F . (2.33)

The key idea of the IRLS technique is to find X and W in an iterative fashion. The

update expressions are given as

Xk = arg min
PΩ(X)=PΩ(M)

‖W
1
2
k−1X‖2F , (2.34a)

Wk = (XkX
T
k)−

1
2 . (2.34b)

For the weighted least squares subproblem (2.34a), we can easily find out its solution

by updating each and every column of Xk [58]. Then, to update Wk, we need a matrix

inversion (2.34b) of XkX
T
k . However, it is possible that some of the singular values of

Xk approach to zero, resulting in an ill-conditioning of the matrix. To avoid this, an

approach to use the perturbation of singular values has been proposed [58, 59]. Similar

to SVT, the computational complexity per iteration of the IRLS-based technique is

O(rn1n2). Also, IRLS requires O(log(1
ε)) iterations to achieve the ε-approximation

solution. We summarize the IRLS minimization technique in Table 2.2.

2.5 LRMC Algorithms Using Rank Information

In many LRMC applications, the rank of a desired matrix is known in advance. Some

examples include localization in IoT networks, recommendation system, image restora-

tion, to name just a few. As aforementioned, the rank of a Euclidean distance matrix

in a localization problem is at most k + 2 (k is the dimension of the Euclidean space).

In such situation, the LRMC problem can be more suitably formulated as a Frobenius

norm minimization (FNM) problem:

min
X

1

2
‖PΩ(M)− PΩ(X)‖2F

subject to rank(X) ≤ r.
(2.35)

32

Table 2.2: The IRLS Algorithm

Input a constant q ≥ r,

a scaling parameter γ > 0,

and a stopping criterion T

Initialize iteration counter k = 0,

a regularizing sequence ε0 = 1,

and W0 = I

While T = false do

k = k + 1

Xk = arg minPΩ(X)=PΩ(M) ‖W
1
2
k−1X‖2F

εk = min(εk−1, γσq+1(Xk))

Compute a SVD perturbation version X̃k of Xk [58]

Wk = (X̃kX̃
T
k)−

1
2

End

Output Xk

33

Due to the inequality of the rank constraint, an approach to use the approximate rank

information (e.g., upper bound of the rank) has been proposed [11]. The FNM problem

has two main advantages: 1) the problem is well-posed in the noisy scenario and 2) the

cost function is differentiable so that various gradient-based optimization techniques

(e.g., gradient descent, conjugate gradient, Newton methods, and manifold optimiza-

tion) can be used to solve the problem.

Over the years, various techniques to solve the FNM problem in (2.35) have been

proposed [11, 17, 13, 14, 12, 19, 21, 20, 15, 18]. Well-known FNM-based LRMC

techniques include greedy techniques [11], alternating projection techniques [13], and

optimization over Riemannian manifold [20]. In this section, we explain these tech-

niques in detail.

2.5.1 Greedy Techniques

Greedy algorithms have been popularly used for LRMC due to the low computational

simplicity. In essence, they solve the LRMC problem by making a heuristic decision at

each iteration with a hope to find the right solution in the end. To be specific, let M =

UΣVT be the singular value decomposition of M ∈ Rn×n where U,V ∈ Rn×r and

r = rank(M). That is, M can be expressed as a linear combination of r rank-one

matrices as

M =

r∑

i=1

σi(M)uiv
T
i , (2.36)

where σi(M), ui, and vi are the singular value, the left singular vector, and the right

singular vector, respectively. Then the main task of greedy techniques is to investigate

the atom set AM = {ϕi = uiv
T
i }ri=1 of rank-one matrices representing M. Once the

atom set AM is found, the singular values σi(M) = σi can be computed easily by

solving the following least squares problem:

(σ1, · · · , σr) = arg min
αi
‖PΩ(M)− PΩ(

r∑

i=1

αiϕi)‖F . (2.37)

34

Let A = [vec(PΩ(ϕ1)) · · · vec(PΩ(ϕr))], α = [α1 · · · αr]T and b = vec(PΩ(M)).

Then, we can easily find out the solution of (2.37) as

(σ1, · · · , σr) = arg min
α
‖b−Aα‖2 = A†b.

One of the well-known greedy techniques in LRMC is atomic decomposition for

minimum rank approximation (ADMiRA) [11], which can be viewed as an extension

of the compressive sampling matching pursuit (CoSaMP) algorithm in CS [60, 44, 45,

46]. ADMiRA is based on the idea of adding as well as pruning to identify the atom

set AM. In the adding stage, ADMiRA identifies 2r rank-one matrices representing a

residual best and then adds the matrices to the pre-chosen atom set. To be specific, if

Xi−1 is the output matrix generated in the (i− 1)-th iteration andAi−1 is its atom set,

then ADMiRA computes the residual Ri = PΩ(M) − PΩ(Xi−1) and then adds 2r

leading principal components of Ri toAi−1. That is, the enlarged atom set Ψi is given

by

Ψi = Ai−1 ∪ {uRi,jv
T
Ri,j : 1 ≤ j ≤ 2r}, (2.38)

where uRi,j and vRi,j are the j-th principal left and right singular vectors of Ri,

respectively. As a result, Ψi includes 3r rank-one matrices in total. In the pruning

stage, ADMiRA refines Ψi into a set of r atoms. To be specific, if X̃i is the best rank-

3r approximation of M, that is,8

X̃i = arg min
X∈span(Ψi)

‖PΩ(M)− PΩ(X)‖F , (2.39)

then the refined atom set Ai is expressed as

Ai = {u
X̃i,j

vT
X̃i,j

: 1 ≤ j ≤ r}, (2.40)

where u
X̃i,j

and v
X̃i,j

are the j-th principal left and right singular vectors of X̃i,

respectively. We note that the computational complexity of ADMiRA is mainly due
8Note that the solution to (2.39) can be computed in a similar way as in (2.37).

35

Table 2.3: The ADMiRA Algorithm

Input observed entries PΩ(M) ∈ Rn×n,

rank of a desired low-rank matrix r,

and a stopping criterion T

Initialize iteration counter k = 0,

X0 = 0n×n,

and A0 = ∅

While T = false do

Rk = PΩ(M)− PΩ(Xk)

[URk
,ΣRk

,VRk
] = svds(Rk, 2r)

(Augment) Ψk+1 = Ak ∪ {uRk,jv
T
Rk,j

: 1 ≤ j ≤ 2r}
X̃k+1 = arg min

X∈span(Ψk+1)
‖PΩ(M)− PΩ(X)‖F using (2.37)

[U
X̃k+1

,Σ
X̃k+1

,V
X̃k+1

] = svds(X̃k+1, r)

(Prune) Ak+1 = {u
X̃k+1,j

vT
X̃k+1,j

: 1 ≤ j ≤ r}

(Estimate) Xk+1 = arg min
X∈span(Ak+1)

‖PΩ(M)− PΩ(X)‖F

using (2.37)

k = k + 1

End

Output Ak, Xk

36

to two operations: the least squares operation in (2.37) and the SVD-based operation

to find out the leading atoms of the required matrix (e.g., Rk and X̃k+1). In fact,

since (2.37) involves the pseudo-inverse of A (size of |Ω| × O(r)), its computational

cost is O(r|Ω|). Also, the computational cost of performing a truncated SVD of O(r)

atoms isO(rn1n2). Since |Ω| < n1n2, the computational complexity of ADMiRA per

iteration is O(rn1n2). For the convergence rate, it has been shown that the iteration

number of ADMiRA to achieve the ε-approximation is O(log(1
ε)) [11]. In Table 2.3,

we summarize the ADMiRA algorithm.

Another well-known greedy method is the rank-one matrix pursuit algorithm [17],

an extension of the orthogonal matching pursuit algorithm in CS [61]. This approach is

also known as a simplified version of ADMiRA. In this approach, instead of choosing

multiple atoms of a matrix, an atom corresponding to the largest singular value of the

residual matrix Rk is chosen. Interested readers may refer to [17] for more details.

2.5.2 Alternating Minimization Techniques

As an effort to further reduce the computational burden of SVD (expressed asO(rn2)),

which has been used in many of LRMC algorithms [10, 11], alternating minimization

techniques have been proposed [13, 14, 12]. In these techniques, the desired low-rank

matrix M ∈ Rn1×n2 of rank r is factorized into tall and fat matrices, i.e., M = XY

where X ∈ Rn1×r and Y ∈ Rr×n2 (r � n1, n2). Using this factorization model, one

can find out X and Y by minimizing the residual defined as the difference between

the original matrix and the estimate of it on the sampling space. That is, they recover

X and Y by solving

min
X,Y

1

2
‖PΩ(M)− PΩ(XY)‖2F . (2.41)

37

As a simple alternating minimization algorithm, power factorization can be used to

update X and Y in an alternating manner as [13]

Xi+1 = arg min
X
‖PΩ(M)− PΩ(XYi)‖2F , (2.42a)

Yi+1 = arg min
Y
‖PΩ(M)− PΩ(Xi+1Y)‖2F . (2.42b)

Alternating steepest descent (ASD) is another alternating method to find out the so-

lution of (2.41) [14]. In ASD, X and Y are updated by applying the steepest gradi-

ent descent method to the objective function f(X,Y) = 1
2‖PΩ(M) − PΩ(XY)‖2F

in (2.41). To be specific, ASD first computes the gradient of f(X,Y) with respect to

X and then updates X along the steepest gradient descent direction:

Xi+1 = Xi − txi 5 fYi(Xi), (2.43)

where the gradient descent direction5fYi(Xi) and stepsize txi are given by

5 fYi(Xi) = −(PΩ(M)− PΩ(XiYi))Y
T
i , (2.44a)

txi =
‖ 5 fYi(Xi)‖2F

‖PΩ(5fYi(Xi)Yi)‖2F
. (2.44b)

After updating X, ASD updates Y in a similar way:

Yi+1 = Yi − tyi 5 fXi+1(Yi), (2.45)

where

5 fXi+1(Yi) = −XT
i+1(PΩ(M)− PΩ(Xi+1Yi)), (2.46a)

tyi =
‖ 5 fXi+1(Yi)‖2F

‖PΩ(Xi+1 5 fXi+1(Yi))‖2F
. (2.46b)

The low-rank matrix fitting (LMaFit) algorithm finds out the solution in a different

way by solving [12]

arg min
X,Y,Z

{‖XY − Z‖2F : PΩ(Z) = PΩ(M)}. (2.47)

38

With the arbitrary input of X0 ∈ Rn1×r and Y0 ∈ Rr×n2 and Z0 = PΩ(M), the

variables X, Y, and Z are updated in the i-th iteration as

Xi+1 = arg min
X
‖XYi − Zi‖2F = ZiY

†, (2.48a)

Yi+1 = arg min
Y
‖XiY − Zi‖2F = X†i+1Zi, (2.48b)

Zi+1 = Xi+1Yi+1 + PΩ(M−Xi+1Yi+1), (2.48c)

where X† is Moore-Penrose pseudoinverse of matrix X.

The computational cost of the alternating minimization algorithms is not much

expensive due to the following reasons: 1) it does not require the SVD computation

and 2) the size of matrices to be inverted is smaller than the size of matrices for the

greedy algorithms. While the inversion of huge size matrices (size of |Ω| × O(1)) is

required in a greedy algorithms (see (2.37)), alternating minimization only requires

the pseudo inversion of X and Y (size of n1 × r and r× n2, respectively). In fact, the

computational complexity of this approach is O(r|Ω|+ r2n1 + r2n2), which is much

smaller than that of SVT and ADMiRA when r � min(n1, n2). Also, the iteration

number of ASD and LMaFit to achieve the ε-approximation is O(log(1
ε)) [14, 12]. It

has been shown that alternating minimization techniques are simple to implement and

also require small sized memory [16]. Major drawback of these approaches is that it

might converge to the local optimum.

2.5.3 Optimization over Smooth Riemannian Manifold

In many practical situations, when the rank of the desired matrix is known in a priori

(i.e., rank(M) = r), one can strengthen the constraint of (2.35) by defining the feasible

set, denoted by F , as

F = {X ∈ Rn1×n2 : rank(X) = r}.

39

Since F is not a vector space9, conventional optimization techniques in the Euclidean

space cannot be used to solve the problem defined over F . While this is bad news, a

remedy for this is thatF is a smooth Riemannian manifold [62, 19]. Loosely speaking,

smooth manifold is a generalization of Rn1×n2 on which a notion of differentiability

exists. Interested readers may refer to [63, 64] for more rigorous definition of mani-

fold. A smooth manifold equipped with an inner product, often called a Riemannian

metric, forms a smooth Riemannian manifold. Since the smooth Riemannian manifold

is a differentiable structure equipped with an inner product, one can use all necessary

ingredients to solve the optimization problem with quadratic cost function, such as

Riemannian gradient, Hessian matrix, exponential map, and parallel translation [63].

Therefore, optimization techniques in Rn1×n2 (e.g., steepest descent, Newton method,

conjugate gradient method) can be used to solve (2.35) in the smooth Riemannian

manifold F .

Recently, many efforts have been made to solve the matrix completion over smooth

Riemannian manifolds. These works are classified by their specific choice of Rieman-

nian manifold structure. One well-known approach is to solve (2.35) over the Grass-

mann manifold of orthogonal matrices10 [21]. In this approach, a feasible set can be

expressed as F = {QRT : QTQ = I,Q ∈ Rn1×r,R ∈ Rn2×r} and thus solving

(2.35) is to find an n1 × r orthonormal matrix Q satisfying

f(Q) = min
R∈Rn2×r

‖PΩ(M)− PΩ(QRT)‖2F = 0. (2.49)

In [21], an approach to solve (2.49) over the Grassmann manifold has been proposed.

Recently, it has been shown that the original matrix can be reconstructed by the

unconstrained optimization over the smooth Riemannian manifold F [20]. Often, F is
9This is because if rank(X) = r and rank(Y) = r, then rank(X + Y) = r is not necessarily true

(and thus X + Y does not need to belong F).
10The Grassmann manifold is defined as the set of the linear subspaces in a vector space [63].

40

expressed using the singular value decomposition as

F = {UΣVT : U ∈ Rn1×r,V ∈ Rn2×r,Σ � 0,

UTU = VTV = I,Σ = diag([σ1 · · · σr])}. (2.50)

The FNM problem (2.35) can then be reformulated as an unconstrained optimization

over F :

min
X∈F

1

2
‖PΩ(M)− PΩ(X)‖2F . (2.51)

One can easily obtain the closed-form expression of the ingredients such as tangent

spaces, Riemannian metric, Riemannian gradient, and Hessian matrix in the uncon-

strained optimization [62, 63, 64]. In fact, major benefits of the Riemannian optimization-

based LRMC techniques are the simplicity in implementation and the fast conver-

gence. Similar to ASD, the computational complexity per iteration of these techniques

is O(r|Ω| + r2n1 + r2n2), and they require O(log(1
ε)) iterations to achieve the ε-

approximation solution [20].

2.5.4 Truncated NNM

Truncated NNM is a variation of the NNM-based technique requiring the rank infor-

mation r.11 While the NNM technique takes into account all the singular values of a

desired matrix, truncated NNM considers only the n− r smallest singular values [18].

To be specific, truncated NNM finds a solution to

min
X

‖X‖r

subject to PΩ(X) = PΩ(M),

(2.52)

11Although truncated NNM is a variant of NNM, we put it into the second category since it exploits

the rank information of a low-rank matrix.

41

Table 2.4: Truncated NNM

Input observed entries PΩ(M) ∈ Rn×n,

rank of a desired low-rank matrix r,

and stopping threshold ε > 0

Initialize iteration counter k = 0,

and X0 = PΩ(M)

While ‖Xk −Xk−1‖F > ε do

[Uk,Σk,Vk] = svd(Xk) (Uk,Vk ∈ Rn×r)

Xk+1 = arg min
X:PΩ(X)=PΩ(M)

‖X‖∗ − tr(UT
kXVk)

k = k + 1

End

Output Xk

42

where ‖X‖r =
n∑

i=r+1
σi(X). We recall that σi(X) is the i-th largest singular value of

X. Using [18]

r∑

i=1

σi = max
UTU=VTV=Ir

tr(UTXV), (2.53)

we have

‖X‖r = ‖X‖∗ − max
UTU=VTV=Ir

tr(UTXV), (2.54)

and thus the problem (2.52) can be reformulated to

min
X

‖X‖∗ − max
UTU=VTV=Ir

tr(UTXV)

subject to PΩ(X) = PΩ(M),

(2.55)

which can be solved in an iterative way. To be specific, starting from X0 = PΩ(M),

truncated NNM updates Xi by solving [18]

min
X

‖X‖∗ − tr(UT
i−1XVi−1)

subject to PΩ(X) = PΩ(M),

(2.56)

where Ui−1,Vi−1 ∈ Rn×r are the matrices of left and right-singular vectors of Xi−1,

respectively. Note that an approach in (2.56) has two main advantages: 1) the rank

information of the desired matrix can be incorporated and 2) various gradient-based

techniques including alternating direction method of multipliers (ADMM) [65, 66],

ADMM with an adaptive penalty (ADMMAP) [67], and accelerated proximal gradient

line search method (APGL)[68] can be employed. Note also that the dominant oper-

ation is the truncated SVD operation and its complexity is O(rn1n2), which is much

smaller than that of the NNM technique (see Table 2.5) as long as r � min(n1, n2).

Similar to SVT, the iteration complexity of the truncated NNM to achieve the ε-

approximation is O(1√
ε
) [18]. Alternatively, the difference of two convex functions

(DC) based algorithm can be used to solve (2.55) [69]. In Table 2.4, we summarize the

truncated NNM algorithm.

43

2.6 Performance Guarantee

When using LRMC techniques, one might concern the performance guarantee to re-

construct the desired low-rank matrix M. In NNM-based techniques, exact recov-

ery of M can be guaranteed based on the uniqueness condition of the NNM prob-

lem [5, 6, 41]. To be specific, let M = UΣVT be the SVD of M where U ∈ Rn1×r,

Σ ∈ Rr×r, and V ∈ Rn2×r. Also, let Rn1×n2 = T
⊕
T⊥ be the orthogonal decom-

position in which T⊥ is defined as the subspace of matrices whose row and column

spaces are orthogonal to the row and column spaces of M, respectively. Here, T is the

orthogonal complement of T⊥. Since the NNM problem is a convex optimization with

M being a feasible, the important observation is that M is the unique solution under

two conditions [5, Lemma 3.1]:

1) there exists a matrix Y = UVT + W such that PΩ(Y) = Y, W ∈ T⊥, and

‖W‖ < 1,

2) the restriction of the sampling operation PΩ to T is an injective (one-to-one)

mapping.

The establishment of Y obeying 1) and 2) are in turn conditioned on the observation

model of M and its intrinsic coherence property.

Under a uniform sampling model of M, suppose the coherence property of M

satisfies

max(µ(U), µ(V)) ≤ µ0, (2.57a)

max
ij
|eij | ≤ µ1

√
r

n1n2
, (2.57b)

where µ0 and µ1 are some constants, eij is the entry of E = UVT , and µ(U) and

µ(V) are the coherences of the column and row spaces of M, respectively.

Theorem 4 ([5, Theorem 1.3]) There exists constants α and β such that if the number

44

of observed entries m = |Ω| satisfies

m ≥ αmax(µ2
1, µ

1
2
0 µ1, µ0n

1
4)γnr log n (2.58)

where γ > 2 is some constant and n1 = n2 = n, then M is the unique solution of the

NNM problem with probability at least 1− βn−γ . Further, if r ≤ µ−1
0 n1/5, (2.58) can

be improved to m ≥ Cµ0γn
1.2r log n with the same success probability.

Intuitively, the desired low-rank matrix can be reconstructed (with no error) with

overwhelming probability even when m is much less than n1n2. Alternatively, the

exact recovery of NNM has been shown under the restricted isometry property (RIP)

based condition of a linear sampling operator [55].

In FNM-based techniques, the performance guarantee of greedy algorithms has

been given under the RIP-based condition of the sampling operation [11]. To be spe-

cific, suppose that rank(M) = r and δ4r is the RIP constant [55] satisfying δ4r ≤
0.065. Let {Xk} be the generated sequence of ADMiRA. Then the global convergence

is guaranteed by

‖Xk −M‖F ≤ 2−k‖X0‖F . (2.59)

where X0 is the initial value.

Recently, the recovery guarantee of the LRMC techniques using gradient-based

algorithms has been proposed [70, 71, 72]. Consider the FNM problem (2.35) with the

fixed rank constraint as

min
X

1

2
‖PΩ(M)− PΩ(X)‖2F

subject to rank(X) = r.

(2.60)

Suppose there exists a positive constant λ such that

µ(U) ≤
√
λr

n2
, and µ(V) ≤

√
λr

n1
. (2.61)

45

Then under some suitable conditions, it has been shown that if the sampling ratio

p = |Ω|/(n1n2) satisfies

p ≥ Ω(
λ4r6κ6 log no
min(n1, n2)

) (2.62)

where no = max(n1, n2) and κ is the condition number of M, then gradient-based

algorithms to solve (2.60) globally converges to M with the probability at least 1 −
1/poly(no) [71]. Here, poly(no) is some polynomial function of no. Intuitively, as the

number of the observed entries is large enough, all local optima of (2.60) becomes the

global optimum at M.

2.7 Empirical Performance Evaluation

In this section, we test the performance of the LRMC algorithms listed in Table 2.5 and

2.6. In our experiments, we generate the original matrix as the product of two random

matrices A ∈ Rn1×r and B ∈ Rn2×r, i.e., M = ABT . Entries of these two matrices

are identically and independently distributed (i.i.d.) random variables according to the

normal distribution N (0, 1). Sampled elements are also chosen at random with the

sampling ratio p defined as

p =
|Ω|
n1n2

,

where |Ω| is the cardinality (number of elements) of Ω. In the noisy scenario, we use

the additive noise model where the observed matrix Mo is expressed as Mo = M+N

where the noise matrix N is formed by the i.i.d. random entries sampled from the

Gaussian distribution N (0, σ2). For given SNR, σ2 = 1
n1n2
‖M‖2F 10−

SNR
10 . Note that

the parameters of the LRMC algorithm are chosen from the reference paper. For each

point of the algorithm, we run 1, 000 independent trials and then plot the average value.

As the performance metrics, we use the mean square error (MSE) and the exact

46

Table 2.5: Summary of the NNM-based LRMC algorithms.

Technique Algorithm Features

Cost

Com-

plexity

Iter.

Complexity*

Convex

Optimization

SDPT3

(CVX) [47]

A solver for conic programming prob-

lems

O(n3) O(nω log(1
ε
))

NNM via

Singular

Value

Thresholding

SVT [10] An extension of the iterative soft

thresholding technique in compressed

sensing for LRMC, based on a La-

grange multiplier method

O(rn2) O(1√
ε
)

NIHT [9] An extension of the iterative hard

thresholding technique [8] in com-

pressed sensing for LRMC

O(rn2) O(log(1
ε
))

IRLS

Minimiza-

tion

IRLS-M

Algo-

rithm [58]

An algorithm to solve the NNM prob-

lem by computing the solution of a

weighted least squares subproblem in

each iteration

O(rn2) O(log(1
ε
))

* The number of iterations to achieve the reconstructed matrix M̂ satisfying ‖M̂ −M∗‖F ≤ ε where

M∗ is the optimal solution.
* The rank of a desired low-rank matrix is r and n = max(n1, n2).

47

Table 2.6: Summary of the FNM-based LRMC algorithms.

Technique Algorithm Features

Cost

Com-

plexity

Iter.

Complexity*

Greedy

Technique

ADMiRA

[11]

An extension of the greedy algorithm

CoSaMP [60, 44] in compressed sens-

ing for LRMC, uses greedy projection

to identify a set of rank-one matrices

that best represents the original matrix

O(rn2) O(log(1
ε
))

Alternating

Minimization

LMaFit [12] A nonlinear successive over-relaxation

LRMC algorithm based on nonlinear

Gauss-Seidel method

O(r|Ω|+

r2n)

O(log(1
ε
))

ASD [14] A steepest decent algorithm for the

FNM-based LRMC problem (2.35)

O(r|Ω|+

r2n)

O(log(1
ε
))

Manifold

Optimization

SET [21] A gradient-based algorithm to solve the

FNM problem on a Grassmann mani-

fold

O(r|Ω|+

r2n)

O(log(1
ε
))

LRGeomCG

[20]

A conjugate gradient algorithm over a

Riemannian manifold of the fixed-rank

matrices

O(r|Ω|+

r2n)

O(log(1
ε
))

Truncated

NNM

TNNR-

APGL [18]

This algorithm solves the truncated

NNM problem via accelerated proxi-

mal gradient line search method [68]

O(rn2) O(1√
ε
)

TNNR-

ADMM

[18]

This algorithm solves the truncated

NNM problem via an alternating direc-

tion method of multipliers [65]

O(rn2) O(1√
ε
)

CNN-based

Technique

CNN-based

LRMC Al-

gorithm [73]

An gradient-based algorithm to express

a low-rank matrix as a graph structure

and then apply CNN to the constructed

graph to recover the desired matrix

O(r|Ω|+

r2n)

O(log(1
ε
))

* The number of iterations to achieve the reconstructed matrix M̂ satisfying ‖M̂ −M∗‖F ≤ ε where

M∗ is the optimal solution.
* The rank of a desired low-rank matrix is r and n = max(n1, n2).

48

recovery ratio, which are defined, respectively, as

MSE =
1

n1n2
‖M̂−M‖2F ,

R =
number of successful trials

total trials
,

where M̂ is the reconstructed low-rank matrix. We say the trial is successful if the

MSE performance is less than the threshold ε. In our experiments, we set ε = 10−6.

Here, R can be used to represent the probability of successful recovery.

We first examine the success recovery of the LRMC algorithms with respect to

the sampling ratio and the rank of M. In our experiments, we set n1 = n2 = 100

and compute the phase transition [74] of the LRMC algorithms. Note that the phase

transition is a contour plot of the success probability P (we set P = 0.5) where the

sampling ratio (x-axis) and the rank (y-axis) form a regular grid of the x-y plane.

The contour plot separates the plane into two areas: the area above the curve is one

satisfying P < 0.5 and the area below the curve is a region achieving P > 0.5 [74]

(see Fig. 2.8). The higher the curve, therefore, the better the algorithm would be. In

general, the LRMC algorithms perform poor when the matrix has a small number of

observed entries and the rank is large. Overall, NNM-based algorithms perform better

than FNM-based algorithms. In particular, the NNM technique using SDPT3 solver

outperforms the rest because the convex optimization technique always finds a global

optimum while other techniques often converge to local optimum.

In order to estimate the computational efficiency of LRMC algorithms, we measure

the running time of each algorithm as a function of rank (see Fig. 2.9). The running

time is measured in second, using a 64-bit PC with an Intel i5-4670 CPU running at

3.4 GHz. We observe that the convex algorithms have a relatively high running time

complexity.

We next test the efficiency of the LRMC algorithms for different problem size (see

Table 2.7). For iterative LRMC algorithms, we set the maximum number of iteration

to 300. We see that LRMC algorithms such as SVT, IRLS-M, ASD, ADMiRA, and

49

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Sampling Ratio

0

5

10

15

20

25

30

35

40

R
a

n
k

NNM using SDPT3
SVT
ADMiRA
TNNR-APGL
TNNR-ADMM

Figure 2.8: Phase transition of LRMC algorithms.

5 10 15 20 25 30 35

Rank

0

2

4

6

8

10

12

14

16

R
u

n
n

in
g

 T
im

e

NNM using SDPT3
SVT
ADMiRA
TNNR-APGL
TNNR-ADMM

Figure 2.9: Running times of LRMC algorithms in noiseless scenario (40% of entries

are observed).

50

LRGeomCG run fast. For example, it takes less than a minute for these algorithms to

reconstruct 1000× 1000 matrix, while the running time of SDPT3 solver is more than

5 minutes. Further reduction of the running time can be achieved using the alternating

projection-based algorithms such as LMaFit. For example, it takes about one second

to reconstruct an (1000×1000)-dimensional matrix with rank 5 using LMaFit. There-

fore, when the exact recovery of the original matrix is unnecessary, the FNM-based

technique would be a good choice.

From the simulation results in the noisy scenario, we also observe that FNM-

based algorithms perform well (see Fig. 2.10 and Fig. 2.11). In this experiment, we

compute the MSE of LRMC algorithms against the rank of the original low-rank ma-

trix for different setting of SNR (i.e., SNR = 20 and 50 dB). We observe that in the

low and mid SNR regime (e.g., SNR = 20 dB), TNNR-ADMM performs compara-

ble to the NNM-based algorithms since the FNM-based cost function is robust to the

noise. In the high SNR regime (e.g., SNR = 50 dB), the convex algorithm (NNM with

SDPT3) exhibits the best performance in term of the MSE. The performance of TNNR-

ADMM is notably better than that of the rest of LRMC algorithms. For example, given

rank(M) = 20, the MSE of TNNR-ADMM is around 0.04, while the MSE of the rest

is higher than 1.

Finally, we apply LRMC techniques to restore images corrupted by impulse noise.

In this experiment, we use 256×256 standard grayscale images (e.g., boat, cameraman,

lena, and pepper images) and the salt-and-pepper noise model with different noise

density ρ = 0.3, 0.5, and 0.7. For the FNM-based LRMC techniques, the rank is given

by the number of the singular values σi being greater than a relative threshold ε > 0,

i.e., σi > εmax
i
σi. From the simulation results, we observe that peak SNR (pSNR),

defined as the ratio of the maximum pixel value of the image to noise variance, of all

LRMC techniques is at least 52dB when ρ = 0.3 (see Table 2.8). In particular, NNM

using SDPT3, SVT, and IRLS-M outperform the rest, achieving pSNR≥ 57 dB even

with high noise level ρ = 0.7.

51

Table 2.7: MSE results for different problem sizes where rank(M) = 5, and p =

2× DOF

n1 = n2 = 50 n1 = n2 = 500 n1 = n2 = 1000

MSE Time

(s)

Iter. MSE Time

(s)

Iter. MSE Time

(s)

Iter.

NNM using

SDPT3

0.0072 0.6 13 0.0017 74 16 0.0010 354 16

SVT 0.0154 0.4 300 0.4564 10 300 0.2110 32 300

NIHT 0.0008 0.2 253 0.0039 21 300 0.0019 93 300

IRLS-M 0.0009 0.2 60 0.0033 2 60 0.0025 8 60

ADMiRA 0.0075 0.3 300 0.0029 49 300 0.0016 52 300

ASD 0.0003 10−2 227 0.0006 2 300 0.0005 8 300

LMaFit 0.0002 10−2 241 0.0002 0.5 300 0.0500 1 300

SET 0.0678 11 9 0.0260 136 8 0.0108 270 8

LRGeomCG 0.0287 0.1 108 0.0333 12 300 0.0165 40 300

TNNR-ADMM 0.0221 0.3 300 0.0042 22 300 0.0021 94 300

TNNR-APGL 0.0055 0.3 300 0.0011 21 300 0.0009 95 300

52

5 10 15 20 25 30 35

Rank

10-2

10-1

100

101

102

M
S

E

NNM using SDPT3
SVT
LMaFit
ADMiRA
TNNR-ADMM

Figure 2.10: MSE performance of LRMC algorithms in noisy scenario with SNR = 20

dB (70% of entries are observed).

5 10 15 20 25 30 35

Rank

10-3

10-2

10-1

100

101

102

M
S

E

NNM using SDPT3
SVT
LMaFit
ADMiRA
TNNR-ADMM

Figure 2.11: MSE performance of LRMC algorithms in noisy scenario with SNR = 50

dB (70% of entries are observed).

53

Table 2.8: Image recovery via LRMC for different noise levels ρ.

ρ = 0.3 ρ = 0.5 ρ = 0.7

pSNR

(dB)

Time

(s)

Iter. pSNR

(dB)

Time

(s)

Iter. pSNR

(dB)

Time

(s)

Iter.

NNM using

SDPT3

66 1801 14 59 883 14 58 292 15

SVT 61 18 300 59 13 300 57 32 300

NIHT 58 16 300 54 6 154 53 2 35

IRLS-M 68 87 60 63 43 60 59 15 60

ADMiRA 57 1391 300 54 423 245 53 210 66

ASD 57 3 300 55 4 300 53 2 101

LMaFit 58 2 300 55 1 123 53 0.3 34

SET 61 716 6 55 321 4 53 5 2

LRGeomCG 52 47 300 48 18 75 44 5 21

TNNR-

ADMM

57 15 300 54 18 300 53 18 300

TNNR-

APGL

56 14 300 56 19 300 53 17 300

54

2.8 Choosing the Right Matrix Completion Algorithms

So far, we discussed various LRMC algorithms. A natural question one can ask is

what algorithm should one choose? While this question is difficult to answer, one can

consider NNM-based techniques including SVT and convex optimization with global

convergence and exact recovery guarantee in the scenario when the rank of the original

matrix is unknown. When the rank is known and the exact recovery of the original

low-rank matrix is unnecessary, FNM-based techniques such as ADMiRA, LMaFit,

and LRGeomCG can also be used since they have a fast convergence.

The other point that one should consider in the choice of LRMC algorithms is

computational complexity. In the era of big data, the dimension of a matrix to be

completed is large (in the order of hundred or thousand) so that the computational

complexity is a big concern. Several options including SVT, NIHT, TNNR-APGL,

TNNR-ADMM, ASD, and SET can be applied for large-scaled problems since their

computational complexity is in order of the square of the dimension. The running time

of LRGeomCG is proportional to the number of the observed entries. LMaFit might

be the fastest matrix completion algorithm since it only requires to solve a system

of linear equations. In general, there is a trade-off between the running time and the

recovery performance. For example, gradient-based algorithms might converge to lo-

cal optimum but with low computational complexity, whereas convex solvers always

guarantees to find the global optimal solutions but might have a computational burden

with the large problem size.

55

Chapter 3

IoT Localization Via LRMC

Localization refers to the problem to recovery the sensor locations (a.k.a. sensor map)

in IoT. To solve this problem, a popular approach is to let each sensor node measure the

pairwise distances with its neighboring nodes using various measurement techniques

such as received signal strength indication (RSSI) [75], time of arrival (ToA) [76],

time difference of arrival (TDoA) [77], and angle of arrival (AoA) [2]. The pairwise

distances are then collected at a data center (basestation) and can be represented in the

Euclidean distance matrix D. Using the whole matrix D, one can easily reconstructed

the sensor location matrix X using multidimensional scaling method, each row the

coordinate vector of each sensor node [78, 79].

However, in practice, the data center might not have enough distance information

to identify the locations of sensor nodes. This is due to various reason such as the

power outage of a sensor node or the limitation of radio communication range, only

small number of distance information is available at the data center. Also, in the vehic-

ular networks it might not be possible to measure the distance of all adjacent vehicles

when a vehicle is located at the dead zone. Similar behavior can also be observed

in underwater acoustic communication environments. In our approach, we propose a

Euclidean distance matrix completion technique for the IoT network localization. We

first express the Euclidean distance matrix D as a function of the low rank positive

56

semidefinite (PSD) matrix. Since the set of these matrices forms a Riemannian man-

ifold in which the notation of differentiability can be defined, we can recycle, after

a proper modification, an algorithm in the Euclidean space. Then to solve the prob-

lem, we propose a modified conjugate gradient algorithm, referred to as localization in

Riemannian manifold using conjugate gradient (LRM-CG).

In this chapter, we first present our main FNM-based problem model in localization

and useful notations used in Riemannian optimization (e.g., tangent space, Riemannian

gradient, and retraction operation). Then we show the proposed LRM-CG algorithm as

well as its computational complexity. Finally, we discuss on the performance guarantee

of LRM-CG under extended Wolfe’s conditions.

3.1 Problem Model

In the problem model, we suppose there is n sensor nodes scattered in 2 or 3-dimensional

Euclidean spaces (k = 2 or 3). The coordinate vectors of sensor nodes are represented

as the rows of the location matrix X ∈ Rn×k. Also, we recall that the squared pairwise

distances d2
ij are the entries of the Euclidean distance matrix D. From the definition of

pairwise distance d2
ij = ‖xi − xj‖22 = xTi xi + xTj xj − 2xTi xj , we have

D = g(XXT), (3.1)

where g(XXT) = 2Sym(diag(XXT)1T −XXT). For example, as shown in Fig. 3.1,

we have

X =
[

x1 x2 x3 x4 x5

]T
=




7 2 11 12 15

9 7 7 4 6

1 0 0 0 0




T

,

57

Figure 3.1: Sensor nodes deployed to measure not only environment information but

also their pairwise distances. The observed distances are represented by two-sided

arrows. The shadow spheres represent the radio communication range of the sensor

nodes.

58

and

D = g(XXT) =




0 30 21 51 74

30 0 81 109 170

21 81 0 10 17

51 109 10 0 13

74 170 17 13 0




.

The next lemma follows immediately from this.

Lemma 5 If n sensor nodes are distributed in k-dimensional Euclidean space and

n ≥ k, then rank(D) ≤ k + 2.

Proof: From (3.1), we have rank(D) = rank(g(XXT)), which gives

rank(D) = rank(2Sym(diag(XXT)1T −XXT))
(a)

≤ rank(2Sym(diag(XXT)1T)) + rank(XXT)

= rank(diag(XXT)1T + 1diag(XXT)T) + rank(XXT)
(b)

≤ 2 + rank(XXT)
(c)

≤ 2 + k,

where (a) is because rank(A + B) ≤ rank(A) + rank(B) and Sym(XXT) = XXT ,

(b) is because rank(diag(XXT)1T) = rank(1diag(XXT)T) ≤ 1, and (c) is because

rank(XXT) = rank(X) ≤ k and rank(abT) ≤ 1 for any two vectors a and b. �

Using Lemma 5, we reformulate the matrix completion problem as

min
D̃ ∈ Rn×n

1
2‖PE(D̃)− PE(Dobs)‖2F ,

s.t. rank(D̃) ≤ k + 2.

(3.2)

Also, to account for the measurement accuracy, we can incorporate a weight matrix

59

W into (3.2) as1

min
D̃ ∈ Rn×n

1
2‖W ◦ (PE(D̃)− PE(Dobs))‖2F ,

s.t. rank(D̃) ≤ k + 2,

(3.3)

where entries wij of W satisfy wij>0 for (i, j) ∈ E, and zero otherwise.

Since rank(D) = rank(g(X̃X̃T)) ≤ k + 2 for any X̃, we can further simplify the

problem as

min
X̃ ∈ Rn×k

1
2‖W ◦ (PE(g(X̃X̃T))− PE(Dobs))‖2F . (3.4)

Recalling that Y = X̃X̃T , we have

min
Y ∈ Y

1
2‖W ◦ (PE(g(Y))− PE(Dobs))‖2F , (3.5)

where Y = {X̃X̃T : X̃ ∈ Rn×k}. We note that the purpose of the variable change

is to simplify the problem. To be specific, let X∗ be the solution to (3.4), then so

are X∗F for all orthonormal matrix F ∈ Rk×k since X∗FFTX∗T = X∗X∗T . To

avoid this confusion, we focus on the problem (3.5) instead of (3.4). We note also

that many of our works in the next sections can be easily extended to (3.4) using

dY = dX̃X̃T + X̃dX̃T where dY and dX̃ are the total differentials of Y and X̃,

respectively.

When the sensor nodes are randomly distributed in k-dimensional Euclidean space,

we can show that rank of the location matrix X is k almost surely. In fact, con-

sider the case that sensor nodes are randomly distributed in 2D Euclidean space, then

rank(X) = 1 if and only if all of nodes are co-linear. This event happens if there

exists a constant ρ such that xi1 = ρxi2 for any i-th row. The probability of this
1Note that when the observed entries are accurate, wij should be the same constant for all (i, j) ∈ E,

say, wij = 1. In many practical scenarios where range-based techniques are employed, the measurement

accuracy might be proportional to the magnitude of the observed distances [80], which can be reflected

in the choice of wij . For example, the smaller the observed distance dij is, the larger the corresponding

weight wij would be.

60

event
n∏
i=1

P (xi1 = ρxi2) = [P (x11 = ρx12)]n is negligible when the number of sen-

sor nodes are sufficiently large. Thus, we can strengthen the constraint set from Y to

Ỹ = {X̃X̃T : X̃ ∈ Rn×k, rank(X̃) = k}, and thus

min
Y ∈ Ỹ

1
2‖W ◦ (PE(g(Y))− PE(Dobs))‖2F , (3.6)

In the sequel, we denote f(Y) = 1
2‖W ◦ (PE(g(Y)) − PE(Dobs))‖2F for notational

simplicity.

3.2 Optimization over Riemannian Manifold

For a given Y ∈ Ỹ , one can take its eigendecomposition to obtain Y = QΛQT and

thus comes up with an alternative representation of Ỹ as

Ỹ = {QΛQT : Q ∈ S,Λ ∈ L}, (3.7)

where S = {Q ∈ Rn×k : QTQ = Ik}2 and L = {eye([λ1 · · · λk]
T) : λ1 ≥

λ2 ≥ · · · ≥ λk>0}. It has been shown that Ỹ is a smooth Riemannian manifold [81,

Ch.5] [19]. Our approach to solve the problem in a smooth Riemannian manifold is

beneficial in two major respects: First, one can easily compute the gradient of the cost

function in (3.6) using the matrix calculus. Second, we can recycle an algorithm in the

Euclidean space to solve the problem (3.6).

Since our work relies to a large extent on properties and operators of differential

geometry, we briefly introduce tools and ingredients to describe the proposed algo-

rithm. Since Ỹ is an embedded manifold in the Euclidean space Rn×n, its tangent

spaces are determined by the derivative of its curves, where the curve γ of Ỹ is a map-

ping from R to Ỹ . Note that the tangent space on the smooth Riemannian manifold is a

generalization of the notion of tangent hyperplane to surfaces in Euclidean space. Put

it formally, for a given point Y ∈ Ỹ , the tangent space of Ỹ at Y, denoted TYỸ , is de-

2S is an orthogonal Stiefel manifold embedded in Rn×k [64, Theorem 5.12].

61

γ(t)

B = γ′(t)

∣∣∣∣
t=0

t ∈ R

0

Y

Ỹ

TYỸ

(a)

RY(B)

γ(t)

B

Y

Ỹ

TYỸ

(b)

Figure 3.2: Illustration of (a) the tangent space TYỸ and (b) the retraction operator

RY at a point Y in the embedded manifold Ỹ .

62

fined as TYỸ = {γ′(0) : γ is a curve in Ỹ, γ(0) = Y} (see Fig. 3.2). In the following

lemma, we characterize the tangent space of Ỹ .

Lemma 6 For the manifold Ỹ defined by (3.7), the tangent space TYỸ at Y is

TYỸ =




[
Q Q⊥

]

B CT

C 0




QT

QT
⊥


 : BT = B ∈ Rk×k,C ∈ R(n−k)×k



 .

(3.8)

Proof: See Appendix A. �

A metric on the tangent space TYỸ is defined as the matrix inner product <

B1,B2 >= tr(BT
1 B2) between two tangent vectors B1,B2 ∈ TYỸ . We next de-

fine the orthogonal projection of a matrix A onto the tangent space TYỸ , which will

be used to find the closed-form expression of Riemannian gradient in Subsection 3.3.

Definition 1 The orthogonal projection onto TYỸ is a mapping P
TYỸ : Rn×n →

TYỸ such that for a given matrix A ∈ Rn×n, < A − P
TYỸ(A),B >= 0 for all

B ∈ TYỸ .

The following theorem provides a closed form expression of the orthogonal pro-

jection operator.

Theorem 7 For a given matrix A, orthogonal projection P
TYỸ(A) of A onto the

tangent space TYỸ is

P
TYỸ(A) = PQSym(A) + Sym(A)PQ −PQSym(A)PQ, (3.9)

where PQ = QQT .

Proof: See Appendix B. �

In order to express the concept of moving in the direction of a tangent space while

staying on the manifold, an operation called retraction is used. As illustrated in Fig.

63

3.2(b), the retraction operation is a mapping from TYỸ to Ỹ that preserves the gradient

at Y [82, Definition 4.1.1].

Definition 2 The retraction RY(B) of a vector B ∈ TYỸ onto Ỹ is defined as

RY(B) = arg min
Z∈Ỹ
‖Y + B− Z‖F . (3.10)

In obtaining the closed form expression of RY(B), an operator Wk keeping k

largest positive eigenvalues of a matrix, referred to as eigenvalue selection operator, is

needed. Since the projection RY(B) is an element of Ỹ , RY(B) should be a symmet-

ric PSD matrix with rank k. Thus, for given square matrix A, we are interested only in

the symmetric part Sym(A). If we denote the eigenvalue decomposition (EVD) of this

as Sym(A) = PΣPT and the k topmost eigenvalues of this as σ1 ≥ σ2 ≥ · · · ≥ σk ,

thenWk(A) is defined as

Wk(A) = PΣkP
T , (3.11)

where Σk = eye
([

σ1 ... σk 0 ... 0
]T)

. We can obtain an elegant expres-

sion of RY(B) using the eigenvalue selection operatorWk.

Theorem 8 The retraction RY(B) of a vector B ∈ TYỸ can be expressed as

RY(B) =Wk(Y + B). (3.12)

Proof: Our goal is to find a simple expression of the retraction operator RY(B).

First, since Z = Sym(Z) for Z ∈ Ỹ , we have

‖Y + B− Z‖2F = ‖Y + B− Sym(Z)‖2F
(a)
= ‖Skew(Y + B) + Sym(Y + B)− Sym(Z)‖2F
(b)
= ‖Skew(Y + B)‖2F + ‖Sym(Y + B)− Z‖2F ,

where (a) is because Sym(A)+Skew(A) = A and (b) is because< Skew(C),Sym(D) >=

0 for any C and D. Since ‖Skew(Y + B)‖2F is unrelated to Z, it is clear that

RY(B) = arg min
Z∈Ỹ
‖Sym(Y + B)− Z‖F .

64

Using the eigenvalue decomposition Sym(Y + B) = KΣKT , we have

RY(B) = arg min
Z∈Ỹ
‖KΣKT − Z‖F

= arg min
Z∈Ỹ
‖K
(
Σ−KTZK

)
KT ‖F

(a)
= arg min

Z∈Ỹ
‖Σ−KTZK‖F ,

where (a) is because ‖KUKT ‖2F = tr(KUTKTKUKT) = ‖U‖2F for any matrix

U. Now let RY(B) = Z∗, Σ∗ = KZ∗KT , and Q = KTZK, then

Σ∗ = KZ∗KT = arg min
Q
‖Σ−Q‖F . (3.13)

Since Σ is a diagonal matrix, Σ∗ should also be a diagonal matrix. Also, Σ∗ � 0 and

rank(Σ∗) = k.3 Thus, Σ∗ is a diagonal matrix with only k positive entries and the rest

being zero. That is,

Σ∗ =




σ1 0 · · · 0 0 · · · 0

0 σ2 · · · 0 0 · · · 0
...

...
. . .

...
...

. . . 0

0 0 · · · σk 0 · · · 0

0 0 · · · 0 0 · · · 0
...

...
. . .

...
...

. . . 0

0 0 · · · 0 0 · · · 0




, (3.14)

where σ1 ≥ σ2 ≥ · · · ≥ σk>0. Recalling that Sym(Y + B) = KΣKT , we finally

have

RY(B) = KΣ∗KT =Wk(Y + B),

where the last equality is from (3.11). �

Finally, to develop the conjugate gradient algorithm over the Riemannian manifold

Ỹ , we need the Euclidean gradient of the cost function f(Y).

3Since Z∗ ∈ Ỹ , Z∗ � 0 and also Σ∗ = KTZ∗K � 0 and rank(Σ∗) = rank(KTZ∗K) =

rank(Z∗) = k.

65

Theorem 9 Euclidean gradient∇Yf(Y) of f(Y) with respect to Y is

∇Yf(Y) = 2eye(Sym(R)1)− 2Sym(R), (3.15)

where R = W ◦W ◦ (PE(g(Y))− PE(Dobs)).

Proof: See Appendix D. �

3.3 Localization in Riemannian Manifold Using Conjugate

Gradient (LRM-CG)

In our approach, we solve the problem in (3.6) using the conjugate gradient (CG)

method. Note that CG method is widely used to solve sparse symmetric positive def-

inite linear systems [83]. In CG algorithms, the optimal value can be obtained in a

finite number of searching steps. This is because the conjugate direction is designed

such that it is conjugate to previous directions and also the gradient of the cost func-

tion. Also, the CG algorithm can be readily applied to a sparse symmetric positive

definite system and thus can be used to solve our main problem due to the quadratic

form of the cost function f(Y). In fact, noting that PE and g are linear mappings, one

can easily show that

f(Y) =
1

2
‖W ◦ (PE(g(Y))− PE(Dobs))‖2F

=
1

2
‖W ◦ PE(g(

∑

i,j

yijE
(i,j))−Dobs)‖2F

(a)
=

1

2
‖vec(K) ◦ (

∑

i,j

yijvec
(
PE(g(E(i,j)))

)
− vec(PE(Dobs)))‖22

(b)
=

1

2
‖Avec(Y)− b‖22, (3.16)

where (a) is because ‖M‖F = ‖vec(M)‖2 and (b) follows from

vec(Y) =
[
y11 y21 · · · ynn

]T
, b = vec(W ◦ PE(Dobs)),

66

and A formed by column vectors vec
(
W ◦ PE(g(E(i,j)))

)
. From (3.16), it is obvious

that f(Y) has the quadratic form of a sparse symmetric positive definite system.

Recall that the update equation of the conventional CG algorithm in the Euclidean

space is

Yi+1 = Yi + αiPi, (3.17)

where αi is the stepsize and Pi is the conjugate direction. The stepsize αi is chosen by

the line minimization technique (e.g., Armijo’s rule [84, 85]) and the search direction

Pi of the CG algorithm is chosen as a linear combination of the gradient and the

previous search direction to generate a direction conjugate to the previous ones. In

doing so, one can avoid unnecessary searching of directions that have been searched

over and thus achieve the speedup of the algorithm [86, 83].

In our work, since we consider the optimization problem over the Riemannian

manifold Ỹ , the conjugate direction Pi should lie on the tangent space. To make sure

that the update point Yi+1 lies on the manifold, we need a retraction operation. The

update equation after applying the retraction operation is

Yi+1 = RYi(αiPi)

= Wk(Yi + αiPi). (3.18)

As observed in Theorem 8, the eigenvalue selection operator Wk guarantees that the

updated point Yi+1 lies on the manifold.

We next consider the conjugate direction Pi of LRM-CG. In the conventional non-

linear CG algorithm, conjugate direction Pi is updated as

Pi = −∇Yf(Yi) + βiPi−1, (3.19)

where βi is the conjugate update parameter4. Since we optimize over the Riemannian

manifold Ỹ , conjugate direction in (3.19) needs to be modified. First, we need to use

the Riemannian gradient of f(Y) instead of the Euclidean gradient ∇Yf(Y) since

4There are a number of ways to choose βi. See, e.g., [83, 87, 88, 89].

67

gradf(Y)

Y

∇Yf(Y)

Ỹ

TP Ỹ

Figure 3.3: Riemannian gradient gradf(Y) is defined as the projection of the Eu-

clidean gradient∇Yf(Y) onto the tangent space TYỸ while the Euclidean gradient is

a direction for which the cost function is reduced most in Rn×n, Riemannian gradient

is the direction for which the cost function is reduced most in the tangent space TYỸ .

68

we find the search direction on the tangent space of Ỹ . Riemannian gradient, denoted

gradf(Y), is distinct from∇Yf(Y) in the sense that it is defined on the tangent space

TYỸ (see Fig. 3.3).

Definition 3 Let f be the function differentiable everywhere in the Riemannian mani-

fold Ỹ . The Riemannian gradient gradf(Y) of f at Y is defined as the unique element

in TYỸ satisfying

< B, gradf(Y) >=< B,∇Yf(Y) >, (3.20)

where B is any element in TYỸ .

As shown in Fig. 3.3, gradf(Y) ∈ TYỸ is a component of the Euclidean gradient

∇Yf(Y) in TYỸ . In other words, gradf(Y) is the projection of∇Yf(Y) onto TYỸ .

Indeed, from Definition 1, < B,∇Yf(Y) − P
TYỸ(∇Yf(Y)) >= 0 for any matrix

B ∈ TYỸ . Hence,

< B, P
TYỸ(∇Yf(Y)) >=< B,∇Yf(Y) > . (3.21)

From (3.20) and (3.21), it is clear that

gradf(Y) = P
TYỸ(∇Yf(Y)). (3.22)

Second, since the Riemannian gradient gradf(Yi) and previous conjugate direc-

tion Pi−1 lie on two different vector spaces TYiỸ and TYi−1Ỹ , we need to project

Pi−1 onto the tangent space TYiỸ5 before performing a linear combination between

of two. In view of this, the conjugate direction update equation of LRM-CG is

Pi = −gradf(Yi) + βiPTYi Ỹ
(Pi−1). (3.23)

5In transforming a vector from one tangent space to another, an operator called vector transport is

used (see Definition 8.1.1 in [63]). For an embedded manifold of Rn×n, vector transport is the orthogonal

projection operator [63]. Hence, the vector transport of Pi−1 is the orthogonal projection of Pi−1 onto

TYi Ỹ

69

Algorithm 1: LRM-CG algorithm

1 Input: Dobs: the observed matrix,

W: the weight matrix,

PE : the sampling operator,

ε: tolerance,

µ ∈ (0 1): given constant,

T : number of iterations.

2 Initialize: i = 1,

Y1 ∈ Ỹ: initial point,

P1: initial conjugate direction.

3 While i ≤ T do

4 Ri = W ◦W ◦ (PE(g(Yi))− PE(Dobs))

5 ∇Yf(Yi) = 2eye(Sym(Ri)1)− 2Ri

6 gradf(Yi) = PTYi
Ỹ(∇Yf(Yi))

7 Hi = gradf(Yi)− PTYi
Ỹ(gradf(Yi−1))

8 h =< Pi,Hi >

9 βi = 1
h2 < hHi − 2Pi‖Hi‖2F , gradf(Yi) >

10 Pi = −gradf(Yi) + βiPTYi
Ỹ(Pi−1)

11 Find a stepsize αi>0 such that

f(Yi)− f(RYi(αiPi)) ≥ −µαi < gradf(Yi),Pi >

12 Yi+1 = RYi
(αiPi)

13 Di+1 = g(Yi+1)

14 If ‖W ◦ (PE(Di+1)− PE(Dobs))‖F<ε then

15 Exit from while loop

16 End If

17 Obtain Q and Λ using the eigendecomposition

Yi+1 = QΛQT

18 X̂ = QΛ1/2

19 i = i+ 1

20 End While

21 Output: X̂

70

Table 3.1: Computational complexity of LRM-CG for each iteration.

Algorithm operation Flops order

Euclidean gradient O(k|E|+ n)

Orthogonal projection O(kn2 + k2n+ k3)

Retraction O(kn2 + k2n+ k3)

Finally, in choosing the stepsize αi in (3.18), we use the Armijo’s rule, a widely used

line search strategy. Note that the Armijo’s rule is an effective way to find a stepsize

αi minimizing the cost function f , that is, αi ≈ min
α>0

f(Wk(Yi + αiPi) [84, 85].

The proposed LRM-CG algorithm is summarized in Algorithm 1.

3.4 Computational Complexity

In this subsection, we analyze the computational complexity of LRM-CG in terms of

the number of floating point operations (flops). As discussed in Section 3.2, major

steps in LRM-CG is to compute Euclidean gradient, Riemannian gradient, and the

retraction operation.

In order to compute the Euclidean gradient ∇Yf(Yi) in (3.15), we need to con-

sider the computation of Yi from the (i − 1)-th iteration. Since Yi = QΛQT (Q

is a n × k matrix and Λ is a k × k diagonal matrix), it requires 2k multiplica-

tions and (k − 1) additions to compute yij =
k∑
t=1

λtqitqjt so that the associated

computational complexity is (3k − 1) flops. Further, from (3.1), we need to com-

pute [g(Y)]ij = yii + yjj − yij , which requires (9k − 1) flops. The residual ma-

trix Ri = PE(g(Yi)) − Dobs requires 9k|E| flops (|E| is the number of the ob-

served entries of Dobs). In addition, since it takes (9k + 2)|E| flops to compute

Sym(Ri) = 1
2(Ri + RT

i), it requires at most (9k + 4)|E| + n − 1 flops to compute

2eye(Sym(Ri)1). Since the cardinality of Sym(Ri) is |E|, computational complexity

of∇Yf(Yi) = 2eye(Sym(Ri)1)−2Sym(Ri) in (3.15) is at most (9k+5)|E|+n−1.

71

Second, recalling that the Riemannian gradient gradf(Yi) is an orthogonal projec-

tion of∇Yf(Yi) onto the tangent space TYiỸ , we need to estimate the computational

complexity of the orthogonal projection operator P
TYi Ỹ

. In computing P
TYi Ỹ

(A) for

an n × n matrix A, we need Sym(A), B = Sym(A)Q, and C = QTSym(A)Q,

which require (2k − 1)n2, 2n2 + (2n − 1)kn, and (2n − 1)kn + (2n − 1)k2 flops,

respectively. Then, from (3.9), we have

P
TYi Ỹ

(A) = QBT + BQT −QCQT ,

which requires O(kn2 + k2n+ k3) flops.

Finally, in applying Armijo’s rule to find the stepsize αi, we need to compute

the retraction operation RYi(αiPi). From (3.12), the retraction operation is obtained

via the eigenvalue selection operator Wk and this requires the EVD of (Yi + Pi).

In general, computational complexity of the EVD for a n × n matrix is expressed as

O(n3). However, using Yi = QΛQT and Pi ∈ TYiỸ , we adopt the computational

strategy in [20] to simplify the EVD operation. First, since Pi ∈ TYiỸ , we have

Pi =
[
Q Q⊥

]

Bi CT

i

Ci 0




QT

QT
⊥


 . (3.24)

Thus,

Yi + Pi =
[
Q Q⊥

]

Bi + Λ CT

i

Ci 0




QT

QT
⊥




=
[
Q Qc

]

Bi + Λ RT

c

Rc 0




QT

QT
c




=
[
Q Qc

]
KΛ′KT


QT

QT
c


 .

where QcRc is the QR-decomposition of Q⊥Ci, which requires (2n− 2k − 1)kn +

O(nk2) flops. Now the EVD of (Yi+Pi) is simplified to the EVD of the 2k×2k ma-

trix


Bi + Λ RT

c

Rc 0


, which requires only O(k3) flops. Also, computing

[
Q Qc

]
K

72

needs (4k − 1)kn flops. Thus, computational complexity of the retraction operation

is O(kn2 + nk2 + k3), which is O(kn2) for k � n. The computational complex-

ity of Euclidean gradient, Riemannian gradient, and the retraction in each iteration is

summarized in Table 3.1.

In summary, computational complexity of the proposed algorithm per iteration is

O(k|E|+ kn2 + k2n+ k3) = O(kn2). Since k = 2 or 3 in our problem, complexity

per iteration can be expressed as O(n2) flops.

3.5 Recovery Condition Analysis

In this section, we analyze a recovery condition under which the LRM-CG algorithm

recovers the Euclidean distance matrices accurately. Overall, our analysis is divided

into two parts. In the first part, we analyze a condition ensuring the successful recovery

of the sampled (observed) entries, i.e., ‖PE(D̂)− PE(D)‖F = 0. In the second part,

we investigate a condition guaranteeing the exact recovery of the Euclidean distance

matrices, i.e., ‖D̂ − D‖F = 0. By exact recovery, we mean that the output Di of

LRM-CG converges to the original Euclidean distance matrix D.

Definition 4 For a sequence of matrices {Di}∞i=1, if lim
i→∞
‖Di − D‖F = 0, we say

{Di}∞i=1 converges to D. Further, we say {Di}∞i=1 converges linearly to D with con-

vergent rate λ if there exists λ (1>λ ≥ 0) satisfying

lim
i→∞

‖Di+1 −D‖F
‖Di −D‖F

= λ.

3.5.1 Convergence of LRM-CG at Sampled Entries

In this subsection, we show that {PΩ(Di)}∞1 , sequence of matrices generated by

LRM-CG at sampled points, converges toPΩ(D). For example, if D =




0 29 20

29 0 81

20 81 0




73

and E = {(1, 2), (1, 3)}, then PE(D) =




0 29 20

29 0 0

20 0 0


. Thus, we will show that

lim
i→∞
PE(Di) =




0 d2
12(∞) d2

13(∞)

d2
21(∞) 0 0

d2
31(∞) 0 0


 =




0 29 20

29 0 0

20 0 0


 = PE(D).

The minimal set of assumptions used for the analytical tractability are as follows:

A1 : f(Yi)−f(RYi(αiPi)) ≥ −ταi < gradf(Yi),Pi > for τ satisfying 0<τ<1/2,

A2 : | < gradf(RYi(αiPi)),Pi > | ≤ −µ < gradf(Yi),Pi > for µ satisfying

τ<µ<1/2,

A3 : c‖gradf(Yi)‖F ≥ ‖∇Yf(Yi)‖F for c satisfying c>1.

In essence, A1 and A2 can be considered as extensions of the strong Wolfe’s con-

ditions6 [90]. The assumption A1 says that the cost function f(Yi) decreases mono-

tonically as long as Pi is chosen in an opposite direction of gradf(Yi) on the tangent

space TYiỸ (i.e.,< gradf(Yi),Pi >≤ 0) (see Lemma 13). Note that A1 is reasonable

assumption since there always exists a stepsize satisfying this assumption.

Lemma 10 There exists αi>0 satisfying A1.

Proof: See Appendix E �

6Consider an unconstrained minimization in Rn with a differentiable cost function f(x) (i.e.,

min
x∈Rn

f(x)). The update equation is given by xi+1 = xi + αipi for a stepsize αi and a descent di-

rection pi. The well-known strong Wolfe’s conditions is given by

f(xi)− f(xi+1) ≥ −ταi < ∇xf(xi),pi >,

| < ∇xf(xi+1),pi > | ≤ −µ < ∇xf(xi),pi >,

for some constants 0<τ<µ<1.

74

Note that if the stepsize αi is chosen to be very small, then Yi+1 = RYi(αiPi) ≈
RYi(0) = Yi, and thus

f(Yi)− f(RYi(αiPi)) ≈ 0.

and −ταi < gradf(Yi),Pi >≈ 0. In this case, A1 holds true approximately. How-

ever, there would be almost no update of Yi so that the algorithm will converge

extremely slowly. To circumvent this pathological scenario, we use A2, which is in

essence an extension of the strong Wolfe’s condition for the Riemannian manifold.

Under this assumption, αi cannot be chosen to be very small since otherwise we have

RYi(αiPi) ≈ Yi, and thus

| < gradf(RYi(αiPi)),Pi > | ≈ | < gradf(Yi),Pi > | ≥ −µ < gradf(Yi),Pi >,

which contradicts the assumption A2.

The assumption A3 is needed to guarantee the global convergence of LRM-CG.

We will discuss more on this in Remark 2.

Our first main result, stating successful recovery condition at sampled entries, is

formally described in the following theorem.

Theorem 11 (strong convergence of LRM-CG) Let {Di = g(Yi)}∞i=1 be the se-

quence of the matrices generated by LRM-CG and D be the original Euclidean dis-

tance matrix. Under A1, A2, and A3, {PE(Di)}∞i=0 converges linearly to PE(D).

Remark 1 (strongly convergent condition in Rn) Note that lim
i→∞
‖PE(Di)−PE(D)‖F =

0 is equivalent to

lim
i→∞
‖∇Yf(Yi)‖F = 0. (3.25)

This condition is often referred to as the strongly convergent condition of the non-

linear CG algorithms in the vector space. The equivalence can be established by the

following sandwich lemma.

75

Lemma 12

2‖PE(Di)− PE(D)‖F ≤ ‖∇Yf(Yi)‖F ≤ (2
√
n+ 2)‖PE(Di)− PE(D)‖F .

Proof: See Appendix F �

Remark 2 Recently, an attempt has been made to extend the convergent analysis of

the conventional CG algorithms (over the Euclidean space Rn) to the Riemannian

manifolds. In [91, Theorem 4.3], it has been shown that under certain assumption,

lim
i→∞

inf ‖gradf(Yi)‖F = 0. (3.26)

One can observe that the Euclidean gradient∇Yf(Yi) is replaced by the Riemannian

gradient gradf(Yi). Unfortunately, the convergence of the Riemannian gradient in

(3.26) does not imply the convergence of Euclidean gradient in (3.25) because

‖∇Yf(Yi)‖2F = ‖P
TYỸ(∇Yf(Yi))‖2F + ‖P⊥

TYỸ
(∇Yf(Yi))‖2F

= ‖gradf(Yi)‖2F + ‖P⊥
TYỸ

(∇Yf(Yi))‖2F , (3.27)

where gradf(Yi) = P
TYỸ(∇Yf(Yi)) (see (3.22)). One can observe from this that the

condition in (3.26) is not sufficient to guarantee (3.25), that is, one cannot guarantee

lim
i→∞
‖PE(Di) − PE(D)‖F = 0 just from (3.26). However, by the introduction of

A3, equivalence between (3.25) and (3.26) can be established. We will show that the

assumption A3 holds true with overwhelming probability in Section 3.5.3.

We are now ready to prove Theorem 11.

76

Proof of Theorem 11

First, we show that under A1 and A2, ‖PE(Di) − PE(D)‖F is non-increasing. That

is, if χ is defined by

χ =





sup
Y∈{Yi}∞i=1

‖P⊥
TYỸ

(∇Yf(Y))‖F
‖∇Yf(Y)‖F if ‖∇Yf(Y)‖F 6= 0

1 otherwise

, (3.28)

then there exists γ>0 such that γ(1− χ2) ≤ 1 and

‖PE(Di+1)− PE(D)‖2F ≤
(
1− γ(1− χ2)

)
‖PE(Di)− PE(D)‖2F . (3.29)

We need the following lemma to prove this.

Lemma 13 If βi is chosen based on Fletcher-Reeves’ rule7, that is,

βi =
< gradf(Yi), gradf(Yi) >

< gradf(Yi−1), gradf(Yi−1) >
, (3.31)

then
< gradf(Yi+1),Pi+1 >

‖gradf(Yi+1)‖2F
≤ −1− 2µ

1− µ −
µi+1

1− µ.

Proof: See Appendix G. �

Lemma 14 ‖gradf(Yi)‖2F ≥ 8(1− χ2)f(Yi).

7In our simulation, we employ Hager-Zhang’s rule in the choice of βi to improve the empirical per-

formance of the CG method [89]:

βi =
1

h2
< hHi − 2Pi‖Hi‖2F , gradf(Yi) > (3.30)

where Hi = gradf(Yi) − PTYi
Ỹ(gradf(Yi−1)) and h =< Pi,Hi >. In our analysis, however, we

use Fletcher-Reeves’ rule for mathematical tractability.

77

Proof: See Appendix H. �

We are now ready to prove (3.29). First, from A1, we have

f(Yi+1) ≤ f(Yi) + ταi < gradf(Yi),Pi >

(a)
≤ f(Yi)− ταi

(
1− 2µ

1− µ +
µi

1− µ

)
‖gradf(Yi)‖2F

≤ f(Yi)− ταi
(

1− 2µ

1− µ

)
‖gradf(Yi)‖2F ,

(b)
≤ f(Yi)− 8ταi

(
1− 2µ

1− µ

)
(1− χ2)f(Yi),

where (a) and (b) follow from Lemma 13 and Lemma 14, respectively. Let

γi = 8ταi

(
1− 2µ

1− µ

)
,

then γi>0 (since αi>0) and hence

f(Yi+1) ≤ (1− γi(1− χ2))f(Yi).

Recalling that f(Yi) = 1
2‖PE(Di)− PE(D)‖2F , we have

‖PE(Di+1)− PE(D)‖2F ≤
(
1− γi(1− χ2)

)
‖PE(Di)− PE(D)‖2F .

By choosing γ = min
i
γi, we get the desired result.

Now, what remains is to show that lim
i→∞
‖PE(Di) − PE(D)‖F = 0 under (3.29).

From (3.27) and (3.28), we have 0 ≤ χ ≤ 1, and thus we need to consider two cases:

1) χ<1 case: In this case, one can easily show that 1>(1 − γ(1 − χ2))1/2. Using

this together with (3.29), we have

lim
i→∞

‖PE(Di+1)− PE(D)‖F
‖PE(Di)− PE(D)‖F

= (1− h(1− χ2))1/2<1

and hence

lim
i→∞
‖PE(Di)− PE(D)‖F = 0.

Thus, the sequence {PE(Di)}∞i=1 converges linearly to PE(D).

78

2) χ = 1 case: In this case, we show that there exists j satisfying ‖∇Yf(Yj)‖F =

0. As discussed in Remark 1 and Lemma 12, this is a sufficient condition to guar-

antee the strong convergence of LRM-CG. In this case, no further update can be

made after j-th iteration (and thus linear convergence is naturally guaranteed).

To show this, we use the contradiction argument. Suppose that ‖∇Yf(Yi)‖F 6=
0 for all i. Then, from (3.28) we should have

sup
Y∈{Yi}∞i=1

‖P⊥
TYỸ

(∇Yf(Y))‖F
‖∇Yf(Y)‖F

= χ = 1.

Further, from (3.27), we have

‖P⊥
TYi Ỹ

(∇Yf(Yi))‖2F = ‖∇Yf(Yi)‖2F − ‖gradf(Yi)‖2F

≤ ‖∇Yf(Yi)‖2F −
1

c2
‖∇Yf(Yi)‖2F ,

where the inequality is from A3 (c>1). Thus,

1 = sup
Y∈{Yi}∞i=1

‖P⊥
TYỸ

(∇Yf(Y))‖2F
‖∇Yf(Y)‖2F

≤ sup
Y∈{Yi}∞i=1

‖∇Yf(Y)‖2F − 1
c2
‖∇Yf(Y)‖2F

‖∇Yf(Y)‖2F
= 1− 1

c2
,

which is contradiction. Thus, ‖∇Yf(Yi)‖F = 0 for some j.

3.5.2 Exact Recovery of Euclidean Distance Matrices

So far, we have shown that the output of LRM-CG converges to the original Euclidean

distance matrix D at sampled entries (i.e., PE(D∞) = PE(D)). In this subsection, we

show that all entries of Di converge to that of the original Euclidean distance matrix

D with overwhelming probability.

Before we proceed, we briefly discuss the probability model of the sampling oper-

ator PE . Let δij be a Bernoulli random variable that takes value 1 if dij ≤ r (recall that

79

r is the radio communication range) and 0 otherwise. Since the distance is symmetric

(i.e., dij = dji), we have δij = δji. Also, since the diagonal entries of D are all zeros,

we define δii = 0 for all i. Then, for a matrix A, PE(A) can be expressed as

PE(A) =
∑

i 6=j
δij < A, eie

T
j > eie

T
j ,

=
∑

i 6=j
δijaij , (3.32)

where ei is the standard basis of Rn. For example, if A =




0 10 17

10 0 3

17 3 0


 and

E = {(1, 2), (2, 3)}, then

PE(A) =




0 10 0

10 0 3

0 3 0




= 10




0 1 0

0 0 0

0 0 0


+ 3




0 0 0

0 0 1

0 0 0


+ 10




0 0 0

1 0 0

0 0 0


+ 3




0 0 0

0 0 0

0 1 0


 .

We now characterize the random variables δij using P (dij ≤ r). Since dij =

‖xi−xj‖2, it follows P (dij ≤ r) = P (‖xi−xj‖2 ≤ r). In this work, we assume that

elements of xi (locations of sensor nodes) are i.i.d. random and uniformly distributed

over unit interval. By denoting p = P (dij ≤ r), the probability mass function (PMF)

of δij can be expressed as

f(δij ; p) = pδij (1− p)1−δij . (3.33)

The following lemma provides an explicit expression of p in terms of the radio com-

munication range r.

Lemma 15 If an element of the location vectors xi is i.i.d. and uniform on unit inter-

val, then

80

0 0.5 1 1.5 2 2.5 3

Radio communication range r

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
a
m

p
lin

g
 p

a
ra

m
e
te

r
p

k = 2
k = 3

Figure 3.4: The sampling parameter p gets close to 1 as r increases. Here, elements of

xi are i.i.d. random variables according to the uniform distribution over unit interval.

81

a) If k = 2 (2-dimensional Euclidean space),

p =





πr2 − 8
3r

3 + 1
2r

4 if 0 ≤ r ≤ 1

p1(r) if 1 ≤ r ≤
√

2

1 else

,

b) If k = 3 (3-dimensional Euclidean space),

p =





4
3πr

3 − 3π
2 r

4 + 8
5r

5 − 1
6r

6 if 0 ≤ r ≤ 1

p2(r) if 1 ≤ r ≤
√

2

p3(r) if
√

2 ≤ r ≤
√

3

1 else

,

where

p1(r) = −2

3
− 2r2 − 1

2
r4 +

1

3
(8r2 + 1)

√
r2 − 1

+2r2 sin−1

(
2

r2
− 1

)
+

2

1 + tan

(
sin−1

(
2
r2
−1
)

2

) , (3.34)

p2(r) = −15π + 37

30
+

6π + 1

2
r2 − 8π

3
r3 +

3π + 3

2
r4 +

1

3
r6

+2r4 sin−1

√
1− 1

r2
+

(
2

15
− 44

15
r2 − 16

5
r4

)√
r2 − 1

−2r4 sin−1

(
1

r

)
− r4 sin−1

(
2

r2
− 1

)

− 16

3
(
1 + tan

(
1
2 sin−1

(
2
r2 − 1

)))3

+
4

(
1 + tan

(
1
2 sin−1

(
2
r2 − 1

)))2 , (3.35)

82

p3(r) = −π
2

+
97

30
− 7

2
r2 − 3

2
r4 − 1

6
r6 +

(
26

15
+

44

15
r2 +

8

5
r4

)√
r2 − 2

+
16

3
r3 tan−1

√
1− 2

r2
+ (2− 8r2) tan−1

√
r2 − 2

−(2r4 − 4r2) sin−1

√
r2 − 2

r2 − 1
+ (r4 + 2r2) sin−1

(
3− r2

r2 − 1

)

−16

3
r3 tan−1

√
1

r4 − 2r2
+ 8r2 tan−1

√
1

r2 − 2

+(2r4 − 4r2) sin−1

√
1

r2 − 1
+

16

3

1
(

1 + tan
(

1
2 sin−1

(
3−r2

r2−1

)))3

−4
1

(
1 + tan

(
1
2 sin−1

(
3−r2

r2−1

)))2 . (3.36)

Proof: See Appendix I. �

It is worth noting that p1(r), p2(r), and p3(r) increase monotonically with r (see

Fig. 3.4).

We now state our main result.

Theorem 16 Under the assumption A1, A2, and A3, the output sequence {Di =

g(Yi)}∞1 of LRM-CG converges globally to the Euclidean distance matrix D (lim
i→∞
‖Di−

D‖F = 0) with the probability at least

1− exp

(
−
(

(1− c) log

(
1− c
1− p

)
+ c log

(
c

p

)))
(3.37)

for some constant c satisfying 0<c<1 and c<p.

Remark 3 From Lemma 15, we see that p gets close to 1 as the radio communication

range r increases. Thus, as shown in Fig. 3.5, the chance of recovering D increases

with r.

Remark 4 Theoretical guarantee on the recovery of a matrix has been provided by

Candes and Recht in [5], and later improved in [6, 41]. In short, if entries of a

83

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Radio communication range r

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
a
b
ili

ty
 (

4
0
)

c = 0.1
c = 0.2
c = 0.3

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Radio communication range r

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
a
b
ili

ty
 (

4
0
)

c = 0.1
c = 0.2
c = 0.3

(b)

Figure 3.5: The Euclidean distance matrix D can be recovered with overwhelming

probability in (a) 2D and (b) 3D Euclidean space when r is large.

84

matrix are chosen at random, then the n × n matrix with rank k can be recovered

with overwhelming probability as long as the number of measurements m follows

m = O(kn1.2 log(n)). The analysis in these works is based on the assumption that

observed entries are sampled i.i.d. (and follow Bernoulli or uniform distribution).

Whereas, our analysis does not require independence assumption among the sampled

entries of D since the elements of D are related. In other words, random variables

δij do not need to be independent. For example, consider the scenario illustrated in

Fig. 3.6. Since the sensor node 4 is located inside the triangle formed by three sen-

sor nodes (nodes 1, 2, and 3), one can see that d14 ≤ max(d12, d13). Thus, if d12

and d13 are already known (i.e., d12 ≤ r, d13 ≤ r), then so is d14. In other words,

P (δ14 = 1|δ12 = δ13 = 1) = 1, while P (δ14 = 1) is not necessarily one. In our work,

we do not put any assumption on the independence of the entries of D yet show that

D can be recovered exactly with overwhelming probability when r is large.

Following lemma is useful to prove Theorem 16.

Lemma 17 For a given matrix A, if the diagonal entries are zeros (i.e., aii = 0 for

all i) and ‖A‖F<∞, then there exists a constant t (0<t<1) satisfying

t‖A‖2F ≤ ‖PE(A)‖2F , (3.38)

with the probability at least 1−exp
(
−
(

(1−mt) log
(

1−mt
1−p

)
+mt log

(
mt
p

)))
for

some constant m ≥ 1, provided that 0<mt<p<1.

Proof: See Appendix J. �

Proof of Theorem 16: Let A = Di −D. Then from Lemma 17, we have

‖Di −D‖F ≤ 1√
t
‖PE(Di)− PE(D)‖F (3.39)

with the probability at least 1− exp
(
−
(

(1−mt) log
(

1−mt
1−p

)
+mt log

(
mt
p

)))
for

some constantm satisfyingm ≥ 1 and 0<m<p
t . Combining this with lim

i→∞
‖PE(Di)−

85

PE(D)‖F = 0 (Theorem 11), we can conclude that

lim
i→∞
‖Di −D‖F = 0,

with the probability at least 1 − exp
(
−
(

(1− c) log
(

1−c
1−p

)
+ c log

(
c
p

)))
, where

c = mt.

3.5.3 Discussion on A3

In this section, we show that the assumption A3 (c‖gradf(Yi)‖2F + ε>‖∇Yf(Yi)‖2F
for some c>1 and ε>0) holds true with overwhelming probability when r is large. Note

that when ε is sufficiently small, one can simply put c‖gradf(Yi)‖2F ≥ ‖∇Yf(Yi)‖2F ,

which is the strict form of A3. Intuitively, if the generated sequence of Riemannian

gradient goes to zero (lim
i→∞
‖gradf(Yi)‖F = 0), so does the corresponding sequence

of the Euclidean gradient (lim
i→∞
‖∇Yf(Yi)‖F = 0). In order to show this, we first

need to define the coherence, a measure of concentration in a matrix [5].

Definition 5 (Coherence [5]) Let Q be a subspace of Rn of dimension k and PQ be

the orthogonal projection onto Q. Then the coherence of Q is defined by

µ(Q) =
n

k
max

1≤i≤n
‖PQei‖22.

Consider a matrix A of rank k whose singular value decomposition is given by

A = UΣVT =

k∑

i=1

σuiv
T
i , (3.40)

where U =
[

u1 · · · uk

]
and V =

[
v1 · · · vk

]
are the matrices con-

structed by the left and right singular vectors, respectively, and Σ is the diagonal

matrix whose diagonal entries are σi. From (3.40), we see that the concentration on

the vertical direction (concentration in the row) is determined by ui and that on the

horizontal direction (concentration in the column) is determined by vi. For example,

86

1

2

3

4

Figure 3.6: Suppose that the sensor node 4 is inside the triangle formed by three sensor

nodes 1, 2, and 3. Then for a given r, it can be shown that d14 ≤ max(d12, d13),

and thus P (d14 ≤ r|d12 ≤ r, d13 ≤ r) = 1 which is not necessarily equivalent to

P (d14 ≤ r).

87

if one of the standard basis vector ei, say e1 =
[

1 0 · · · 0
]T

, lies on the space

spanned by u1, · · · ,uk while others (e2, e3, · · ·) are orthogonal to this space, then it

is clear that nonzero entries of the matrix are only on the first row. Since we need to

check the concentration on both vertical and horizontal directions, we need to inves-

tigate both µ(U) and µ(V). In this regard, the coherence of a matrix A is defined by

[5]

µ(A) = max(µ(U), µ(V)). (3.41)

In particular, if A is a positive semidefinite matrix, then it is clear that U = V and

thus µ(A) = µ(U).

Theorem 18 Suppose µ(Yi) ≤ µ0 for a given matrix Yi ∈ Ỹ . Then, for any c>1 and

ε>0,

c2‖gradf(Yi)‖2F + ε>‖∇Yf(Yi)‖2F , (3.42)

with probability at least

1− exp

(
−
(
mε log

(
mε

1− p

)
+ (1−mε) log

(
1−mε
p

)))
(3.43)

for some constant m satisfying m>0 and 0<m<1−p
ε , provided that n ≥ 2cµ0k.

Remark 5 From Lemma 15, we see that p gets close to 1 as r increases. Thus, as

shown in Fig. 3.7, when r is large, (3.42) holds true with overwhelming probability.

Following lemmas are needed to prove the theorem.

Lemma 19

‖∇Yf(Y)‖2F − c2‖gradf(Y)‖2F
≤

∑

i 6=j

∑

u6=v
δij | < B, eie

T
j >< B, eue

T
v >

< (I − c2P
TYỸ)l(eie

T
j), l(eue

T
v) > |, (3.44)

where B = g(Y)−D and l(A) = 2eye(Sym(A)1)− 2Sym(A).

88

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Radio communication range r

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
a
b
ili

ty
 (

4
6
)

mǫ = 0.9
mǫ = 0.8
mǫ = 0.7

Figure 3.7: The condition (3.42) holds true with overwhelming probability when the

radio communication range r is large.

89

Proof: See Appendix K. �

Lemma 20 If n2 ≥ 4cµ(Y)2k2 and i 6= j, then

| < (I − cP
TYỸ)l(eie

T
j), l(eie

T
j) > | ≥ 4

(
1− 4cµ(Y)2k2

n2

)
, (3.45)

where c>0 and l(A) = 2eye(Sym(A)1)− 2Sym(A).

Proof: See Appendix L. �

Lemma 21 Let δ1, δ2, · · · , δN be identically (not necessarily independently) distributed

Bernoulli random variables with P (δi = 1) = p and P (δi = 0) = 1 − p. Also, let

a1, a2, · · · , aN be positive values. Let q be the largest integer obeying 2q ≤ N . Then,

for any ε>0,

P (
N∑

i=1

δiai ≥ ε) ≤ exp

(
−
(
mε log

(
mε

1− p

)
+ (1−mε) log

(
1−mε
p

)))
,

(3.46)

where mε =
∑N
i=1 ai−ε
2qamin

with amin = min
i
ai, provided that 0<mε<1− p.

Proof: See Appendix M. �

Now, we are ready to prove Theorem 18.

Proof: [Proof of Theorem 18] Let

I = ‖∇Yf(Yi)‖2F − c2‖gradf(Yi)‖2F ,

sij = < g(Yi)−D, eie
T
j >,

and

gij =
∑

u6=v
|sijsuv < (I − c2P

TYi Ỹ
)l(eie

T
j), l(eue

T
v) > |.

90

In this proof, we will show that P (I ≤ ε) is lower bounded by the quantity in (3.43).

First, since I ≤ ∑
i 6=j

δijgij from Lemma 19 and hence P (I ≤ ε | ∑
i 6=j

δijgij ≤ ε) = 1,

we have

P (
∑

i 6=j
δijgij ≤ ε) = P (

∑

i 6=j
δijgij ≤ ε)P (I ≤ ε |

∑

i 6=j
δijgij ≤ ε)

= P (I ≤ ε,
∑

i 6=j
δijgij ≤ ε)

= P (
∑

i 6=j
δijgij ≤ ε | I ≤ ε)P (I ≤ ε)

≤ P (I ≤ ε). (3.47)

What remains is to find out a lower bound of P (
∑
i 6=j

δijgij ≤ ε). Equivalently,

we find out an upper bound of P (
∑
i 6=j

δijgij ≥ ε). First, in order to use Lemma 21,

we need to find a lower bound of gij for (i, j) ∈ Ω (Ω = {(i, j) : sij 6= 0}). Let

s = min
(i,j)∈Ω

|sij |, then

gij =
∑

u6=v
|sijsuv < (I − c2P

TYỸ)l(eie
T
j), l(eue

T
v) > |

≥ |s2
ij < (I − c2P

TYỸ)l(eie
T
j), l(eie

T
j) > |

(a)
≥ 4s2

(
1− 4c2µ(Yi)

2k2/n2
)

≥ 4s2
(
1− 4c2µ2

0k
2/n2

)
,

where (a) follows from Lemma 20. Now using Lemma 21, we have

P (
∑

i 6=j
δijgij ≥ ε)

≤ exp

(
−
(
mε log

(
mε

1− p

)
+ (1−mε) log

(
1−mε
p

)))
, (3.48)

where m = (
∑

(i,j)∈Ω gij − ε)/(2qεc1) (c1 = 4s2
(
1− 4c2µ2

0k
2/n2

)
), provided that

0<m<1−p
ε and n ≥ 2cµ0k. Here, q is the largest integer obeying 2q ≤ |Ω| (|Ω| being

the cardinality of Ω). From (3.47) and (3.48), and noting that P (
∑
i 6=j

δijgij ≤ ε) =

1− P (
∑
i 6=j

δijgij ≥ ε), we get the desired result. �

91

Chapter 4

Extended LRM-CG for The Outlier Problem

In many practical scenarios, observed pairwise distances can be contaminated by the

outliers. It might be due to various reasons, including the power outage, obstacles,

adversary attacks, hardware (Tx/Rx) malfunction, to name just a few. In general, the

presence of outliers might reduce localization accuracy, resulting in incorrect locations

of sensor nodes. As a motivation example, we consider 4 sensor nodes with the true

observed distances given as (see Fig. 4.1)

Do =




0 5 13 ?

5 0 2 10

5 2 0 2

? 10 2 0



,

where ? marks the unknown distance d14. Without the outlier, one can easily find out

d14 =
√

17. Now we suppose that the distance d12 between the node 1 and node 2 is

contaminated by outlier. That is, we use an arbitrary number to substitute the true value

of d12, say, d12 = 9. As a result, the reconstructed distance d̂14 =
√

13, which has a

large reconstruction error. This obviously leads to the wrong location of the sensor

node 1 (see Fig. 4.1).

In this chapter, we extend the proposed LRM-CG algorithm to solve the outlier

problem in IoT localization. We first present the outlier problem model, and then show

92

Sensor 1

Sensor 2
Sensor 3

Sensor 4

True

distance

Unknown

distance

(a)

Sensor 1

Wrong location

Sensor 2
Sensor 3

Sensor 4

Outlier

(b)

Figure 4.1: Outliers might reduce the localization accuracy: (a) accurately recon-

structed locations when there is no outlier and (b) inaccurate locations in the presence

of outliers

93

the extended LRM-CG in detail. Finally, we show the simulation results of both LRM-

CG and its extended version.

4.1 Problem Model

In general, an entry doij of the observed matrix Do is called an outlier if doij 6= dij [92].

Often we use the relaxed definition using the tolerance level ρ of observation error.

That is, doij is defined as an outlier if |doij − dij |>ρ. Since the outlier often degrades

the localization performance severely, we should control it in the recovery process. To

be specific, we model the observed distance as doij = dij + lij (lij is the outlier). Thus,

PE(Do) = PE(D+L) where L is the outlier matrix. Since L is considered as a sparse

matrix, we can modify the problem in (3.6) as

min
Y ∈ Ỹ

L∈Rn×n

1

2
‖W � (PE(g(Y)) + PE(L)− PE(Do))‖2F + τ‖L‖o, (4.1)

where ‖L‖o is the number of nonzero entries of L and τ is the regularization factor

controlling the tradeoff between the sparsity of L and the consistency of the observed

distances. Since ‖L‖o is nonlinear and non-convex, we instead use the convex surro-

gate ‖L‖1 =
n∑
i=1

n∑
j=1
|lij |, and thus

min
Y ∈ Ỹ

L∈Rn×n

1

2
‖W � (PE(g(Y)) + PE(L)− PE(Do))‖2F + τ‖L‖1. (4.2)

Thus, the modified cost function is f̃ = 1
2‖W�(PE(g(Y))+PE(L)−PE(Do))‖2F +

τ‖L‖1.

4.2 Extended LRM-CG

In order to solve the outlier problem, we use a slight modification version of the pro-

posed LRM-CG and update the solutions Y and L of (4.2) in an alternating manner.

94

To be specific, the problem in (4.2) can be solved iteratively using alternative mini-

mization as

Yi+1 = arg min
Y ∈ Ỹ

1

2
‖W � (PE(g(Y)) + PE(Li)

−PE(Do))‖2F + τ‖Li‖1 (4.3)

Li+1 = arg min
L∈Rn×n

1

2
‖W � (PE(g(Yi+1)) + PE(L)

−PE(Do))‖2F + τ‖L‖1. (4.4)

The subproblem in (4.3) can be solved using the proposed LRM-CG with simple mod-

ifications of the cost function and the residual matrix Ri in Algorithm 1. The modified

residual is

Ri = W �W � (PE(g(Yi)) + PE(Li)− PE(Do)). (4.5)

Note that PE(Li) is added to the original residual Ri.

The subproblem in (4.4) can be solved using the soft-thresholding operator, which

gradually truncates the magnitude of the entries of a matrix [93]. For a given matrix

A, the soft-thresholding operator output T (A) is defined as

T (aij) =





wijaij−τ
w2
ij

if wijaij ≥ τ
wijaij+τ

w2
ij

if wijaij ≤ −τ

0 else

.

Using the soft-thresholding operator, the solution of (4.4) is given by [93]

Li+1 = T (W � (PE(Do)− PE(g(Yi+1)))). (4.6)

In the sequel, we call this modified version of LRM-CG as the extended LRM-CG

(ELRM-CG) (see Algorithm 2).

In addition, by extending the convergence analysis of LRM-CG, we can readily

obtain the convergence guarantee of ELRM-CG. First, for the subproblem (4.3), we

can trivially extend the convergence analysis of the problem (3.6) in Section 3.5 and

then have h(Yi+1,Li) ≤ h(Yi,Li) where h is the cost function of (4.2). Second, for

95

Algorithm 2: ELRM-CG algorithm

1 Input: Dobs: the observed matrix,

W: the weight matrix,

PE : the sampling operator,

ε: tolerance,

µ ∈ (0 1): given constant,

T : number of iterations.

2 Initialize: i = 1,

Y1 ∈ Ỹ , E1 ∈ Rn×n: initial points,

P1: initial conjugate direction.

3 While i ≤ T do

4 Ri = W �W � (PE(g(Yi)) + PE(Li)− PE(Dobs))

5 ∇Yf̃(Yi) = 2eye(Sym(Ri)1)− 2Ri

6 gradf̃(Yi) = PTYi
Ỹ(∇Yf̃(Yi))

7 Hi = gradf̃(Yi)− PTYi
Ỹ(gradf̃(Yi−1))

8 h =< Pi,Hi >

9 βi = 1
h2 < hHi − 2Pi‖Hi‖2F , gradf̃(Yi) >

10 Pi = −gradf̃(Yi) + βiPTYi
Ỹ(Pi−1)

11 Find a stepsize αi>0 such that

f̃(Yi)− f̃(RYi
(αiPi)) ≥ −µαi < gradf̃(Yi),Pi >

12 Yi+1 = RYi(αiPi)

13 Li+1 = T (W � (PE(Do)− PE(g(Yi+1))))

14 Di+1 = g(Yi+1)

15 If ‖W ◦ (PE(Di+1 + Ei+1)− PE(Dobs))‖F<ε then

16 Exit from while loop

17 End If

18 Obtain Q and Λ using the eigendecomposition

Yi+1 = QΛQT

19 X̂ = QΛ1/2

20 i = i+ 1

21 End While

22 Output: X̂

96

the subproblem (4.4), we can compute Li+1 in one step using the soft-thresholding

operator in (4.6) and thus we always have h(Yi+1,Li+1) ≤ h(Yi+1,Li). Combining

these, we have h(Yi+1,Li+1) ≤ h(Yi+1,Li) ≤ h(Yi,Li) for all i, which ensures the

convergence of ELRM-CG.

4.3 Numerical Evaluation

In this section, we test the performance of the proposed LRM-CG and its extended

version ELRM-CG. In our simulations, we compare LRM-CG with following matrix

completion algorithms:

• APG [94]: an algorithm to solve the robust PCA problem via an accelerated

proximal gradient method.

• LRGeomCG [20]: this algorithm can be considered as the CG algorithm defined

over the Riemannian manifold of low rank matrices (but not necessarily positive

definite).

• SVT [10]: an algorithm to solve the NNM problem using a singular value thresh-

olding technique.

• TNNR-ADMM [18]: an algorithm to solve the truncated NNM problem via an

alternating direction method of multipliers.

Also, we compare LRM-CG with the following localization algorithms:

• MDS [78]: this is a multiscaling dimensional algorithm based on the shortest

path algorithm and truncated eigendecomposition.

• SDP [95, 96]: an algorithm to solve the localization problem using a convex

relaxation of nonconvex quadratic constraints of the node locations.

97

4.3.1 Simulation Setting

In our experiments, we generate an n × k location matrix X whose entries are sam-

pled independently and identically from a uniform distribution in the interval with 50

meters. Using X, we then compute the Euclidean distance matrix D = g(XXT). As

aforementioned, an entry doij of Do is known (observed) if it is smaller than the radio

communication range (i.e., doij ≤ r). In the scenario with observation error, an obser-

vation error matrix N ∈ Rn×n is added to D. In general, the accuracy of the observed

distances is inversely proportional to the true distances [97, 80]. In our simulations,

we employ the RSSI-based model in which the cumulative effect of many attenuation

factors of the wireless communication environment results in a log-normal distribu-

tion of the received power [97]. Specifically, let δ be a normal random variable with

zero mean and variance σ2
dB . Then, each entry nij of N is nij = (κ10

δ
10np − 1)dij

where δ is the constant dB error in the received power measurement, np is the path loss

parameter, and κ = 10
−σ

2
dB ln 10

200n2
p is a constant to enforce the unbiasedness of the ob-

served distances (i.e., E[nij] = 0). In measuring the performance for each algorithm,

we perform at least 1000 independent trials.

For initialization of the parameters in the proposed LRM-CG, we simply generate

the initial entries of X and L at random according to the standard normal distribution.

In the simulation with observation errors, we choose the weight matrix to suppress

the large magnitude errors. For the (i, j)-th entry wij of W (see (3.3)), we consider

two settings. To account for the RSS-based measurement model, we set wij inversely

proportional to the error term |doij − dij | as

wij = w∗ij =





exp(−|doij − d̃ij |
1
4) if (i, j) ∈ E

0 else
, (4.7)

where d̃ij = doijc
3/4/(1 +

√
c1/8 − 1)4 is an estimate of dij1. When we do not use the

1Using the moment method, we obtain the approximate distance d̃ij by solving (doij)
1/4 ≈

E[(doij)
1/4] +

√
V ar((doij)

1/4).

98

RSS-based measurement model, we set wij = 1 for (i, j) ∈ E and zero otherwise.

4.3.2 Convergence Efficiency

As performance measures, we use the mean square error (MSE) and the root mean

square errors (RMSE), which are defined respectively as

MSE =
1√

n2 − n
‖D̂−D‖F ,

RMSE =

√
1

n2 − n
∑

i

∑

j 6=i
(d̂ij − dij)2.

Note that the number of non-trivial entries of D is n2 − n since the diagonal elements

are zero (i.e., dii = 0). Also, in order to compare the localization performance of the

proposed algorithm, we use the mean square localization error (MSLE):

E =
1

Total unknown nodes

∑

All unknown nodes i

‖x̂i − xi‖2.

In Fig. 4.2, we plot the log-scale MSE as a function of the number of iterations for

the 2-dimensional sensor networks. Note that the results are obtained for the scenario

where 200 sensor nodes are randomly distributed in 50 × 50m2 square area. We ob-

serve that the log-scale MSE decreases linearly with the number of iterations, meaning

that the MSE decreases exponentially with the number of iterations. For example, if

r = 35m, it takes about 60, 80, and 100 iterations to achieve 10−1, 10−3, and 10−5,

respectively. Also, as expected, required number of iterations to achieve the given per-

formance level decreases with the radio communication range r.

4.3.3 Performance Evaluation

In this subsection, we investigate the recovery performance of LRM-CG for scenarios

with and without observation error. In Fig. 4.3, we plot the performance of the scenario

without the observation error as a function of the sampling ratio, which is defined as

the ratio of the number of observed pairwise distances to total number of pairwise

99

0 20 40 60 80 100 120 140

Number of iteration

10-6

10-4

10-2

100

102

104

M
S

E

r = 25m
r = 35m
r = 40m

Figure 4.2: The MSE performance of LRM-CG for k = 2 (2-dimensional location

vectors).

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Sampling ratio

10-6

10-4

10-2

100

102

104

M
S

E

APG
LRM-CG
LRGeomCG
SVT
TNNR-ADMM

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Sampling ratio

10-6

10-4

10-2

100

102

104

M
S

E

APG
LRM-CG
LRGeomCG
SVT
TNNR-ADMM

(b)

Figure 4.3: The MSE performance of the matrix completion algorithms for scenario

without observation error for (a) 2-dimensional and (b) 3-dimensional location vectors.

101

dB
 / n

p

R
M

S
E

 (
m

)

APG
LRM-CG, w

ij
 = 1

LRM-CG, w
ij

 = w
ij

LRGeomCG
SVT
TNNR-ADMM

(a)

0 1 2 3 4 5

dB
 / n

p

0

5

10

15

20

25

30

35

40

45

50

R
M

S
E

 (
m

)

APG
LRM-CG, w

ij
 = 1

LRM-CG, w
ij

 = w
ij

LRGeomCG
SVT
TNNR-ADMM

(b)

Figure 4.4: The RMSE performance of the algorithms in presence of observation errors

for (a) 2-dimensional and (b) 3-dimensional location vectors.

102

distances. Here, the sampling ratio is controlled by the radio communication range

r2. We observe that LRM-CG outperforms conventional techniques by a large margin,

achieving MSE ≤ 10−5 using 40% of measurements.

In Fig. 4.4, we plot the performance of LRM-CG as a function of σdB/np. In this

experiment, sensor nodes are randomly distributed in 50 × 50m2 square area (k = 2)

and 50 × 50 × 50m3 cubic space (k = 3). We set the radio communication range

r = 30m, resulting in 125 and 84 average connections per node for k = 2 and k = 3,

respectively. While the performance of conventional matrix completion algorithms is

poor (i.e., RMSE ≥ 5m) in mid and high σdB/np regime, the performance of LRM-

CG is still good in small σdB/np regime, achieving RMSE being less than 2.5m when

σdB/np ≤ 1.5.

We next investigate the localization performance of LRM-CG. We compare the

performance of LRM-CG with the APG, LRGeomCG, SVT, TNNR-AMMD, MDS,

and SDP-based algorithm [95]. In this experiment, 50 sensor nodes are randomly dis-

tributed in 50 × 50 × 50m3 (k = 3) and 4 anchor nodes are used to reconstruct the

global node locations. The stopping threshold ε of LRM-CG is set to 10−8. Since the

reconstructed matrix of the conventional matrix completion algorithm including APG,

LRGeomCG, SVT, and TNNR-AMMD, is not necessarily an Euclidean distance ma-

trix, we use the MDS technique [78] as a post-processing to project the output matrix

on the Euclidean distance matrix cone. In Fig. 4.5, we observe that conventional lo-

calization algorithms perform poor (MSLE ≥ 5m) for mid and high σdB/np regime,

but the proposed LRM-CG algorithm performs well in low σdB/np regime, achieving

MSLE being less than 3m for σdB/np ≤ 1.

We next examine the running time complexity of the algorithms under test as a

function of the number of sensor nodes. In our simulations, we set the maximum iter-

ation number to 200 and the stopping threshold ε of the matrix completion algorithms
2In 2 and 3-dimensional Euclidean spaces, it can be shown that the sampling probability (sampling

ratio) can be expressed as a non-decreasing function of r (see Appendix B in Supplementary Material).

103

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

dB
 / n

p

0

10

20

30

40

50

60

M
S

L
E

 (
m

)

APG
LRM-CG, w

ij
 = 1

LRM-CG, w
ij

 = w
ij

LRGeomCG
MDS
SDP
SVT
TNNR-AMMD

Figure 4.5: The RMSLE performance of the algorithms for 3-dimensional location

vectors.

104

Table 4.1: Computational complexity of the matrix completion algorithms in recovery

of n× n rank-k matrix.

Algorithms
Major

computation

Total computational
complexity
per iteration

APG Soft-thresholding SVD O(k̄n2)a

LRM-CG Truncated EVD O(k2n+ k|E|)
LRGeomCG Truncated EVD O(k2n+ k|E|)

MDS Truncated EVD O(kn2)

SDP Convex operator O(n3)

SVT Soft-thresholding SVD O(k̄n2)

TNNR-ADMM Soft-thresholding SVD O(k̄n2)

aNote that k̄ is the number of singular values being larger than the threshold

used in the soft-thresholding based SVD technique [94, 10, 18].

105

50 100 150 200

n

0

2

4

6

8

10

12

R
u
n
n
in

g
 t

im
e

(s
)

APG
LRM-CG
LRGeomCG
MDS
SVT
TNNR-ADMM

(a)

50 100 150 200

n

0

40

80

120

160

200

240

R
u
n
n
in

g
 t

im
e

(m
in

u
te

)

(b)

Figure 4.6: Running time as a function of the number of sensor nodes: (a) the conven-

tional matrix completion algorithms and the proposed LRM-CG and (b) SDP-based

algorithm. Since the running time of SDP-based algorithm is much higher than that of

the other algorithms, we separate the results into two plots.

106

to 10−6. From Fig. 4.6, we observe that the running time of the SDP-based technique

is fairly large since it should solve the primal and dual problems using SDPT3 solver

[47, 98]. The running time of APG, LRGeomCG, MDS, and the proposed LRM-CG

is more or less similar when n ≤ 200. In Table 4.1, we summarize the computational

complexity of the algorithms under test in terms of flops. We observe that the com-

putational complexity of LRM-CG is linearly proportional to the problem size n and

the number of the observed distances |E|, and thus competitive with the conventional

approaches.

4.3.4 Outlier Problem

We next investigate the performance of the proposed LRM-CG algorithm and its ex-

tended version in the presence of outliers. When the outlier ratio θ is given, we ran-

domly choose a set of the observed distances and replace this set by a set of random

numbers. In this experiment, sensor nodes are randomly distributed in 50 × 50m2

square area. In our simulation, we consider the scenario in which the magnitude of

outliers is comparable to the distance level. We could observe that the extended LRM-

CG outperforms the original LRM-CG, achieving MSLE being less than 0.5m up to

the 20% outlier ratio (see Fig. 4.7).

In order to show the robustness of the proposed LRM-CG algorithm, we also plot

the histogram of the localization error ‖x̂i−xi‖2 for two outlier ratios (θ = 0.1 and 0.3).

In Fig. 4.8, we observe that the localization error of the extended LRM-CG is much

smaller than that of the original version. For example, when θ = 0.1, the extended

LRM-CG reconstructs most of the sensor locations with the error being less than 0.5m

irrespective of the outliers.

4.3.5 Real Data

In this subsection, we examine the performance of the proposed LRM-CG algorithm

using real measurements. In this simulation, we use the RSS-based measurement model

107

0 0.1 0.2 0.3 0.4 0.5

Outlier Ratio

0

1

2

3

4

5

6

7

R
M

S
E

 (
m

)

LRM-CG
ELRM-CG

(a)

74 90 106 122 138 154 170 186

Average connection per node

0

1

2

3

4

5

6

7

8

9

R
M

S
E

 (
m

)

LRM-CG
ELRM-CG

(b)

Figure 4.7: The MSLE performance of LRM-CG in terms of (a) outlier ratio θ and (b)

average connection per node (for θ = 0.1).

108

(a)

(b)

Figure 4.8: Histograms of the localization error ‖x̂i − xi‖2 when the outlier ratio θ

satisfies (a) θ = 0.1 and (b) θ = 0.3.

109

Table 4.2: Localization errors with real measurements.

r
(m)

Average
connection
per node

MSLE (m)

LRM-CG
Extended
LRM-CG

SDP with
absolute cost
function [95]

SDP with
least square

cost function
[96]

5.5 14 5.4893 4.9860 4.5038 3.7241

7.5 22 5.2796 4.9170 3.1287 3.3394

9.5 30 2.9917 2.8620 2.9274 3.0526

11.5 37 2.2636 2.2023 2.6272 2.5151

110

in [97]. This network consists of 44 sensor nodes randomly distributed in the 14×14m2

square area and the transmit signal is generated via a wideband direct-sequence spread-

spectrum (DSSS) operating at a center frequency of 2.4 GHz. For a given radio com-

munication range r, we assume that doij is known if dij ≤ r and unknown otherwise.

We observe from Table 4.2 that the performance of the proposed LRM-CG is compa-

rable to the SDP techniques in [95, 96]3 when r = 9.5m.

3The SDP-based techniques have various cost functions. In [95], the cost function is expressed as a

sum of absolute errors in terms of the observed distances while that in [96] is a least squares function.

111

Chapter 5

LRMC Via Graph Neural Network

In previous chapters, we present the proposed LRM-CG algorithm to reconstruct the

Euclidean distance matrix, which has the underlying Riemannian structure. We have

shown that such additional structure can be used to significantly improve the recov-

ery performance of LRMC in localization. In the same spirit, we propose a LRMC

scheme, referred to as graph neural network-based LRMC (GNN-LRMC), to recon-

struct the rating matrix in recommendation systems using its underlying graph struc-

ture. Recall that the rows and columns of the rating matrix are often indexed by users

and products, respectively. In the user graph, users are represented as vertices and the

(undirected) edge connecting two user nodes shows the correlation between the users’

favorite products (see Fig. 5.1). Similarly, we use the product graph to represent the

correlation among the products in term of their similar properties (e.g., color, appear-

ance, and utility).

Such additional graph structure of the data can be easily incorporated into the

matrix completion setting. To be specific, we can express the low-rank matrix M as

M = UVT ∈ Rn1×n2 where U ∈ Rn1×k, V ∈ Rn2×k, and k = rank(M). Here,

U and V can be related to the user and product graphs, respectively. For example, the

rows of U are indexed by the nodes in Gr, each row is assigned as multidimensional

data for the corresponding node. The correlation between the row vectors of U would

112

Figure 5.1: User graph with nodes indexed by user IDs and edges to show the correla-

tion between the users’ favorite products.

113

be matched to the edge weights in the graph1. Similarly, V can also be characterized

by the column graph Gr (see Fig. 2.7). Thus, the LRMC problem can be reformulated

as the problem to reconstruct the row and column graphs of M. While it seems that

the graph reconstruction problem is as difficult as the original problem, the low-rank

property of M allows each node value to be updated based on the local connectivity of

the corresponding node (see Fig. 2.7). In other words, convolutional neural networks

(CNN) can be readily used to update the node values by performing the convolution

across the graph domain [99, 100].

In recent years, graph-based CNN, referred to as graph neural network (GNN),

has been proposed [73, 101, 102, 103]. In GNN, convolutional layers are first used

to extract meaningful features in the graph and then a proper output model is used to

map these features to the reconstructed low-rank matrix. This approach benefits from

its low computational cost since just a few number of the shared weights are needed

in the convolution. However, in the conventional GNN-based LRMC techniques, the

key assumption is that the graph connections are pre-defined precisely and given as a

priori in the training process, which might be impractical in real scenarios [22, 73].

Our main goal is to propose the GNN-based LRMC scheme, referred to as GNN-

LRMC, to reconstruct the row and column graphs of M (and eventually recover M

itself). Our approach is motivated by recent results in GNN, which deploys multiple

GNN layers to extract the feature and then update the node values using a fast and

localized filter defined in the graph Fourier domain [73, 101]. In GNN-LRMC, an

adaptive model is used to update the graph connections using the extracted features.

In this chapter, we first present the graph model of the low-rank matrix and then

show the proposed GNN-LRMC in detail.
1When the weight is zero, there is no connection between two nodes in the graph.

114

wr ,12

wr ,13

wr ,14

wr ,23

wr ,34

wc,12

wc,13

wc,23

wc,24

wc,34

u1

u2

u3

u4

v1

v2

v3

v4

u4

u3

u2

u1

U

Gr = (Vr ,Er ,Wr)

v1 v2 v3 v4

VT

Gc = (Vc ,Ec ,Wc)

(a)

N1(ui)

N2(ui)

N3(ui)

uj13

uj9

uj8

uj4

uj1

uj2

ui

uj7

uj12

uj3

uj6

uj5

uj11

uj10

(b)

Figure 5.2: (a) Graph model of M = UVT and (b) the value of each node updated

based on the local connectivity of this node. Each row ui or vj is the vector-valued

representation at each node. Nt(ui) is the t-hop neighbors of ui, the nodes with the

shortest path to ui not being greater than t. In GNN, a polynomial filter of degree 3

affects on a local area of ui, i.e., N3(ui).

115

5.1 Graph Model

We consider the LRMC problem in which the desired low-rank matrix M ∈ Rn1×n2

possesses an additional graph structure [22]. To be specific, let M = UVT , and also

let Gr = (Vr, Er,Wr) and Gc = (Vc, Ec,Wc) be the row and column graphs of M,

respectively. Here, Vr and Vc are vertex sets,Er andEc are edge sets, and Wr and Wc

are the weight matrices. We suppose that there exists the mappings fr : Vr → Rk and

fc : Vc → Rk such that fr(vri) = ui fc(vcj) = vj where vri ∈ Vr, vcj ∈ Vc, and ui

and vj are the i-th row and the j-th row of U and V, respectively. In practice, fr and

fc are nonlinear functions and might not need to have closed-form expressions. Our

main problem is to learn fr and fc in a supervised manner using GNN and eventually

reconstruct M. As aforementioned, Wr and Wc are also adjusted during the learning

process of fr and fc to avoid the graph model mismatch.

5.2 Proposed GNN-LRMC

In GNN-LRMC, we first initialize Gr and Gc using trainable matrices Uo and Vo,

respectively. An adaptive model is used to update the graph connections of Gr (and

also Gc) using a modified full-connection neural network. In this model, the weight

matrices of Gr and Gr are updated by applying a nonlinear activation function to nor-

malized Euclidean distance matrices of Uo and Vo, respectively. A proper choice of

the activation function (e.g., rectified linear unit (ReLU)) allows us to maintain the

sparsity of the graphs and thus reduce the computational cost of the proposed scheme.

To update the node values of the graphs, our approach is motivated by recent results

in GNN, which deploys multiple GNN layers using a polynomial filter defined in the

graph Fourier domain [73, 101]. In the graph domain, such filter is expressed as a

polynomial function of the graph Laplacian matrix, which is used to update each node

value by performing the convolution between the shared weights and the values of the

neighboring nodes of this node. In our approach, we express the filter in term of a

116

normalized Laplacian matrix and show that this filter can be used to maintain the DC

component and thus stabilize the learning process. The filter paramters as well as Uo

and Vo can be updated using a back propagation with a training cost function based

on the Frobenius norm minimization in LRMC.

The main procedures of GNN-LRMC are (see Fig. 5.3):

1) Initialize Uo and Vo at random and assign each row of Uo and Vo to each

vertex of the row graph Gr and the column graph Gc, respectively.

2) Build the graph connection by computing the weight matrices Wr and Wc using

full-connection neural network-based adaptive models (see Subsection 5.2.1).

3) Extract the feature matrices U and V by performing a graph-based convolution

operation on Gr and Gc, respectively (see Subsection 5.2.2).

4) Update M by feeding the feature matrices U and V to an output model (see

Subsection 5.2.3).

5) Compute the loss function in (5.15) and (5.16) using the updated features and

the weight matrices and perform the back propagation to update Uo and Vo and

the filter parameters.

6) Repeat the above procedures until the value of the loss function is smaller than

a pre-chosen threshold.

In the next subsections, we discuss on three fundamental components of our pro-

posed scheme in detail. They include 1) full-connection neural network-based adaptive

models to update the weight matrices, 2) multilayer GNN to extract the features across

the graph domains, and 3) an output model to reconstruct the low-rank matrix M using

the updated features.

117

Corr +

(bu,bv)

Neural-Network Weight Update

ReLU

(Uo,Vo)

GNN

(Û, V̂)

(Wr,Wc)

OutputModel

M̂ = φ(ÛV̂T)

Cost

Function

Back

Propagation

Back

Probagation

∂

(∂Uo , ∂Vo)

(∂bu , ∂bv)

Figure 5.3: Block diagram of the proposed GNN-LRMC.

118

5.2.1 Adaptive Model

In the conventional techniques, the weight matrices Wr and Wc are often computed in

a pre-processing procedure and then provided to GNN models as a priori. As a result,

the mismatch of the pre-processing model might degrade the learning performance of

the GNN. To overcome this issue, we propose an adaptive model to adjust the weight

matrices based on full-connection neural network.

To be specific, Wr and Wc can be learned using a simplified full-connection neu-

ral layer. In the training process, the update expressions of Wr and Wc are

Wr = σ(Cuu + bu1
T) (5.1)

Wc = σ(Cvv + bv1
T), (5.2)

σ is the rectified linear unit (ReLU) activation function and Cuu and Cvv are the

correlation matrices of two trainable variables U ∈ Rn1×ko and V ∈ Rn2×ko , re-

spectively2. Here, we compute the correlation matrix Cuu (respective Cvv) using the

Euclidean distance matrix Du of the trainable variable Uo ∈ Rn1×ko (respective Dv

of Vo ∈ Rn2×ko) as [23]

Cuu = − 1

βu
(Du − αu11T), (5.3)

where αu = 1
n2

1

∑
ij [Du]ij and βu = maxij [Du]ij are used to make Du centralized

and normalized.

5.2.2 Multilayer GNN

One important issue in the GNN-based LRMC approach is to define a graph-based con-

volution operation to extract the meaningful features across the graph domain. Since
2Note that the dimension ko of Uo is not necessarily the same as the dimension k of U. This is

because in practice the graph models of M might be characterized using more degree of freedom (DOF)

than the DOF of M itself.

119

the input data Gr and Gc do not lie on regular lattices like images, classical convolu-

tional neural network (CNN) cannot be directly applied to Gr and Gc. One practical

way is to define the convolution operation in the Fourier domain of the graph.

To be specific, the Fourier transform of a graph can be computed using the (nor-

malized) graph Laplacian. For simplicity, we show the useful expressions related to

Gr. The similar expressions of Gc can be easily derived. Let Rr be the graph Laplacian

of Gr (i.e., Rr = I −D
−1/2
r WrD

−1/2
r where Dr = diag(Wr1n2×1)) [102]. Then,

the graph Fourier transform Fr(U) is defined as

Fr(U) = QT
r U, (5.4)

where Rr = QrΛrQ
T
r is the eigen-decomposition of the graph Laplacian Rr [102].

Also, the inverse graph Fourier transform F−1
r (U′) of U′ is defined as3

F−1
r (U′) = QrU

′. (5.5)

Let g(θ) ∈ Rn1 be the filter characerized by the parameter vector θ ∈ Rq, then the

output Z of the graph-based convolution is defined as [102, 101]

Z = g(θ) ∗U = F−1
r (Fr(g(θ))�Fr(U)), (5.6)

where � is the Hadamard product (element-wise product). From (5.4) and (5.5), (5.6)

can be expressed as

Z = Qr(Fr(g(θ))�QT
r U)

= Qrdiag(Fr(g(θ)))QT
r U

= QrGQT
r U, (5.7)

where G = diag(Fr(g(θ))) is the diagonal matrix of filter parameters defined in the

graph Fourier domain. Conventional settings of G include:

• Non-parametric filter: G = diag(θ).

3One can easily check that F−1
r (Fr(U)) = U and Fr(F−1

r (U′)) = U′.

120

• Polynomial filter of Laplacian eigenvalues: G =
q−1∑
i=0

θiΛ
i
r From (5.7), we have

Z =

q−1∑

i=0

θiQrΛ
i
rQ

T
r U =

q−1∑

i=0

θiR
i
rU (5.8)

• Polynomial filter of Chebyshev basis: G =
q−1∑
i=0

θiTi(Λ̃r) where Ti is the Cheby-

shev polynomial of the i-th order4 and Λ̃r = 2
max
i
λi

Λr − I. Then (5.7) can be

expressed as

Z =

q−1∑

i=0

θiQrTi(Λ̃r)Q
T
r U. (5.9)

Among the possible choices of G, non-parametric filter is the most simple and

straightforward way. However, since this filter performs on all the graph vertices, it

has no locality property as in the conventional convolutional neural network (CNN).

In contrast, it has been shown that polynomial filters are exact q-localized filters5 [102,

101]. Also, the computational cost of the Chebyshev polynomial filter can be further

reduced using a recurrent update procedure [101].

Note that (5.8) and (5.9) use the symmetric normalized Laplacian Rr to learn the

dissimilarity between the rows of U. It can be shown that the eigenvalue spectrum of

Rr carries a notion of frequency on the graph domain. However, it might not handle

the DC component well. To be specific, let yt be the t-th row of Y = RrU, which is

the extracted feature in the neighborhood of ut. Then we have

yt = (1−
∑

j:(t,j)∈Er

λtj)ut +
∑

j:(t,j)∈Er

λtj(ut − uj), (5.10)

4Chebyshev polynomial Ti(A) of order i (i ≥ 2) is computed using the recurrent expression Ti(A) =

2ATi−1(A)− Ti−2(A) with T0(A) = I and T1(A) = A where A is a diagonal matrix.
5The filter affect on the neigboring nodes of a node the (m,n)-th entry [Rq

r]mn vanishes (i.e.,

[Rq
r]mn = 0) when the minimum number of edges connecting two vertices m-th and n-th is larger

than q.

121

where λtj is the (t, j)-th normalized weight of Λ = D
−1/2
r WrD

−1/2
r . In (5.10), the

DC component (1 −∑j λtj)ut might vanish when
∑

j λtj = 1. Also, in most of

practical situations, it might require that this DC component is dominant in (5.10) to

stabilize the learning process. To overcome these issues, we proposed multilayer GNN

scheme using an extended version of the polynomial filters based on a generalized

Laplacian. That is,

R̃r = (1 + τ)I− τD−1
r Wr = I + τ(I−D−1

r Wr), (5.11)

where τ is some tuning parameter. Using (5.11), we reformulate (5.10) as

ỹt = ut +
∑

j:(t,j)∈Er

τ λ̃tj(ut − uj), (5.12)

where ỹt is the t-th row of Ỹ = R̃rU and λ̃ij is the normalized weights of D−1
r Wr.

We note that the DC component is also included into (5.8) and (5.9) using the multiple

coefficient θ0. However, our approach is distinct from these since we maintain the DC

component based on the generalized Laplacian matrix (see (5.11)).

5.2.3 Output Model

In GNN-based LRMC, output model is a mapping between the extracted feature and

the reconstructed low-rank matrix. To be specific, let (Û, V̂) be the output of the GNN.

Then, the reconstructed matrix is

M̂ = φ(ÛV̂T), (5.13)

where φ is the function representation of the output model. The output model heavily

depends on the data type of M. For example, in recommendation systems, the entry

of M is an integer ranging from 1 to 5. An output model based on a recurrent neural

network (RNN) has been proposed. In our work, to avoid the additional model com-

plexity, we are interested in the simple way to reconstruct the desired low-rank matrix

as M̂ = σ(sÛV̂T + b11T) where s is a scale parameter and b is a offset constant.

122

5.2.4 Training Cost Function

In our approach, the training cost function is based on the Frobenius norm minimiza-

tion in LRMC. Let Ω be the set of indices of known entries, and also let PΩ be the

sampling operator defined as

[PΩ(A)]ij =




aij if (i, j) ∈ Ω

0 otherwise
. (5.14)

Then the training cost function of Û and V̂ is

l(Û, V̂) =
∑

(i,j)

wr,ij‖ûi − ûj‖2 +
∑

(i,j)

wc,ij‖v̂i − v̂j‖2

+ ρ‖PΩ(

r∑

i=1

ûiv̂
T
i)− PΩ(M)‖F , (5.15)

where ρ is a regularization parameter and wr,ij and wc,ij are the entries of Wr and

Wc, respectively. In other words, we find Û and V̂ such that the Euclidean distance

between the connected vertices is minimized.

In our adaptive model, we use a pre-train cost function κ(Uo,Vo) to initialize the

weight matrices Wr and Wc. That is, we define

κ(Uo,Vo) =
∑

ij

|wr,ij − wro,ij |+ |wc,ij − wco,ij |, (5.16)

where wro,ij and wco,ij are the entries of the given weight matrices Wro and Wco,

respectively. We note that the `1-norm in (5.16) is useful to enhance the sparsity of

Wr and Wc as long as Wro and Wco are given sparse matrices.

5.3 Numerical Evaluation

In this section, we investigate numerical performance of the proposed GNN-LRMC

and compare it with the state-of-the-art matrix completion techniques, including ASD,

NIHT, SET, SVT, sRMGCNN, and TNNR-APGL [22, 73]. As performance measures,

123

��� ��� ��� ��	 ��
 ��� ���
���"�� ����#�!

���

���

���

���

���

���

��	

��

���

���

��
��

��
��������
����
���
�����
���

Figure 5.4: RMSE performance of the LRMC algorithms.

��	 ��
 ��� ��� ��
 ��� ���
��#&"!$ ���(!%

�

��

�

��

��

���

�
��
)'
��
*�
��

�

���
��������
����
���
���������

Figure 5.5: Accuracy performance of the LRMC algorithms.

124

Table 5.1: RMSE performance of the matrix completion algorithms using Netflix

dataset.

n = 5000 n = 1000 n = 500

ASD 0.2968 0.6892 0.8344

GNN-LRMC 0.2233 0.2176 0.2375

NIHT 0.2921 0.6309 0.7563

sRMGCNN 0.2347 0.2318 0.2497

TNNR-APGL 0.2969 0.8314 0.8921

we use the relative mean square errors (RMSE) and the reconstruction accuracy L,

which are defined as

RMSE =
‖M̂−M‖F
‖M‖F

and L =
1

|T |
∑

(i,j)∈T

I{m̂ij=mij},

where M is the desired low-rank matrix, M̂ is the reconstructed matrix, and T is the

index set of test entries with the cardinality |T |. Here, we define IA as the indicator

function satisfying I{A} = 1 if A holds true, and otherwise 0. For the implementation

of the proposed GNN-LRMC, we simply use two GNN layers with the filter size q = 5

(see (5.8) and (5.9)).

In our simulation, we generate the entries of M ∈ Rn1×n2 at random, each entry

an integer ranging from 1 to 5. We set n1 = n2 = 300 and perform at least 1000

independent trials. The sampling ratio is defined as the fraction of the training entries

to the total entries. From the simulation results, we observe that the proposed GNN-

LRMC outperforms the conventional techniques, resulting in 50% improvement of the

RMSE performance in the small regime of the sampling ratio (see Fig. 5.4 and 5.5).

We also test the recovery performance of the proposed scheme using the Netflix

database [1]. In our experiment, we reconstruct n × n rating matrix M using 30% of

125

the known entries and run simulation for n = 5000, 1000, and 500. From the simula-

tion results, we observe that the proposed GNN-LRMC outperforms the conventional

techniques (see Table 5.1).

126

Chapter 6

Conculsion

In this thesis, taking into account of the availability of the rank information, we nat-

urally classified state-of-the-art LRMC techniques into two main categories. In fact,

when the rank of a desired matrix is unknown, we formulated the LRMC problem as

the NNM problem and discussed several NNM-based LRMC techniques such as SDP-

based NNM, SVT, and truncated NNM. When the rank of an original matrix is known a

priori, the LRMC problem can be modeled as the FNM problem. We discussed various

FNM-based LRMC techniques (e.g., greedy algorithms, alternating projection meth-

ods, and optimization over Riemannian manifold) and also presented fundamental is-

sues and principles that one needs to be aware of when solving the LRMC problem.

In particular, we have proposed the LRMC algorithms to exploit the underlying

structure of the desired low-rank matrix so that we can improve the recovery per-

formance of LRMC in real-life applications, including IoT localization and recom-

mendation systems. In IoT localization, we have proposed the LRM-CG algorithm to

recover the Euclidean distance matrix (and therefore the location map) from partially

observed distance information. In solving the Frobenius norm minimization problem

with a rank constraint, we expressed the Euclidean distance matrix as a function of the

fixed rank positive semidefinite matrix. By capitalizing on the Riemannian manifold

structure for this set of matrices, we could solve the low-rank matrix completion prob-

127

lem using the modified nonlinear conjugate gradient algorithm. In the scenario when

the observed distances contaminated by outliers, we proposed an extension of LRM-

CG which is efficient in the outlier detection and the reconstruction of missing entry

using an alternating algorithm. We have shown from the recovery condition analysis

that the proposed LRM-CG algorithm converges to the original Euclidean distance ma-

trix in the sampling space under the extended Wolfe’s conditions. We have also shown

from numerical experiments that the LRM-CG algorithm is effective in recovering

the original Euclidean distance matrix while exhibiting reasonable computational cost

scalable to the matrix dimension. In recommendation systems, we have proposed the

GNN-LRMC scheme, which can nicely combine the multilayer GNN and the adaptive

model of the graph weight matrices. Empirical study shows our proposed GNN-LRMC

can significantly improve the accuracy of the low-rank matrix reconstruction and out-

perform conventional techniques.

While in our work, we apply LRMC to IoT localization and recommendation sys-

tems, our proposed algorithms can be easily extended to other LRMC applications in

which the low-rank matrix has some underlying non-Euclidean structure (e.g., graph

or manifold structure). Also, given the importance of the location-aware applications

and services in the IoT era, we believe that the proposed LRM-CG algorithm will be a

useful tool for various localization problems. While our work focused primarily on the

centralized localization scenario, extension to the distributed and cooperative network

scenarios would also be interesting direction worth pursuing.

128

Chapter A

Proof of Lemma 6

Proof: Let Ẏ be a tangent vector at Y ∈ Ỹ , i.e., Ẏ ∈ TYỸ . Also, let

S =




[
Q Q⊥

]

B CT

C 0




QT

QT
⊥


 :

BT = B ∈ Rk×k,C ∈ R(n−k)×k
}
. (A.1)

Then, what we need to show is that Ẏ is an element in S. By the definition of TYỸ ,

there exists a curve γ(t) in Ỹ such that Y = γ(0) and Ẏ = d
dtγ(t)

∣∣∣∣
t=0

. For conve-

nience, we denote γ(t) = Z(t). Using the eigenvalue decomposition Z(t) = Q(t)Λ(t)Q(t)T ,

we have

Ẏ =
d

dt
Z(t)

∣∣∣∣
t=0

= Q̇ΛQT + QΛ̇QT + QΛQ̇T (A.2)

Since QTQ = I, Q is an element of the Stiefel manifold Q = {A : ATA = I,A ∈
Rn×k}. The tangent vector of Q at the point Q is given by [63, Example 3.5.2]

Q̇ = QΩ + Q⊥K, (A.3)

129

where Ω is the k× k skew-symmetric matrix (i.e., Ω = −ΩT) and K is the (n− k)×
(n− k) matrix. From (A.2) and (A.3), we have

Ẏ = (QΩ + Q⊥K)ΛQT + QΛ̇QT

+QΛ(QΩ + Q⊥K)

=
[
Q Q⊥

]

ΩΛ + Λ̇ + ΛΩT ΛKT

KΛ 0




QT

QT
⊥


 .

If we denote B = ΩΛ + Λ̇ + ΛΩT and C = KΛ, then one can easily see that

Ẏ ∈ TYỸ ⊆ S.

To complete the proof, we need to show that S = TYỸ . This implies that two

vector spaces S and TYỸ have the same dimension. Indeed, from (A.1), we can easily

check that the dimension1 of S is 1
2k(2n − k + 1), which is the dimension of Ỹ [81,

Proposition 1.1]. �

1The dimension of S is obtained by counting the number of independent entries of an element in S.

Since B is a k × k symmetric matrix, the number of independent entries of B is k(k+1)
2

. In addition,

since C is an arbitrary (n − k) × k matrix, the number of independent entries of C is (n − k)k. Thus,

the dimension of S is k(k+1)
2

+ (n− k)k = 1
2
k(2n− k + 1).

130

Chapter B

Proof of Theorem 7

Proof: First, we partition a matrix A into two parts: A = A1+A2 where A1 ∈ TYỸ
and A2 ∈ (TYỸ)⊥. Then, it is clear that P

TYỸ(A) = A1 and thus the goal is to find

out the closed form expression of A1. From Lemma 6, there exist a symmetric matrix

B ∈ Rk×k and a matrix C ∈ R(n−k)×k such that

A1 = Q̃


B CT

C 0


 Q̃T , (B.1)

where Q̃ =
[

Q Q⊥

]
. Since < A1,A2 >= 0, we have

0 = < A1,A2 >

= < A1,A−A1 >

= < Q̃


B CT

C 0


 Q̃T ,A− Q̃


B CT

C 0


 Q̃T >

= <


B CT

C 0


 , Q̃TAQ̃−


B CT

C 0


 > . (B.2)

Let 
A11 A12

A21 A22


 = Q̃TAQ̃ =


QTAQ QTAQ⊥

QT
⊥AQ QT

⊥AQ⊥


 , (B.3)

131

then we have

0 = <


B CT

C 0


 ,


A11 A12

A21 A22


−


B CT

C 0


 >

= < B,A11 −B > + < C,
1

2
(A21 + AT

12)−C >,

where the equality is because

<


 α1 α2

α3 α4


 ,


 β1 β2

β3 β4


 >=

4∑

i=1

< αi,βi > .

Since B and C are chosen arbitrarily, we should have

< B,A11 −B >= 0, (B.4)

< C,
1

2
(A21 + AT

12)−C >= 0. (B.5)

First, it is clear from (B.5) that

C =
1

2
(A21 + AT

12). (B.6)

Next, noting that A11 = Sym(A11) + Skew(A11), (B.4) becomes

0 = < B,A11 −B >

= < B,Sym(A11)−B > + < B,Skew(A11) >

(a)
= < B,Sym(A11)−B >,

where (a) is because B is the symmetric matrix (i.e., B = Sym(B)) and< Sym(C),Skew(D) >=

0 for any matrices C and D. Since B is any symmetric matrix, we should have

B = Sym(A11) =
1

2
(A11 + AT

11). (B.7)

Substituting (B.6) and (B.7) into (B.1), we have

A1 = Q̃




1
2(A11 + AT

11) 1
2(AT

21 + A12)

1
2(A21 + AT

12) 0


 Q̃T , (B.8)

132

where A11, A12, and A21 are the components of A (see (B.3)).

Now, what remains is to find a closed form expression for A1 in terms of A. First,

we can rewrite (B.8) as

A1 = Q̃




1
2(A11 + AT

11) 1
2(AT

21 + A12)

1
2(A21 + AT

12) 1
2(A22 + AT

22)


 Q̃T

−Q̃


0 0

0 1
2(A22 + AT

22)


 Q̃T

=
1

2
Q̃(


A11 A12

A21 A22


+


A11 A12

A21 A22



T

)Q̃T

−1

2
Q⊥(A22 + AT

22)QT
⊥. (B.9)

Substituting (B.3) into (B.9), we have

A1 =
1

2
Q̃Q̃T (A + AT)Q̃Q̃T

−1

2
Q⊥(QT

⊥AQ⊥ + QT
⊥ATQ⊥)QT

⊥

=
1

2
(A + AT)− 1

2
Q⊥QT

⊥(A + AT)Q⊥QT
⊥

= Sym(A)−Q⊥QT
⊥Sym(A)Q⊥QT

⊥.

Since QQT + Q⊥QT
⊥ = I and PQ = QQT , we have

A1 = Sym(A)− (I−QQT)Sym(A)(I−QQT)

= PQSym(A) + Sym(A)PQ −PQSym(A)PQ,

which is the desired result. �

133

Chapter C

Proof of Lemma 8

Proof: Our goal is to find a simple expression of the retraction operator RY(B).

First, since Z = Sym(Z) for Z ∈ Ỹ , we have

‖Y + B− Z‖2F = ‖Y + B− Sym(Z)‖2F
= ‖Skew(Y + B) + Sym(Y + B)− Sym(Z)‖2F (C.1)

= ‖Skew(Y + B)‖2F + ‖Sym(Y + B)− Sym(Z)‖2F (C.2)

= ‖Skew(Y + B)‖2F + ‖Sym(Y + B)− Z‖2F , (C.3)

where (C.1) is because Sym(A)+Skew(A) = A and (C.2) is because< Skew(C),Sym(D) >=

0 for any C and D. Since the first term in (C.3) is unrelated to Z, it is clear that

RY(B) = arg min
Z∈Ỹ
‖Sym(Y + B)− Z‖F .

Using the eigenvalue decomposition Sym(Y + B) = KΣKT , we have

RY(B) = arg min
Z∈Ỹ
‖KΣKT − Z‖F

= arg min
Z∈Ỹ
‖K
(
Σ−KTZK

)
KT ‖F

(a)
= arg min

Z∈Ỹ
‖Σ−KTZK‖F ,

134

where (a) is because ‖KUKT ‖2F = tr(KUTKTKUKT) = ‖U‖2F for any matrix

U. Now let RY(B) = Z∗, Σ∗ = KZ∗KT , and Q = KTZK, then

Σ∗ = KZ∗KT = arg min
Q
‖Σ−Q‖F . (C.4)

Since Σ is a diagonal matrix, Σ∗ should also be a diagonal matrix. Also, Σ∗ � 0 and

rank(Σ∗) = k.1 Thus, Σ∗ is a diagonal matrix with only k positive entries and the rest

being zero. That is,

Σ∗ =




σ1 0 · · · 0 0 · · · 0

0 σ2 · · · 0 0 · · · 0
...

...
. . .

...
...

. . . 0

0 0 · · · σk 0 · · · 0

0 0 · · · 0 0 · · · 0
...

...
. . .

...
...

. . . 0

0 0 · · · 0 0 · · · 0




, (C.5)

where σ1 ≥ σ2 ≥ · · · ≥ σk>0. Recalling that Sym(Y + B) = KΣKT , we finally

have

RY(B) = KΣ∗KT =Wk(Y + B),

where the last equality is from (3.11). �

1Since Z∗ ∈ Ỹ , Z∗ � 0 and also Σ∗ = KTZ∗K � 0 and rank(Σ∗) = rank(KTZ∗K) =

rank(Z∗) = k.

135

Chapter D

Proof of Theorem 9

Proof: In general, Euclidean gradient ∇Yf(Y) can be obtained by taking partial

derivatives with respect to each coordinate of the Euclidean space. Since ∇Yf(Y) is

interpreted as a matrix whose inner product with an arbitrary matrix H becomes the

Frechet differential Df(Y)[H] of f at Y [104], that is,

Df(Y)[H] =
∑

ij

hij
∂

∂yij
f(Y),

it is convenient to compute∇Yf(Y) as a unique element of Rn×n that satisfies

< ∇Yf(Y),H >= Df(Y)[H], (D.1)

for all H. We first compute Df(Y)[H] and then use (D.1) to obtain the expression of

∇Yf(Y). Note that the cost function f(Y) = 1
2‖PE(g(Y) − PE(Dobs)‖2F can be

expressed as f(Y) = h(k(Y)) = (h ◦ k)(Y) where

h(R) =
1

2
‖R‖2F , (D.2)

k(Y) = W ◦ (PE(g(Y))− PE(Dobs))

= W ◦ (PE ◦ g)(Y)−W ◦ PE(Dobs). (D.3)

Thus,

Df(Y)[H] = D(h ◦ k)(Y)[H] = Dh(k(Y))[Dk(Y)[H]]. (D.4)

136

For any two square matrices R and A, we have

Dh(R)[A] =
∑

i,j

aij
∂

∂rij
h(R)

=
∑

i,j

aij
∂

∂rij
(
1

2

∑

p,q

r2
pq)

=
∑

i,j

aijrij

= < R,A > . (D.5)

By choosing R = k(Y) and A = Dk(Y)[H] in (D.5), we can rewrite (D.4) as

Df(Y)[H] = < k(Y),Dk(Y)[H] >

(a)
= < k(Y),D (W ◦ (PE(g(Y)−Dobs)) [H] >

(b)
= < k(Y),D (W ◦ (PE ◦ g)(Y)) [H] >

= < W ◦ k(Y),D(PE ◦ g)(Y)[H] >

(c)
= < W ◦ k(Y),DPE(g(Y))[Dg(Y)[H]] >,

where (a) follows (D.2), (b) is because PE(Dobs) is not a function of Y and thus the

Frechet differential of this is zero, and (c) is due to the chain rule.

Before we proceed, we remark that if S is a linear operator (i.e., S(α1A1 +

α2A2) = α1S(A1) + α2S(A2)), then

DS(A)[B] = S(B) (D.6)

for all matrices A and B (see Example 4.4.2 [105]).

Since PE is a linear operator, DPE(g(Y))[Dg(Y)[H]] = PE([Dg(Y)[H]) and

137

hence

Df(Y)[H] = < W ◦ k(Y),PE(Dg(Y)[H]) >

(a)
= < PE(W ◦ k(Y)),Dg(Y)[H] >

(b)
= < W ◦ k(Y),Dg(Y)[H] >

(c)
= < W ◦ k(Y), g(H) >

(d)
= 2 < W ◦ k(Y),Sym(1diag(H)T) >

−2 < W ◦ k(Y),Sym(H) >, (D.7)

where (a) is because PE is a self-adjoint operator1, (b) is because PE(k(Y)) =

PE(W◦(PE◦g)(Y)−W◦PE(Dobs)) = W◦(PE◦g)(Y)−W◦PE(Dobs) = k(Y),

(c) is because g is also a linear function and thus Dg(Y)[H] = g(H), and (d) is due to

(3.1).

Now, the first term in (D.7) is

2 < W ◦ k(Y),Sym(1diag(H)T) > (a)
= 2 < Sym(W ◦ k(Y)),1diag(H)T >

(b)
= 2 < Sym(W ◦ k(Y)), diag(H)1T >

(c)
= 2 < Sym(W ◦ k(Y))1, diag(H) >

(d)
= 2 < eye(Sym(W ◦ k(Y))1),H >,(D.8)

where (a) is because Sym() is a self-adjoint operator, (b) is because < U,V >=<

UT ,VT >, (c) is because < A,b1T >= tr(ATb1T) = tr((A1)Tb) =< A1,b >,

and (d) is because eye() is the adjoint operator of diag(). Next, the second term in

(D.7) is

−2 < W ◦ k(Y),Sym(H) > = −2 < Sym(W ◦ k(Y)),H > . (D.9)

1Let A and B be two linear operators in Rn×n. If < A(A),B >=< A,B(B) >, we say A and B
are adjoint to each other in Rn×n. Further, if A ≡ B, then we say it is a self-adjoint operator.

138

From (D.7), (D.8), and (D.9), we have

Df(Y)[H] = 2 < eye(Sym(W ◦ k(Y))1),H > −2 < Sym(W ◦ k(Y)),H >

= < 2eye(Sym(W ◦ k(Y))1)− 2Sym(W ◦ k(Y)),H > (D.10)

From (D.1) and (D.10), we have

∇Yf(Y) = 2eye(Sym(W ◦ k(Y))1)− 2Sym(W ◦ k(Y)),

which is the desired result.

�

139

Chapter E

Proof of Lemma 10

Proof: If Yi is the optimal point (i.e, Yi = arg min
Y

f(Y)), then gradf(Yi) = 0

and Yi+1 = Yi. For all αi ≥ 0, we have

f(RYi(αiPi)) = f(Yi+1) = f(Yi) + ταi < gradf(Yi),Pi >,

satisfying A1. Next, we consider the case where Yi 6= arg min
Y

f(Y). First, we let

g(α) = f(RYi(αPi)),

h(α) = f(Yi) + τα < gradf(Yi),Pi > . (E.1)

Note that < gradf(Yi),Pi >≤ 0 (see Lemma 13) and g(α) ≥ 0. Since g(0) =

f(RYi(0)) = f(Yi) = h(0), g(α) and h(α) intersect at α = 0. Also, when τ

varies from 0 to 1, the slope of h(α) varies from 0 to | < gradf(Yi),Pi > |. Since
dg(α)
dα

∣∣∣∣
α=0

=< gradf(Yi),Pi >, h(α) is the tangential curve of g(α) at α = 0 when

τ = 1. Thus, there exits 0<τ<1/2 such that h(α) intersects g(α) at some point α>0,

which means that there exist αi>0 satisfying

f(RYi(αiPi)) = g(αi) ≤ h(αi) = f(Yi) + ταi < gradf(Yi),Pi >,

which completes the proof.

�

140

Chapter F

Proof of Lemma 12

Proof: First, a lower bound of ‖∇Yf(Yi)‖F is given by

‖∇Yf(Yi)‖2F (a)
= ‖2eye(Ri1)− 2Ri‖2F
(b)
= ‖2eye(Ri1)‖2F + ‖2Ri‖2F
≥ ‖2Ri‖2F
= 4‖W ◦W ◦ (PE(Di)− PE(D))‖2F , (F.1)

where (a) is from (3.15) and (b) is from the fact that diagonal entries of Rj are all zeros

and eye(Rj1) is a diagonal matrix. That is, positions of nonzero elements in eye(Ri1)

and Ri are disjoint. An upper bound is obtained as follows.

‖∇Yf(Yi)‖F ≤ ‖2eye(Ri1)‖F + ‖2Ri‖F
(a)
≤ ‖2Ri1‖2 + ‖2Ri‖F
(b)
≤ 2‖Ri‖F ‖1‖2 + 2‖Ri‖F

≤ (2
√
n+ 2)‖Ri‖F

≤ (2
√
n+ 2)‖PE(Di)− PE(D)‖F , (F.2)

where (a) is because ‖eye(b)‖F = ‖b‖2 for any vector b, and (b) is because ‖Ab‖2 ≤
‖A‖F ‖b‖2 for any matrix A and any vector b. By combining (F.1) and (F.2), we

obtain the desired result. �

141

Chapter G

Proof of Lemma 13

Proof: Recall from (3.23) that we have

Pi+1 = −gradf(Yi+1) + βi+1PTYi+1
Ỹ(Pi).

Thus,

< −gradf(Yi+1),Pi+1 >

= ‖ − gradf(Yi+1)‖2F + βi+1 < −gradf(Yi+1), P
TYi+1

Ỹ(Pi) >

= ‖ − gradf(Yi+1)‖2F + βi+1 < −PTYi+1
Ỹ(gradf(Yi+1)),Pi >

(a)
= ‖ − gradf(Yi+1)‖2F + βi+1 < −gradf(Yi+1),Pi >,

where (a) is because gradf(Yi+1) ∈ TYi+1Ỹ . Then we have

∣∣< gradf(Yi+1),Pi+1 > +‖gradf(Yi+1)‖2F
∣∣ = βi+1 |< gradf(Yi+1),Pi >|

(a)
≤ βi+1µ < −gradf(Yi),Pi >,

where (a) is from the assumption A2.

If we denote ζi = −<gradf(Yi),Pi>
‖gradf(Yi)‖2F

, then

∣∣−ζi+1‖gradf(Yi+1)‖2F + ‖gradf(Yi+1)‖2F
∣∣ ≤ βi+1µζi‖gradf(Yi)‖2F ,

142

and also

| − ζi+1 + 1| ≤ µβi+1
‖gradf(Yi)‖2F
‖gradf(Yi+1)‖2F

ζi. (G.1)

From Fletcher-Reeves rule in (3.31), we have βi+1
‖gradf(Yi)‖2F
‖gradf(Yi+1)‖2F

= 1 and thus

| − ζi+1 + 1| ≤ µζi.

In other words,

ζi+1 ≥ 1− µζi, (G.2)

and

ζi+1 ≤ 1 + µζi

ζi ≤ 1 + µζi−1

...

ζ2 ≤ 1 + µζ1,

where we set ζ1 = 1. Thus,

ζi ≤
i−1∑

j=0

µj

=
1− µi
1− µ . (G.3)

From (G.2) and (G.3), we finally have

ζi+1 ≥ 1− µ1− µi
1− µ

=
1− 2µ+ µi+1

1− µ ,

which is the desired result. �

143

Chapter H

Proof of Lemma 14

Proof: From (3.22), we have

gradf(Yi) = P
TYi Ỹ

(∇Yf(Yi)),

where ∇Yf(Yi) is the Euclidean gradient. Let P⊥
TYi Ỹ

be the orthogonal operator on

the complement space of TYiỸ , then we obtain

‖∇Yf(Yi)‖2F = ‖P
TYi Ỹ

(∇Yf(Yi)) + P⊥
TYi Ỹ

(∇Yf(Yi))‖2F
= ‖P

TYi Ỹ
(∇Yf(Yi))‖2F + ‖P⊥

TYi Ỹ
(∇Yf(Yi))‖2F , (H.1)

and hence

‖gradf(Yi)‖2F = ‖P
TYi Ỹ

(∇Yf(Yi))‖2F
= ‖∇Yf(Yi)‖2F − ‖P⊥TYi Ỹ(∇Yf(Yi))‖2F . (H.2)

Now, we define

χ =





sup
Y∈{Yi}∞i=1

‖P⊥
TYỸ

(∇Yf(Y))‖F
‖∇Yf(Y)‖F if ‖∇Yf(Y)‖F 6= 0

1 otherwise

. (H.3)

144

Note that 1 ≥ χ ≥ 0 because ‖∇Yf(Y)‖F ≥ ‖P⊥TYỸ(∇Yf(Y))‖F (see (H.1)). From

(H.2) and (H.3), we have

‖gradf(Yi)‖2F =


1−

‖P⊥
TYi Ỹ

(∇Yf(Yi))‖2F
‖∇Yf(Yi)‖2F


 ‖∇Yf(Yi)‖2F (H.4)

≥ (1− χ2)‖∇Yf(Yi)‖2F . (H.5)

Now, what remains is to show that ‖∇Yf(Yi)‖2F ≥ 8f(Yi). Indeed, from Lemma 9,

we have

‖∇Yf(Yi)‖2F = ‖eye((R + RT)1)− 2R‖2F ,

where R = PE(g(Yi)) − PE(D). Noting that R is symmetric with zero diagonal

entries rii = 0, we have

1

4
‖∇Yf(Yi)‖2F = ‖eye(R1)‖2F + ‖R‖2F − 2 < eye(R1),R >

= ‖R1‖22 + ‖R‖2F − 2
∑

i


∑

j

rij


 rii

= ‖R1‖22 + ‖R‖2F
≥ ‖R‖2F
= 2f(Yi). (H.6)

By substituting (H.6) into (H.5), we obtain the desired result. �

145

Chapter I

Proof of Lemma 15

Proof: By denoting xi =
[
xi1 xi2 · · · xik

]T
, we have

p = P (dij ≤ r) = P (‖xi − xj‖22 ≤ r2) = P (
k∑

t=1

(xit − xjt)2 ≤ r2).

Before finding the general form of p, we compute the distribution of Y = (X1−X2)2

where X1 and X2 are i.i.d. uniformly distributed random variables at unit interval. Let

Z = X1 −X2, then the cdf of Z is given by

FZ(z) = P (Z ≤ z)

= P (X1 −X2 ≤ z)

=

∫ 1

0
P (X1 ≤ z + x2

∣∣X2 = x2)fX2(x2)dx2

=

∫ 1

0
P (X1 ≤ z + x2)fX2(x2)dx2

=

∫ 1

0
FX1(z + x2)fX2(x2)dx2.

Thus,

fZ(z) =
d

dz
FZ(z)

=





1− |z| if |z| ≤ 1

0 otherwise

146

Now, we can easily obtain the cdf of Y = Z2

FY (y) =





1 if 1 ≤ y
2
√
y − y if 0 ≤ y ≤ 1

0 if y ≤ 0

.

and also the pdf of Y

fY (y) =





1√
y − 1 if 0 ≤ y ≤ 1

0 otherwise
. (I.1)

Using this, we can compute p as

p = Pr

(
k∑

t=1

yt ≤ r2

)

=

∫
· · ·
∫

α1+α2+...+αk≤r2

fY1,...,Yk(α1, ..., αk)dα1...dαk

=

∫
· · ·
∫

α1+α2+...+αk≤r2

fY1(α1)...fYk(αk)dα1...dαk, (I.2)

where yt = (xit − xjt)2. When the sensor nodes are located in two dimensional Eu-

clidean space (k = 2), we have

p =

∫∫

α1+α2≤r2

fY1(α1)fY2(α2)dα1dα2.

Let t = α1 + α2, then we have

p =

∫∫

α1+α2≤r2

fY1(α1)fY2(α2)dα1dα2

=

∫ r2

0

[∫ 1

0
fY1(α1)fY2(t− α1)dα1

]
dt

=

∫ r2

0
fY1(t) ∗ fY2(t)dt. (I.3)

After some manipulations, we have

fY1(t) ∗ fY2(t) =





π − 4
√
t+ t if 0 ≤ t ≤ 1

2 sin−1(2
t − 1) + 4

√
t− 1− t− 2 if 1 ≤ t ≤ 2

0 otherwise

. (I.4)

147

Let h1(u) =
u∫
0

(π − 4
√
t + t)dt (0 ≤ u ≤ 1) and h2(u) =

u∫
1

(2 sin−1(2
t − 1) +

4
√
t− 1− t− 2)dt (1 ≤ u ≤ 2), then we have

p =





h1(r2) if 0 ≤ r ≤ 1

h1(1) + h2(r2) if 1 ≤ r ≤
√

2

1 otherwise

,

where h1(u) and h2(u) are given by

h1(u) = πt− 8

3
t3/2 +

1

2
t2
∣∣∣∣
u

0

= πu− 8

3
u3/2 +

1

2
u2,

h2(u) =
8

3
(t− 1)3/2 − 1

2
t2 − 2t

∣∣∣∣
u

1

+ 2

u∫

1

sin−1

(
2

t
− 1

)
dt

=
8

3
(u− 1)3/2 − 1

2
(u− 1)(u+ 5) + 2

u∫

1

sin−1

(
2

t
− 1

)
dt,

=
8

3
(u− 1)3/2 − 1

2
(u− 1)(u+ 5) + 2u sin−1

(
2

u
− 1

)

+
2

1 + tan

(
sin−1(2

u
−1)

2

) + 3
√
u− 1− π − 1.

Denoting p1(r) = h1(1) + h2(r2), we get the desired result for k = 2.

Similarly, when the sensor nodes are located in three dimensional Euclidean space

(k = 3), we have

p =

∫∫∫

α1+α2+α3≤r2

fY1(α1)fY2(α2)fY3(α3)dα1dα2dα3

=

∫ r2

0

[∫ 1

0

∫ 1

0
fY1(α1)fY2(α2)fY3(t− α1 − α2)dα1dα2

]
dt

=

∫ r2

0

[∫ 1

0

[∫ 1

0
fY1(α1)fY2(u− α1)dα1

]
fY3(t− u)du

]
dt

=

∫ r2

0
[fY1(t) ∗ fY2(t)] ∗ fY3(t)dt.

148

After some manipulations, we have

[fY1(t) ∗ fY2(t)] ∗ fY3(t) =





h̃3(t) if 0 ≤ t ≤ 1

h̃4(t) if 1 ≤ t ≤ 2

h̃5(t) if 2 ≤ t ≤ 3

0 otherwise

, (I.5)

where

h̃3(t) = 4t
√
t+ 2π

√
t− 3πt− 1

2
t2,

h̃4(t) = 3π − 4π
√
t+ (3π + 4)t+

1

2
t2 − 8t

√
t− 1− 3

√
t− 1 +

1

2
(t− 1)2

−4t sin−1

√
1

t
+ 4t sin−1

√
1− 1

t
− 2t sin−1

(
2

t
− 1

)

− 2

1 + tan

(
sin−1(2

t
−1)

2

) ,

h̃5(t) = 3
√
t− 2 + 4t

√
t− 2− 4t− 1

2
(t− 1)2 − 3 + 8

√
t tan−1

√
t− 2

t

−8 tan−1
√
t− 2− 4(t− 1) sin−1

√
t− 2

t− 1
+ 2(t+ 1) sin−1

(
3− t
t− 1

)

−8
√
t tan−1

√
1

t(t− 2)
+ 8 tan−1

√
1

t− 2
+ 4(t− 1) sin−1

√
1

t− 1

+
2

1 + tan

(
sin−1(3−t

t−1)
2

) .

Now, we let h3(u) =
u∫
0

h̃3(t)dt (0 ≤ u ≤ 1), h4(u) =
u∫
1

h̃4(t)dt (1 ≤ u ≤ 2), and

h5(u) =
u∫
2

h̃5(t)dt (2 ≤ u ≤ 3), then we have

p =





h3(r2) if 0 ≤ r ≤ 1

h3(1) + h4(r2) if 1 ≤ r ≤
√

2

h3(1) + h4(2) + h5(r2) if
√

2 ≤ r ≤
√

3

1 otherwise

, (I.6)

149

where h3(u), h4(u), and h5(u) are given by

h3(u) =
4π

3
u
√
u+

8

5
u2√u− 3π

2
u2 − 1

6
u3,

h4(u) = 3πu− 8π

3
u
√
u+

3π + 4

2
u2 +

1

6
u3 +

1

6
(u− 1)3 − π

3
− 5

2
− 6
√
u− 1

−28

3
(u− 1)

√
u− 1− 16

5
(u− 1)2

√
u− 1− 2u2 sin−1

√
1

u

2u2 sin−1

√
1− 1

u
− u2 sin−1

(
2

u
− 1

)
− 16

3
(
1 + tan

(
1
2 sin−1

(
2
u − 1

)))3

+
4

(
1 + tan

(
1
2 sin−1

(
2
u − 1

)))2 ,

h5(u) = 2(u− 2)
√
u− 2− 2u2 − 1

6
(u− 1)3 − 3u+

29

2
+

8

5
(u− 2)2

√
u− 2

+
22

3
(u− 2)

√
u− 2 + 14

√
u− 2 +

(
16
√

2

3
− 12

)
π + 2 tan−1

√
u− 2

−8u tan−1
√
u− 2 +

16

3
u
√
u tan−1

√
u− 2

u
− 2u(u− 2) sin−1

√
u− 2

u− 1

+u(u+ 2) sin−1

(
3− u
u− 1

)
− 16

3
u
√
u tan−1

√
1

u(u− 2)
+ 8u tan−1

√
1

u− 2

+2u(u− 2) sin−1

√
1

u− 1
+

16

3

1
(

1 + tan
(

1
2 sin−1

(
3−u
u−1

)))3

−4
1

(
1 + tan

(
1
2 sin−1

(
3−u
u−1

)))2 .

By denoting p2(r) = h3(1) +h4(r2) and p3(r) = h3(1) +h4(2) +h5(r2), we get the

desired result for k = 3.

�

150

Chapter J

Proof of Lemma 17

Proof: Since ‖A‖2F = ‖PE(A)‖2F+‖P⊥E (A)‖2F , we can rewrite t‖A‖2F ≤ ‖PE(A)‖2F
as

t‖A‖2F ≤ ‖A‖2F − ‖P⊥E (A)‖2F ,

and also

‖P⊥E (A)‖2F ≤ (1− t)‖A‖2F . (J.1)

To show that (J.1) holds true with overwhelming probability, we first have

P (‖P⊥E (A)‖2F ≥ (1− t)‖A‖2F)

= P (exp(ε‖P⊥E (A)‖2F) ≥ exp(ε(1− t)‖A‖2F))

(a)
≤ exp(−ε(1− t)‖A‖2F)E

[
exp(ε‖P⊥E (A)‖2F)

]

(b)
= exp(−ε(1− t)‖A‖2F)E


∏

i 6=j
exp(ε(1− δij)a2

ij)


 , (J.2)

for any ε>0, where (a) follows from the Markov inequality and (b) is from ‖P⊥E (A)‖2F =
∑
i 6=j

(1 − δij)a
2
ij (see (3.32)). Let Ω = {(i, j) : aij 6= 0} (i.e., Ω is the index set of

nonzero entries of A), and N = 2blog2 |Ω|c (|Ω| is the cardinality of Ω). Also, let Ω̃ be

151

a subset of Ω such that |Ω̃| = N , then

E


∏

i 6=j
exp(ε(1− δij)a2

ij)




≤
∏

(i,j)∈(Ω\Ω̃)

exp(εa2
ij)E


 ∏

(i,j)∈Ω̃

exp(ε(1− δij)a2
ij)




(a)
=

∏

(i,j)∈(Ω\Ω̃)

exp(εa2
ij)


 ∏

(i,j)∈Ω̃

E
[
exp(Nε(1− δij)a2

ij)
]



1/N

=
∏

(i,j)∈(Ω\Ω̃)

exp(εa2
ij)

∏

(i,j)∈Ω̃

(
(1− p) exp(Nεa2

ij) + p
)1/N

=
∏

(i,j)∈(Ω\Ω̃)

exp(εa2
ij)

∏

(i,j)∈Ω̃

exp(εa2
ij)
(
1− p+ p exp(−Nεa2

ij)
)1/N

=
∏

(i,j)∈Ω

exp(εa2
ij)

∏

(i,j)∈Ω̃

(
1− p+ p exp(−Nεa2

ij)
)1/N

= exp(ε‖A‖2F)
∏

(i,j)∈Ω̃

(
1− p+ p exp(−Nεa2

ij)
)1/N

(b)
≤ exp(ε‖A‖2F)

∏

(i,j)∈Ω̃

(
1− p+ p exp(−Nεa2

min)
)1/N

(c)
= exp(ε‖A‖2F)

(
1− p+ p exp(−Nεa2

min)
)
, (J.3)

where (a) is because E
[
M∏
i=1

Ai

]
≤
(
M∏
i=1

E
[
AMi

])1/M

for positive random variableAi

and M = 2q (q ≥ 1), (b) is because amin = min
(i,j)∈Ω

|aij |, and (c) is because |Ω̃| = N .

In summary, we have

P (‖P⊥E (A)‖2F ≥ (1− t)‖A‖2F) ≤ g(ε),

where g(ε) = exp(mtNεa2
min)

(
1− p+ p exp(−Nεa2

min)
)

(m = ‖A‖2F /(a2
minN)).

If 0<mt<1, we obtain the minimum value of g(ε) at ε∗ = 1/(Na2
min) log((1 −

152

mt)p/((1− p)mt)). Thus,

P (‖P⊥E (A)‖2F ≥ (1− t)‖A‖2F)

≤ g(ε∗)

=

(
1− p

1−mt

)1−mt (p

mt

)mt

= exp

(
−
(

(1−mt) log

(
1−mt
1− p

)
+mt log

(
mt

p

)))
,

which is the desired result. �

153

Chapter K

Proof of Lemma 19

Proof: We first denote B = g(Y) −D, and then express B =
∑

ij < B, eie
T
j >

eie
T
j , which gives

PE(B) =
∑

i 6=j
δij < B, eie

T
j > eie

T
j .

Recalling that l(A) = 2eye(Sym(A)1)− 2Sym(A), we have

∇Yf(Y) = l(PE(B))

= l(
∑

i 6=j
δij < B, eie

T
j > eie

T
j)

(a)
=

∑

i 6=j
δij < B, eie

T
j > l(eie

T
j)

=
∑

i 6=j
δijsijl(eie

T
j),

where sij =< B, eie
T
j > and (a) is because l(αC + βD) = αl(C) + βl(D).

154

Now, if we let I = ‖∇Yf(Y)‖2F − c2‖gradf(Y)‖2F , then we have

I =
∑

i 6=j

∑

u6=v
δijδuvsijsuv < l(eie

T
j), l(eue

T
v) >

−c2
∑

i 6=j

∑

u6=v
δijδuvsijsuv < P

TYỸ(l(eie
T
j)), P

TYỸ(l(eue
T
v)) >

(a)
=

∑

i 6=j

∑

u6=v
δijδuvsijsuv < l(eie

T
j), l(eue

T
v) >

−c2
∑

i 6=j

∑

u6=v
δijδuvsijsuv < P

TYỸ(l(eie
T
j)), l(eue

T
v) >

=
∑

i 6=j

∑

u6=v
δijδuvsijsuv < (I − c2P

TYỸ)l(eie
T
j), l(eue

T
v) >

≤
∑

i 6=j

∑

u6=v
δijδuv|sijsuv < (I − c2P

TYỸ)l(eie
T
j), l(eue

T
v) > |

(b)
≤

1

2

∑

i 6=j

∑

u6=v
(δ2
ij + δ2

uv)|sijsuv < (I − c2P
TYỸ)l(eie

T
j), l(eue

T
v) > |

=
1

2

∑

i 6=j

∑

u6=v
(δij + δuv)|sijsuv < (I − c2P

TYỸ)l(eie
T
j), l(eue

T
v) > |

=
1

2

∑

i 6=j
δij
∑

u6=v
|sijsuv < (I − c2P

TYỸ)l(eie
T
j), l(eue

T
v) > |

+
1

2

∑

i 6=j
δij
∑

u6=v
|sijsuv < (I − c2P

TYỸ)l(eue
T
v), l(eie

T
j) > |

(c)
=

1

2

∑

i 6=j
δij
∑

u6=v
|sijsuv < (I − c2P

TYỸ)l(eie
T
j), l(eue

T
v) > |

+
1

2

∑

i 6=j
δij
∑

u6=v
|sijsuv < l(eue

T
v), (I − c2P

TYỸ)l(eie
T
j) > |

=
∑

i 6=j
δij
∑

u6=v
|sijsuv < (I − c2P

TYỸ)l(eie
T
j), l(eue

T
v) > |,

where (a) is because

< P
TYỸ(E),F > = < P

TYỸ(E), P
TYỸ(F) > + < P

TYỸ(E), P⊥
TYỸ

(F) >

= < P
TYỸ(E), P

TYỸ(F) >,

(b) is because x2 + y2 ≥ 2xy (x, y ≥ 0), and (c) is because (I − c2P
TYỸ) is a

self-adjoint operator. �

155

Chapter L

Proof of Lemma 20

Proof: Recalling that l(A) = 2eye(Sym(A)1)− 2Sym(A), we have

l(eie
T
j) = 2eye(Sym(eie

T
j)1)− 2Sym(eie

T
j)

= eye(eie
T
j 1 + eje

T
i 1)− eie

T
j − eje

T
i

(a)
= eye(ei + ej)− eie

T
j − eje

T
i

= eie
T
i + eje

T
j − eie

T
j − eje

T
i

= (ei − ej)(ei − ej)
T ,

where (a) is because eye(eie
T
j 1) = eye(ei). Let δ = ei − ej , then l(eieTj) = δδT .

156

Also, if n2 ≥ 4cµ(Y)2k2, then

| < (I − cP
TYỸ)l(eie

T
j), l(eie

T
j) > |

= | < (I − cP
TYỸ)δδT , δδT > |

= | < δδT − cP
TYỸ(δδT), δδT > |

= | < δδT , δδT > −c < P
TYỸ(δδT), δδT > |

(a)
= | < δδT , δδT > −c < PQδδ

T + δδTPQ −PQδδ
TPQ, δδ

T > |

= | < δδT , δδT > −c(< PQδδ
T , δδT > + < δδTPQ, δδ

T >

− < PQδδ
TPQ, δδ

T >)|
(b)
= |δTδδTδ − c(δTPQδδ

Tδ + δTδδTPQδ − δTPQδδ
TPQδ)|

(c)
= |‖δ‖42 − c(2‖PQδ‖22‖δ‖22 − ‖PQδ‖42)|
(d)
= |4− 4c‖PQδ‖22 + c‖PQδ‖42|.
(e)
≥ 4− 4c

4µ(Y)2r2

n2
+ c

16µ(Y)4r4

n4

≥ 4

(
1− 4cµ(Y)2r2

n2

)
,

where (a) follows from Proposition 7, (b) is because < X, zzT >= tr(XzzT) =

zTXz, (c) is because PT
QPQ = PQ and thus δTPQδ = δTPT

QPQδ = ‖PQδ‖22, (d)

is because ‖δ‖22 = 2 for i 6= j, and (e) is because ‖PQδ‖2 = ‖PQei − PQej‖2 ≤
‖PQei‖2 + ‖PQej‖2 ≤ 2µ(Y)r/n (see Definition 5). �

157

Chapter M

Proof of Lemma 21

Proof: For any t>0, we have

P (

N∑

i=1

δiai ≥ ε) = P (exp(t

N∑

i=1

δiai) ≥ exp(tε))

(a)
≤ exp(−tε)E

[
exp(t

N∑

i=1

δiai)

]

(b)
≤ exp(−tε+ t

N∑

i=2n+1

ai)E

[
exp(t

2n∑

i=1

δiai)

]

= exp(−tε+ t
N∑

i=2n+1

ai)E

[
2n∏

i=1

exp(tδiai)

]

(c)
≤ exp(−tε+ t

N∑

i=2n+1

ai)

(
2n∏

i=1

E
[
(exp(tδiai))

2n
]
) 1

2n

= exp(−tε+ t
N∑

i=2n+1

ai)

(
2n∏

i=1

E [exp(tδiai2
n)]

) 1
2n

(d)
= exp(−tε+ t

N∑

i=2n+1

ai)

(
2n∏

i=1

(1− p+ p exp(t2nai))

) 1
2n

158

= exp(−tε+ t
N∑

i=2n+1

ai)

(
2n∏

i=1

exp(t2nai)((1− p) exp(−t2nai) + p)

) 1
2n

= exp(−tε+ t

N∑

i=2n+1

ai)

(
2n∏

i=1

exp(t2nai)

) 1
2n
(

2n∏

i=1

((1− p) exp(−t2nai) + p)

) 1
2n

= exp(−tε+ t
N∑

i=2n+1

ai)

2n∏

i=1

exp(tai)

(
2n∏

i=1

((1− p) exp(−t2nai) + p)

) 1
2n

= exp(−tε+ t
N∑

i=2n+1

ai)

exp(t
2n∑

i=1

ai)

(
2n∏

i=1

((1− p) exp(−t2nai) + p)

) 1
2n

= exp(−tε+ t

N∑

i=1

ai)

(
2n∏

i=1

((1− p) exp(−t2nai) + p)

) 1
2n

(e)
≤ exp(−tε+ t

N∑

i=1

ai)

(
2n∏

i=1

((1− p) exp(−t2namin) + p)

) 1
2n

= exp(−tε+ t

N∑

i=1

ai)((1− p) exp(−t2namin) + p),

where (a) follows from the Markov’s inequality, (b) is because δi ≤ 1 for all i, (c) is

because E[
M∏
i=1

Xi] ≤ (
M∏
i=1

E[XM
i])1/M for positive random variables Xi and M = 2q

(q ≥ 1), (d) is because δi is Bernoulli random variable with P (δi = 1) = p, and (e) is

because amin = min
i
ai.

Let g(t) = exp(−tε + t
N∑
i=1

ai)((1 − p) exp(−t2namin) + p), then the minimum

of g(t) is obtained at t∗ = 1/(2namin) ln((1−mε)(1− p)/(mεp)) (m = (
∑N

i=1 ai−

159

ε)/(2nεamin)). Thus, we have

P (
N∑

i=1

δiai ≥ ε) ≤ g(t∗)

=

(
p

1−mε

)1−mε(1− p
mε

)mε

= exp

(
−
(
mε log

(
mε

1− p

)
+ (1−mε) log

(
1−mε
p

)))

when 0<mε<1− p, which establishes the lemma. �

160

Bibliography

[1] Netflix prize. [Online]. Available: http://www.netflixprize.com

[2] A. Pal, “Localization algorithms in wireless sensor networks: Current ap-

proaches and future challenges,” Netw. Protocols Algorithms, vol. 2, no. 1, pp.

45–74, 2010.

[3] L. Nguyen, S. Kim, and B. Shim, “Localization in internet of things network:

Matrix completion approach,” in Proc. Inform. Theory Appl. Workshop, San

Diego, CA, USA, pp. 1–4, 2016.

[4] M. Fazel, “Matrix rank minimization with applications,” Ph.D. dissertation,

Elec. Eng. Dept., Standford Univ., Stanford, CA, 2002.

[5] E. J. Candes and B. Recht, “Exact matrix completion via convex optimization,”

Found. Comput. Math., vol. 9, no. 6, pp. 717–772, Dec. 2009.

[6] E. J. Candes and T. Tao, “The power of convex relaxation: Near-optimal matrix

completion,” IEEE Trans. Inform. Theory, vol. 56, no. 5, pp. 2053–2080, May

2010.

[7] E. J. Candes, Y. C. Eldar, and T. Strohmer, “Phase retrieval via matrix comple-

tion,” SIAM Rev., vol. 52, no. 2, pp. 225–251, May 2015.

[8] T. Blumensath and M. E. Davies, “Iterative hard thresholding for compressed

sensing,” Appl. Comput. Harmon. Anal., vol. 27, no. 3, pp. 265–274, Nov. 2009.

161

[9] J. Tanner and K. Wei, “Normalized iterative hard thresholding for matrix com-

pletion,” SIAM J. Sci. Comput., vol. 35, no. 5, pp. S104–S125, Oct. 2013.

[10] J. F. Cai, E. J. Candes, and Z. Shen, “A singular value thresholding algorithm

for matrix completion,” SIAM J. Optim., vol. 20, no. 4, pp. 1956–1982, Mar.

2010.

[11] K. Lee and Y. Bresler, “Admira: Atomic decomposition for minimum rank ap-

proximation,” IEEE Trans. Inform. Theory, vol. 56, no. 9, pp. 4402–4416, Sep.

2010.

[12] Z. Wen, W. Yin, and Y. Zhang, “Solving a low-rank factorization model for

matrix completion by a nonlinear successive over-relaxation algorithm,” Math.

Prog. Comput., vol. 4, no. 4, pp. 333–361, Dec. 2012.

[13] J. P. Haldar and D. Hernando, “Rank-constrained solutions to linear matrix

equations using power factorization,” IEEE Signal Process. Lett., vol. 16, no. 7,

pp. 584–587, Jul. 2009.

[14] J. Tanner and K. Wei, “Low rank matrix completion by alternating steepest de-

scent methods,” Appl. Comput. Harmon. Anal., vol. 40, no. 2, pp. 417–429, Mar.

2016.

[15] T. Ngo and Y. Saad, “Scaled gradients on grassmann manifolds for matrix com-

pletion,” in Proc. Adv. Neural Inform. Process. Syst. Conf., Lake Tahoe, Nevada,

USA, pp. 1412–1420, 2012.

[16] R. Escalante and M. Raydan, “Alternating projection methods,” Philadelphia,

PA, USA: SIAM, 2011.

[17] Z. Wang, M.-J. Lai, Z. Lu, W. Fan, H. Davulcu, and J. Ye, “Rank-one matrix

pursuit for matrix completion,” in Proc. Int. Conf. Mach. Learn., Beijing, China,

pp. 91–99, 2014.

162

[18] Y. Hu, D. Zhan, J. Ye, X. Li, and X. He, “Fast and accurate matrix completion

via truncated nuclear norm regularization,” IEEE Trans. Pattern Anal. Mach.

Intell., vol. 35, no. 9, pp. 2117–2130, Sep. 2013.

[19] B. Mishra, G. Meyer, S. Bonnabel, and R. Sepulchre, “Fixed-rank matrix fac-

torizations and riemannian low-rank optimization,” Comput. Stat., vol. 3, no. 4,

pp. 591–621, 2014.

[20] B. Vandereycken, “Low-rank matrix completion by riemannian optimization,”

SIAM J. Optim., vol. 23, no. 2, pp. 1214–1236, Jun. 2013.

[21] W. Dai and O. Milenkovic, “Set: An algorithm for consistent matrix comple-

tion,” in Proc. Int. Conf. Acoust., Speech, Signal Process., Dallas, Texas, USA,

pp. 3646–3649, 2010.

[22] L. T. Nguyen, J. Kim, and B. Shim, “Low-rank matrix completion: A contem-

porary survey,” IEEE Access, vol. 7, no. 1, pp. 94 215–94 237, Jul. 2019.

[23] L. T. Nguyen, J. Kim, S. Kim, and B. Shim, “Localization of IoT networks via

low-rank matrix completion,” IEEE Trans. Commun., vol. 67, no. 8, pp. 5833–

5847, Aug. 2019.

[24] L. T. Nguyen and B. Shim, “Low-rank matrix completion via graph neural net-

work,” Submitted to IEEE Signal Process. Lett., 2019.

[25] M. Delamom, S. Felici-Castell, J. J. Perez-Solano, and A. Foster, “Designing an

open source maintenance-free environmental monitoring application for wire-

less sensor networks,” J. Syst. Softw., vol. 103, pp. 238–247, May 2015.

[26] G. Hackmann, W. Guo, G. Yan, Z. Sun, C. Lu, and S. Dyke, “Cyber-physical

codesign of distributed structural health monitoring with wireless sensor net-

works,” IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 1, pp. 63–72, Jan. 2014.

163

[27] W. S. Torgerson, “Multidimensional scaling: I. theory and method,” Psychome-

trika, vol. 17, no. 4, pp. 401–419, Dec. 1952.

[28] H. Ji, Y. Kim, J. Lee, E. Onggosanusi, Y. Nam, J. Zhang, B. Lee, and B. Shim,

“Overview of full-dimension mimo in lte-advanced pro,” IEEE Commun. Mag.,

vol. 55, no. 2, pp. 176–184, Feb. 2017.

[29] W. Shen, L. Dai, B. Shim, S. Mumtaz, and Z. Wang, “Joint csit acquisition based

on low-rank matrix completion for fdd massive mimo systems,” IEEE Commun.

Lett., vol. 19, no. 12, pp. 2178–2181, Dec. 2015.

[30] T. L. Marzetta and B. M. Hochwald, “Fast transfer of channel state information

in wireless systems,” IEEE Trans. Signal Process., vol. 54, no. 4, pp. 1268–

1278, Apr. 2006.

[31] F. Rusek, D. Persson, B. K. Lau, E. G. Larsson, T. L. Marzetta, O. Edfors, and

F. Tufvesson, “Scaling up mimo: Opportunities and challenges with very large

arrays,” IEEE Signal Process. Mag., vol. 30, no. 1, pp. 40–60, Jan. 2013.

[32] T. S. Rappaport and et al., “Millimeter wave mobile communications for 5g

cellular: It will work!” IEEE Access, vol. 1, no. 1, pp. 335–349, May 2013.

[33] X. Li, J. Fang, H. Li, H. Li, and P. Wang, “Millimeter wave channel estima-

tion via exploiting joint sparse and low-rank structures,” IEEE Trans. Wireless

Commun., vol. 17, no. 2, pp. 1123–1133, Feb. 2018.

[34] P. Wang, M. Pajovic, P. V. Orlik, T. Koike-Akino, K. J. Kim, and J. Fang,

“Sparse channel estimation in millimeter wave communications: Exploiting

joint aod-aoa angular spread,” in Proc. IEEE Int. Conf. Commun. (ICC), Paris,

France, p. 1–6, May 2017.

164

[35] Y. Shi, J. Zhang, and K. B. Letaief, “Low-rank matrix completion for topo-

logical interference management by riemannian pursuit,” IEEE Trans. Wireless

Commun., vol. 15, no. 7, pp. 4703–4717, Jul. 2016.

[36] Y. Shi, B. Mishra, and W. Chen, “Topological interference management with

user admission control via riemannian optimization,” IEEE Trans. Wireless

Commun., vol. 16, no. 11, pp. 7362–7375, Nov. 2017.

[37] Y. Shi, J. Zhang, W. Chen, and K. B. Letaief, “Generalized sparse and low-rank

optimization for ultra-dense networks,” IEEE Commun. Mag., vol. 56, no. 6, pp.

42–48, Jun. 2018.

[38] G. Sridharan and W. Yu, “Linear beamforming design for interference align-

ment via rank minimization,” IEEE Trans. Signal Process., vol. 63, no. 22, pp.

5910–5923, Nov. 2015.

[39] M. Peng, S. Yan, K. Zhang, and C. Wang, “Fog-computing-based radio access

networks: issues and challenges,” IEEE Network, vol. 30, pp. 46–53, Jul. 2016.

[40] K. Yang, Y. Shi, and Z. Ding, “Low-rank matrix completion for mobile edge

caching in fog-ran via riemannian optimization,” in Proc. IEEE Global Com-

munications Conf. (GLOBECOM), Washington, DC, Dec. 2016.

[41] B. Recht, “A simpler approach to matrix completion,” J. Mach. Learning Re-

search, vol. 12, pp. 3413–3430, Dec. 2011.

[42] C. R. Berger, “Double exponential,” IEEE Trans. Signal Process., vol. 56, no. 5,

pp. 1708–1721, 2010.

[43] S. Boyd and Van, “Convex optimization,” Cambridge, England: Cambridge

Univ., 2004.

165

[44] J. W. Choi, B. Shim, Y. Ding, B. Rao, and D. I. Kim, “Compressed sensing

for wireless communications: Useful tips and tricks,” IEEE Commun. Surveys

Tuts., vol. 19, no. 3, pp. 1527–1550, Feb. 2017.

[45] S. Kwon, J. Wang, and B. Shim, “Multipath matching pursuit,” IEEE Trans.

Inform. Theory, vol. 60, no. 5, pp. 2986–3001, Mar. 2014.

[46] J. Wang, S. Kwon, and B. Shim, “Generalized orthogonal matching pursuit,”

IEEE Trans. Signal Process., vol. 60, no. 12, pp. 6202–6216, Sep. 2012.

[47] K. C. Toh, M. J. Todd, and R. H. Tutuncu, “Sdpt3 — a matlab software package

for semidefinite programming,” Optim. Methods Softw., vol. 11, pp. 545–581,

1999.

[48] J. F. Sturm, “Using sedumi 1.02, a matlab toolbox for optimization over sym-

metric cones,” Optim. Methods Softw., vol. 11, pp. 625–653, 1999.

[49] L. Vandenberghe and S. Boyd, “Semidefinite programming,” SIAM Rev., vol. 38,

no. 1, pp. 49–95, 1996.

[50] Y. Zhang, “On extending some primal-dual interior-point algorithms from linear

programming to semidefinite programming,” SIAM J. Optim., vol. 8, no. 2, pp.

365–386, 1998.

[51] Y. E. Nesterov and M. Todd, “Primal-dual interior-point methods for self-scaled

cones,” SIAM J. Optim., vol. 8, no. 2, pp. 324–364, 1998.

[52] F. A. Potra and R. Sheng, “A superlinearly convergent primal-dual infeasible-

interior-point algorithm for semidefinite programming,” SIAM J. Optim., vol. 8,

no. 4, pp. 1007–1028, 1998.

[53] L. Vandenberghe, V. R. Balakrishnan, R. Wallin, A. Hansson, and T. Roh,

“Interior-point algorithms for semidefinite programming problems derived

166

from the kyp lemma,” in Positive polynomials in control. Berlin, Heidelberg:

Springer, pp. 195–238, 2005.

[54] F. A. Potra and S. J. Wright, “Interior-point methods,” J. Comput. Appl. Math.,

vol. 124, no. 1-2, pp. 281–302, 2000.

[55] B. Recht, M. Fazel, and P. A. Parillo, “Guaranteed minimum-rank solutions of

linear matrix equations via nuclear norm minimization,” SIAM Rev., vol. 52,

no. 3, pp. 471–501, 2010.

[56] P. Combettes and J. C. Pesquet, “Proximal splitting methods in signal process-

ing,” New York, NY, USA: Springer, 2011.

[57] P. Jain, R. Meka, and I. Dhillon, “Guaranteed rank minimization via singu-

lar value projection,” in Proc. Neural Inform. Process. Syst. Conf., Vancouver,

Canada, pp. 937–945, 2010.

[58] M. Fornasier, H. Rauhut, and R. Ward, “Low-rank matrix recovery via itera-

tively reweighted least squares minimization,” SIAM J. Optim., vol. 21, no. 4,

pp. 1614–1640, Dec. 2011.

[59] K. Mohan and M. Fazel, “Iterative reweighted algorithms for matrix rank mini-

mization,” J. Mach. Learning Research, vol. 13, pp. 3441–3473, Nov. 2012.

[60] D. Needell and J. A. Tropp, “Cosamp: Iterative signal recovery from incomplete

and inaccurate samples,” Appl. Comput. Harmon. Anal., vol. 26, no. 3, pp. 301–

321, May 2009.

[61] J. A. Tropp and A. C. Gilbert, “Signal recovery from random measurements via

orthogonal matching pursuit,” IEEE Trans. Inform. Theory, vol. 53, no. 12, pp.

4655–4666, Dec. 2007.

[62] U. Helmke and J. B. Moore, “Optimization and dynamical systems,” New York,

NY, USA: Springer, 1994.

167

[63] P. A. Absil, R. Mahony, and R. Sepulchre, Optimization Algorithms on Matrix

Manifolds. Princeton Univ. Press, 2008.

[64] J. Lee, Introduction to Smooth Manifolds, 2nd ed. New York: NY:Springer,

2013, vol. 218.

[65] M. Tao and X. Yuan, “Recovering low-rank and sparse components of matrices

from incomplete and noisy observations,” SIAM J. Optim., vol. 21, no. 1, pp.

57–81, Jan. 2011.

[66] Z. Lin, R. Liu, and Z. Su, “Linearized alternating direction method with adap-

tive penalty for low-rank representation,” in Proc. Adv. Neural Inform. Process.

Syst., Montreal, Canada, pp. 612–620, 2011.

[67] B. S. He, H. Yang, and S. L. Wang, “Alternating direction method with self-

adaptive penalty parameters for monotone variational inequalities,” J. Optim.

Theory Appl., vol. 106, no. 2, pp. 337–356, Aug. 2000.

[68] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for

linear inverse problems,” SIAM J. Imaging Sci., vol. 2, no. 1, pp. 183–202, Mar.

2009.

[69] J. Y. Gotoh, A. Takeda, and K. Tono, “Dc formulations and algorithms for sparse

optimization problems,” Math. Programming, pp. 1–36, May 2018.

[70] R. Ge, J. D. Lee, and T. Ma, “Matrix completion has no spurious local mini-

mum,” in Advances Neural Inform. Process. Syst., pp. 2973–2981, 2016.

[71] R. Ge, C. Jin, and Y. Zheng, “No spurious local minima in nonconvex low rank

problems: A unified geometric analysis,” in Proc. 34th Int. Conf. on Machine

Learning, JMLR. org., vol. 70, pp. 1233–1242, Aug. 2017.

168

[72] S. S. Du, C. Jin, J. D. Lee, M. I. Jordan, A. Singh, and B. Poczos, “Gradient

descent can take exponential time to escape saddle points,” in Advances Neural

Inform. Process. Syst., pp. 1067–1077, 2017.

[73] F. Monti, M. Bronstein, and X. Bresson, “Geometric matrix completion with

recurrent multi-graph neural networks,” in Proc. Adv. Neural Inform. Process.

Syst., Long Beach, CA, USA, pp. 3700–3710, 2017.

[74] D. L. Donoho, A. Maleki, and A. Montanari, “Message passing algorithms for

compressed sensing,” Proc. Nat. Acad. Sci., vol. 106, no. 45, pp. 18 914–18 919,

Nov. 2009.

[75] R. Parker and S. Valaee, “Vehicular node localization using received-signal-

strength indicator,” IEEE Trans. Veh. Technol., vol. 56, pp. 3371–3380, Nov.

2007.

[76] D. Dardari, C.-C. Chong, and M. Z. Win, “Threshold-based time-of-arrival es-

timators in uwb dense multipath channels,” IEEE Trans. Commun., vol. 56, pp.

1366–1378, Aug. 2008.

[77] Y. Zhang and J. Zha, “Indoor localization using time difference of arrival and

time-hopping impulse radio,” IEEE Int. Symp. Commun. Inform. Technol., pp.

964–967, Oct. 2005.

[78] Y. Shang, W. Ruml, Y. Zhang, and M. Fromherz, “Localization from mere

connectivity,” in Proc. ACM Symp. Mobile Ad Hoc Netw. Comput., Annapolis,

Maryland, USA, Jun. 2003, pp. 201–212.

[79] P. Rawat, K. D. Singh, H. Chaouchi, and J. M. Bonnin, “Wireless sensor net-

works: a survey on recent developments and potential synergies,” J. Supercom-

put., vol. 68, no. 1, pp. 1–48, Apr. 2014.

169

[80] Z. Jianwu and Z. Lu, “Research on distance measurement based on rssi of zig-

bee,” ISECS Int. Colloq. Computing, Commun., Control, and Manage., pp. 210–

212, 2009.

[81] U. Helmke and J. B. Moore, Optimization and Dynamical Systems. London:

Springer-Verlag, 1994.

[82] P. A. Absil and J. Malick, “Projection-like retractions on matrix manifolds,”

SIAM J. Optimiz., vol. 22, pp. 135–158, 2012.

[83] Y. H. Dai, “Nonlinear conjugate gradient methods,” Wiley Encyclopedia of Op-

erations Research and Manage. Sci., 2011.

[84] L. Armijo, “Minimization of functions having lipschitz continuous first partial

derivatives,” Pacific J. Math., no. 1, 1966.

[85] C. T. Kelley, Iterative methods for optimization. Philadelphia: PA: Frontiers

in Applied Mathematics, 1999.

[86] M. R. Hestenes and E. Stiefel, “Methods of conjugate gradients for solving

linear systems,” NBS, 1952.

[87] R. Fletcher and C. M. Reeves, “Function minimization by conjugate gradients,”

J. Comput., no. 2, pp. 149–154, 1964.

[88] Y. H. Dai and Y. Yuan, “A nonlinear conjugate gradient method with a strong

global convergence property,” SIAM J. Optimiz., no. 1, pp. 177–182, 1999.

[89] W. W. Hager and H. Zhang, “A new conjugate gradient method with guaranteed

descent and an efficient line search,” SIAM J. Optimiz., no. 1, pp. 170–192,

2005.

[90] P. Wolfe, “Convergence conditions for ascent methods,” SIAM Rev., no. 2, pp.

226–235, 1969.

170

[91] H. Sato and T. Iwai, “A new, globally convergent riemannian conjugate gradient

method,” Optim. J. Math. Program. Oper. Res., no. 4, pp. 1011–1031, 2015.

[92] Z. Yang, C. Wu, T. Chen, Y. Zhao, W. Gong, and Y. Liu, “Detecting outlier

measurements based on graph rigidity for wireless sensor network localization,”

IEEE Trans. Veh. Technol., vol. 62, no. 1, pp. 374–383, Jan. 2013.

[93] Z. Lin, M. Chen, and Y. Ma., “The augmented lagrange multiplier method

for exact recovery of corrupted low-rank matrices,” 2010. [Online]. Available:

http://arxiv.org/abs/1009.5055

[94] Z. Lin, A. Ganesh, J. Wright, L. Wu, M. Chen, and Y. Ma, “Fast convex opti-

mization algorithms for exact recovery of a corrupted low-rank matrix,” in Proc.

Int. Workshop Comput. Adv. Multi-Sensor Adapt. Process., pp. 1–18, 2009.

[95] P. Biswas and Y. Ye, “Semidefinite programming for ad hoc wireless sensor

network localization,” in Proc. Int. Symp. Inform. Process. Sensor Netw., Cali-

fornia, pp. 46–54, 2004.

[96] X. Guo, L. Chu, and X. Sun, “Accurate localization of multiple sources using

semidefinite programming based on in complete range matrix,” IEEE Sensors

J., vol. 16, no. 13, pp. 5319–5324, Jul. 2016.

[97] J. A. Costa, N. Patwari, and I. A. O. Hero, “Distributed weighted-

multidimensional scaling for node localization in sensor networks,” ACM Trans.

Sensor Netw., vol. 2, no. 1, pp. 39–64, 2006.

[98] R. H. Tutuncu, K. C. Toh, and M. J. Todd, “Solving semidefinite quadratic linear

programs using sdpt3,” Math. Programming Ser. B, vol. 95, pp. 189–217, 2003.

[99] M. Niepert, M. Ahmed, and K. Kutzkov, “Learning convolutional neural net-

works for graphs,” in Proc. Int. Conf. Mach. Learn., pp. 2014–2023, 2016.

171

[100] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and deep

locally connected networks on graphs,” arXiv:1312.6203, 2013.

[101] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural net-

works on graphs with fast localized spectral filtering,” in Proc. Adv. Neural

Inform. Process. Syst., Barcelona, Spain, pp. 3844–3852, 2016.

[102] D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets on graphs via

spectral graph theory,” Appl. Comput. Harmon. Anal., vol. 30, no. 2, pp. 129–

150, Mar. 2011.

[103] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The

graph neural network model,” IEEE Trans. Neural Netw., vol. 20, no. 1, pp.

61–80, Jan. 2009.

[104] W. Cheney, Analysis for applied mathematics. New York: Springer, 2013.

[105] V. Hutson, J. Pym, and M. Cloud, Applications of functional analysis and oper-

ator theory. Elsevier, 2005.

172

초록

최근,일부의관측치로부터행렬의모든원소들을복원하는방법으로저랭크행

렬 완성 (LRMC)이 많은 주목을 받고 있다. LRMC는 추천 시스템, 위상 복원, 사물

인터넷 지역화, 영상 잡음 제거, 밀리미터 웨이브 통신 등을 포함한 다양한 응용분

야에서 사용되고 있다. 본 논문에서는 LRMC에 대해 연구하여 LRMC의 가능성과

한계에 대한 더 나은 이해를 할 수 있도록 기존 결과들을 구조적이고 접근 가능한

방식으로분류한다.구체적으로,최신 LRMC기법들을두가지범주로분류한다음

각각의범주를분석한다.특히,행렬의고유한성질과같은 LRMC기법을사용할때

고려해야할사항들을분석한다.기존의 LRMC기법은가우시안랜덤행렬과같은

일반적인상황에서성공적이었으나많은실제상황에서는복원하고자하는저랭크

행렬이그래프구조또는다양체구조와같은비유클리드구조를가질수있다.

본논문에서는실제응용에서 LRMC의성능을향상시키기위해이런추가적인

구조가 활용될 수 있음을 보인다. 특히, 사물 인터넷 네트워크 지역화를 위한 유클

리드거리행렬완성알고리듬을제안한다.유클리드거리행렬을낮은랭크를갖는

양의준정부호행렬의함수로표현한다.이러한양의준정부호행렬들의집합은미

분이잘정의되어있는리만다양체를형성하므로유클리드공간에서의알고리듬을

적당히 변형하여 LRMC에 사용할 수 있다. LRMC를 위해 우리는 켤레 기울기를

활용한 리만 다양체에서의 지역화 (LRM-CG)라 불리는 변경된 켤레 기울기 기반

알고리듬을 제안한다. 제안하는 LRM-CG 알고리듬은 관측된 쌍 거리가 특이값에

의해 오염되는 시나리오로 쉽게 확장 될 수 있음을 보인다. 실제로 특이값을 희소

행렬로 모델링 한 다음 특이값 행렬을 규제 항으로 LRMC에 추가함으로써 특이값

173

을 효과적으로 제어 할 수 있다. 분석을 통해 LRM-CG 알고리듬이 확장된 Wolfe

조건 아래 원래 유클리드 거리 행렬에 선형적으로 수렴하는 것을 보인다. 모의 실

험을 통해 LRM-CG와 확장 버전이 유클리드 거리 행렬을 복구하는 데 효과적임을

보인다.

또한,그래프모델을사용하여표현될수있는저랭크행렬복원을위한그래프

신경망 (GNN)기반기법을제안한다.그래프신경망기반의 LRMC (GNN-LRMC)

라 불리는 기법은 복원하고자 하는 행렬의 그래프 영역 특징들을 추출하기 위해

변형된합성곱연산을사용한다.이렇게추출된특징들을 GNN의학습과정에활용

하여 행렬의 원소들을 복원할 수 있다. 합성 및 실제 데이터를 사용한 모의 실험을

통하여제안하는 GNN- LRMC의우수한복구성능을보였다.

주요어: 저 랭크 행렬 완성, 프로베니우스 놈 최소화, 지역화, 리만 최적화, 그래프

신경망

학번: 2015-30751

174

ACKNOWLEGEMENT

First and foremost, I would like to thank my adviser Professor Byonghyo Shim.

His wealth of idea, clarity of thought, enthusiasm, and energy have made working with

him an exceptional experience for me. I am very thankful and feel very fortunate to

become his student. I will never forget how he teach me to do research and how to

always “keep it simple and stupid” when dealing with difficulties. This gives me a

strong believe that doing research must be a joyful and happy work.

I am thankful to Professors for being on my defense and reading committees, for

many helpful discussions. I thank for providing much valuable feedback. I would also

like to thank Professor Kwang Bok Lee for acting as the chair of my defense com-

mittee, and Professor Insoon Yang, Professor Jun-Won Choi, and Professor Daeyoung

Park for being members of the committee and for Profs’ thought-provoking questions

and comments on my work.

It has been a pleasure to be a part of Information System Laboratory (ISL), where

I have made many great friends. I would like to especially acknowledge ISL members

for their collaborations on my work and co-authorship of several papers, and also for

their friendship and constant support. My heartfelt acknowledgement go to my teach-

ers in all stages of my education, the individuals who have inspired me to learn and

grow. I am grateful to all friends who have supported me through the years and have

made my time at Seoul National University so enjoyable.

My deepest gratitude and love belong to my parents, my sister, and my brothers,

for their unconditional love and support all though my life. To them I owe all that I am

and all that I have ever accomplished, and it is to them that I dedicate this thesis.

175

	1 Introduction
	1.1 Motivation
	1.2 Outline of the dissertation

	2 Low-Rank Matrix Completion
	2.1 LRMC Applications
	2.1.1 Recommendation system
	2.1.2 Phase retrieval
	2.1.3 Localization in IoT networks
	2.1.4 Image compression and restoration
	2.1.5 Massive multiple-input multiple-output (MIMO)
	2.1.6 Millimeter wave (mmWave) communication

	2.2 Intrinsic Properties of LRMC
	2.2.1 Sparsity of Observed Entries
	2.2.2 Coherence

	2.3 Rank Minimization Problem
	2.4 LRMC Algorithms Without the Rank Information
	2.4.1 Nuclear Norm Minimization (NNM)
	2.4.2 Singular Value Thresholding (SVT)
	2.4.3 Iteratively Reweighted Least Squares (IRLS) Minimization

	2.5 LRMC Algorithms Using Rank Information
	2.5.1 Greedy Techniques
	2.5.2 Alternating Minimization Techniques
	2.5.3 Optimization over Smooth Riemannian Manifold
	2.5.4 Truncated NNM

	2.6 Performance Guarantee
	2.7 Empirical Performance Evaluation
	2.8 Choosing the Right Matrix Completion Algorithms

	3 IoT Localization Via LRMC
	3.1 Problem Model
	3.2 Optimization over Riemannian Manifold
	3.3 Localization in Riemannian Manifold Using Conjugate Gradient (LRMCG)
	3.4 Computational Complexity
	3.5 Recovery Condition Analysis
	3.5.1 Convergence of LRM-CG at Sampled Entries
	3.5.2 Exact Recovery of Euclidean Distance Matrices
	3.5.3 Discussion on A3

	4 Extended LRM-CG for The Outlier Problem
	4.1 Problem Model
	4.2 Extended LRM-CG
	4.3 Numerical Evaluation
	4.3.1 Simulation Setting
	4.3.2 Convergence Efficiency
	4.3.3 Performance Evaluation
	4.3.4 Outlier Problem
	4.3.5 Real Data

	5 LRMC Via Graph Neural Network
	5.1 Graph Model
	5.2 Proposed GNN-LRMC
	5.2.1 Adaptive Model
	5.2.2 Multilayer GNN
	5.2.3 Output Model
	5.2.4 Training Cost Function

	5.3 Numerical Evaluation

	6 Conculsion
	A Proof of Lemma 6
	B Proof of Theorem 7
	C Proof of Lemma 8
	D Proof of Theorem 9
	E Proof of Lemma 10
	F Proof of Lemma 12
	G Proof of Lemma 13
	H Proof of Lemma 14
	I Proof of Lemma 15
	J Proof of Lemma 17
	K Proof of Lemma 19
	L Proof of Lemma 20
	M Proof of Lemma 21

	Abstract (In Korean)
	Acknowlegement

<startpage>16
1 Introduction 2
 1.1 Motivation 2
 1.2 Outline of the dissertation 5
2 Low-Rank Matrix Completion 6
 2.1 LRMC Applications 6
 2.1.1 Recommendation system 6
 2.1.2 Phase retrieval 8
 2.1.3 Localization in IoT networks 8
 2.1.4 Image compression and restoration 10
 2.1.5 Massive multiple-input multiple-output (MIMO) 12
 2.1.6 Millimeter wave (mmWave) communication 12
 2.2 Intrinsic Properties of LRMC 13
 2.2.1 Sparsity of Observed Entries 13
 2.2.2 Coherence 18
 2.3 Rank Minimization Problem 22
 2.4 LRMC Algorithms Without the Rank Information 25
 2.4.1 Nuclear Norm Minimization (NNM) 25
 2.4.2 Singular Value Thresholding (SVT) 28
 2.4.3 Iteratively Reweighted Least Squares (IRLS) Minimization 31
 2.5 LRMC Algorithms Using Rank Information 32
 2.5.1 Greedy Techniques 34
 2.5.2 Alternating Minimization Techniques 37
 2.5.3 Optimization over Smooth Riemannian Manifold 39
 2.5.4 Truncated NNM 41
 2.6 Performance Guarantee 44
 2.7 Empirical Performance Evaluation 46
 2.8 Choosing the Right Matrix Completion Algorithms 55
3 IoT Localization Via LRMC 56
 3.1 Problem Model 57
 3.2 Optimization over Riemannian Manifold 61
 3.3 Localization in Riemannian Manifold Using Conjugate Gradient (LRMCG) 66
 3.4 Computational Complexity 71
 3.5 Recovery Condition Analysis 73
 3.5.1 Convergence of LRM-CG at Sampled Entries 73
 3.5.2 Exact Recovery of Euclidean Distance Matrices 79
 3.5.3 Discussion on A3 86
4 Extended LRM-CG for The Outlier Problem 92
 4.1 Problem Model 94
 4.2 Extended LRM-CG 94
 4.3 Numerical Evaluation 97
 4.3.1 Simulation Setting 98
 4.3.2 Convergence Efficiency 99
 4.3.3 Performance Evaluation 99
 4.3.4 Outlier Problem 107
 4.3.5 Real Data 107
5 LRMC Via Graph Neural Network 112
 5.1 Graph Model 116
 5.2 Proposed GNN-LRMC 116
 5.2.1 Adaptive Model 119
 5.2.2 Multilayer GNN 119
 5.2.3 Output Model 122
 5.2.4 Training Cost Function 123
 5.3 Numerical Evaluation 123
6 Conculsion 127
 A Proof of Lemma 6 129
 B Proof of Theorem 7 131
 C Proof of Lemma 8 134
 D Proof of Theorem 9 136
 E Proof of Lemma 10 140
 F Proof of Lemma 12 141
 G Proof of Lemma 13 142
 H Proof of Lemma 14 144
 I Proof of Lemma 15 146
 J Proof of Lemma 17 151
 K Proof of Lemma 19 154
 L Proof of Lemma 20 156
 M Proof of Lemma 21 158
Abstract (In Korean) 173
Acknowlegement 175
</body>

