16,899 research outputs found

    Deep Learning Relevance: Creating Relevant Information (as Opposed to Retrieving it)

    Full text link
    What if Information Retrieval (IR) systems did not just retrieve relevant information that is stored in their indices, but could also "understand" it and synthesise it into a single document? We present a preliminary study that makes a first step towards answering this question. Given a query, we train a Recurrent Neural Network (RNN) on existing relevant information to that query. We then use the RNN to "deep learn" a single, synthetic, and we assume, relevant document for that query. We design a crowdsourcing experiment to assess how relevant the "deep learned" document is, compared to existing relevant documents. Users are shown a query and four wordclouds (of three existing relevant documents and our deep learned synthetic document). The synthetic document is ranked on average most relevant of all.Comment: Neu-IR '16 SIGIR Workshop on Neural Information Retrieval, July 21, 2016, Pisa, Ital

    Accretion disks around binary black holes of unequal mass: GRMHD simulations of postdecoupling and merger

    Get PDF
    We report results from simulations in general relativity of magnetized disks accreting onto merging black hole binaries, starting from relaxed disk initial data. The simulations feature an effective, rapid radiative cooling scheme as a limiting case of future treatments with radiative transfer. Here we evolve the systems after binary-disk decoupling through inspiral and merger, and analyze the dependence on the binary mass ratio with q≡mbh/MBH=1,1/2,q\equiv m_{\rm bh}/M_{\rm BH}=1,1/2, and 1/41/4. We find that the luminosity associated with local cooling is larger than the luminosity associated with matter kinetic outflows, while the electromagnetic (Poynting) luminosity associated with bulk transport of magnetic field energy is the smallest. The cooling luminosity around merger is only marginally smaller than that of a single, non-spinning black hole. Incipient jets are launched independently of the mass ratio, while the same initial disk accreting on a single non-spinning black hole does not lead to a jet, as expected. For all mass ratios we see a transient behavior in the collimated, magnetized outflows lasting 2−5(M/108M⊙)days2-5 ( M/10^8M_\odot ) \rm days after merger: the outflows become increasingly magnetically dominated and accelerated to higher velocities, boosting the Poynting luminosity. These sudden changes can alter the electromagnetic emission across the jet and potentially help distinguish mergers of black holes in AGNs from single accreting black holes based on jet morphology alone.Comment: 15 pages, 6 figures, matches published versio

    Flares from coalescing black holes in the centimeter-wavelength transient sky

    Get PDF
    Radio observations have resulted in some of the most fundamental and exciting discoveries in time-domain astronomy. Here I demonstrate the potential for the Next Generation Very Large Array (ngVLA) to localize prompt centimeter-wavelength counterparts to the coalescing binary supermassive black holes (SMBHs) to be detected by the LISA mission. The resulting redshift measurements of the hosts of LISA-detected coalescences will populate a Hubble diagram up to the epoch of the earliest galaxies. Analysis of the host environments and the electromagnetic coalescence signatures will provide crucial insight into the interactions between binary SMBHs and their environments, and the mechanisms of SMBH formation and growth.Comment: An ngVLA Science Book chapter. 10 pages, 3 figure
    • …
    corecore