3,013 research outputs found

    Adaptive Vague Preference Policy Learning for Multi-round Conversational Recommendation

    Full text link
    Conversational recommendation systems (CRS) effectively address information asymmetry by dynamically eliciting user preferences through multi-turn interactions. Existing CRS widely assumes that users have clear preferences. Under this assumption, the agent will completely trust the user feedback and treat the accepted or rejected signals as strong indicators to filter items and reduce the candidate space, which may lead to the problem of over-filtering. However, in reality, users' preferences are often vague and volatile, with uncertainty about their desires and changing decisions during interactions. To address this issue, we introduce a novel scenario called Vague Preference Multi-round Conversational Recommendation (VPMCR), which considers users' vague and volatile preferences in CRS.VPMCR employs a soft estimation mechanism to assign a non-zero confidence score for all candidate items to be displayed, naturally avoiding the over-filtering problem. In the VPMCR setting, we introduce an solution called Adaptive Vague Preference Policy Learning (AVPPL), which consists of two main components: Uncertainty-aware Soft Estimation (USE) and Uncertainty-aware Policy Learning (UPL). USE estimates the uncertainty of users' vague feedback and captures their dynamic preferences using a choice-based preferences extraction module and a time-aware decaying strategy. UPL leverages the preference distribution estimated by USE to guide the conversation and adapt to changes in users' preferences to make recommendations or ask for attributes. Our extensive experiments demonstrate the effectiveness of our method in the VPMCR scenario, highlighting its potential for practical applications and improving the overall performance and applicability of CRS in real-world settings, particularly for users with vague or dynamic preferences

    A large multilingual and multi-domain dataset for recommender systems

    Get PDF
    This paper presents a multi-domain interests dataset to train and test Recommender Systems, and the methodology to create the dataset from Twitter messages in English and Italian. The English dataset includes an average of 90 preferences per user on music, books, movies, celebrities, sport, politics and much more, for about half million users. Preferences are either extracted from messages of users who use Spotify, Goodreads and other similar content sharing platforms, or induced from their ”topical” friends, i.e., followees representing an interest rather than a social relation between peers. In addition, preferred items are matched with Wikipedia articles describing them. This unique feature of our dataset provides a mean to derive a semantic categorization of the preferred items, exploiting available semantic resources linked to Wikipedia such as the Wikipedia Category Graph, DBpedia, BabelNet and others

    Location-aware online learning for top-k recommendation

    Get PDF
    We address the problem of recommending highly volatile items for users, both with potentially ambiguous location that may change in time. The three main ingredients of our method include (1) using online machine learning for the highly volatile items; (2) learning the personalized importance of hierarchical geolocation (for example, town, region, country, continent); finally (3) modeling temporal relevance by counting recent items with an exponential decay in recency.For (1), we consider a time-aware setting, where evaluation is cumbersome by traditional measures since we have different top recommendations at different times. We describe a time-aware framework based on individual item discounted gain. For (2), we observe that trends and geolocation turns out to be more important than personalized user preferences: user-item and content-item matrix factorization improves in combination with our geo-trend learning methods, but in itself, they are greatly inferior to our location based models. In fact, since our best performing methods are based on spatiotemporal data, they are applicable in the user cold start setting as well and perform even better than content based cold start methods. Finally for (3), we estimate the probability that the item will be viewed by its previous views to obtain a powerful model that combines item popularity and recency.To generate realistic data for measuring our new methods, we rely on Twitter messages with known GPS location and consider hashtags as items that we recommend the users to be included in their next message. © 2016 Elsevier B.V
    • …
    corecore