73,187 research outputs found

    Title redacted for blind review

    Get PDF
    This essay aims to provide a modal logic for rational intuition. Similarly to treatments of the property of knowledge in epistemic logic, I argue that rational intuition can be codified by a modal operator governed by the axioms of a dynamic provability logic, which embeds GL within the modal μ\mu-calculus. Via correspondence results between modal logic and the bisimulation-invariant fragment of second-order logic, a precise translation can then be provided between the notion of 'intuition-of', i.e., the cognitive phenomenal properties of thoughts, and the modal operators regimenting the notion of 'intuition-that'. I argue that intuition-that can further be shown to entrain conceptual elucidation, by way of figuring as a dynamic-interpretational modality which induces the reinterpretation of both domains of quantification and the intensions and hyperintensions of mathematical concepts that are formalizable in monadic first- and second-order formal languages. Hyperintensionality is countenanced via four models, without a decision as to which model is to be preferred. The first model makes intuition sensitive to hyperintensional topics, i.e. subject matters. The second model is a hyperintensional truthmaker semantics, in particular a novel epistemic two-dimensional truthmaker semantics. The third model is a topic-sensitive non-truthmaker epistemic two-dimensional semantics. The fourth model is a topic-sensitive epistemic two-dimensional truthmaker semantics

    Interests Diffusion in Social Networks

    Full text link
    Understanding cultural phenomena on Social Networks (SNs) and exploiting the implicit knowledge about their members is attracting the interest of different research communities both from the academic and the business side. The community of complexity science is devoting significant efforts to define laws, models, and theories, which, based on acquired knowledge, are able to predict future observations (e.g. success of a product). In the mean time, the semantic web community aims at engineering a new generation of advanced services by defining constructs, models and methods, adding a semantic layer to SNs. In this context, a leapfrog is expected to come from a hybrid approach merging the disciplines above. Along this line, this work focuses on the propagation of individual interests in social networks. The proposed framework consists of the following main components: a method to gather information about the members of the social networks; methods to perform some semantic analysis of the Domain of Interest; a procedure to infer members' interests; and an interests evolution theory to predict how the interests propagate in the network. As a result, one achieves an analytic tool to measure individual features, such as members' susceptibilities and authorities. Although the approach applies to any type of social network, here it is has been tested against the computer science research community. The DBLP (Digital Bibliography and Library Project) database has been elected as test-case since it provides the most comprehensive list of scientific production in this field.Comment: 30 pages 13 figs 4 table

    Deep Temporal-Recurrent-Replicated-Softmax for Topical Trends over Time

    Full text link
    Dynamic topic modeling facilitates the identification of topical trends over time in temporal collections of unstructured documents. We introduce a novel unsupervised neural dynamic topic model named as Recurrent Neural Network-Replicated Softmax Model (RNNRSM), where the discovered topics at each time influence the topic discovery in the subsequent time steps. We account for the temporal ordering of documents by explicitly modeling a joint distribution of latent topical dependencies over time, using distributional estimators with temporal recurrent connections. Applying RNN-RSM to 19 years of articles on NLP research, we demonstrate that compared to state-of-the art topic models, RNNRSM shows better generalization, topic interpretation, evolution and trends. We also introduce a metric (named as SPAN) to quantify the capability of dynamic topic model to capture word evolution in topics over time.Comment: In Proceedings of the 16th Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT 2018

    Knowability Relative to Information

    Get PDF
    We present a formal semantics for epistemic logic, capturing the notion of knowability relative to information (KRI). Like Dretske, we move from the platitude that what an agent can know depends on her (empirical) information. We treat operators of the form K_AB (‘B is knowable on the basis of information A’) as variably strict quantifiers over worlds with a topic- or aboutness- preservation constraint. Variable strictness models the non-monotonicity of knowledge acquisition while allowing knowledge to be intrinsically stable. Aboutness-preservation models the topic-sensitivity of information, allowing us to invalidate controversial forms of epistemic closure while validating less controversial ones. Thus, unlike the standard modal framework for epistemic logic, KRI accommodates plausible approaches to the Kripke-Harman dogmatism paradox, which bear on non-monotonicity, or on topic-sensitivity. KRI also strikes a better balance between agent idealization and a non-trivial logic of knowledge ascriptions

    SOTER: A Runtime Assurance Framework for Programming Safe Robotics Systems

    Full text link
    The recent drive towards achieving greater autonomy and intelligence in robotics has led to high levels of complexity. Autonomous robots increasingly depend on third party off-the-shelf components and complex machine-learning techniques. This trend makes it challenging to provide strong design-time certification of correct operation. To address these challenges, we present SOTER, a robotics programming framework with two key components: (1) a programming language for implementing and testing high-level reactive robotics software and (2) an integrated runtime assurance (RTA) system that helps enable the use of uncertified components, while still providing safety guarantees. SOTER provides language primitives to declaratively construct a RTA module consisting of an advanced, high-performance controller (uncertified), a safe, lower-performance controller (certified), and the desired safety specification. The framework provides a formal guarantee that a well-formed RTA module always satisfies the safety specification, without completely sacrificing performance by using higher performance uncertified components whenever safe. SOTER allows the complex robotics software stack to be constructed as a composition of RTA modules, where each uncertified component is protected using a RTA module. To demonstrate the efficacy of our framework, we consider a real-world case-study of building a safe drone surveillance system. Our experiments both in simulation and on actual drones show that the SOTER-enabled RTA ensures the safety of the system, including when untrusted third-party components have bugs or deviate from the desired behavior
    • …
    corecore