7 research outputs found

    Introduction to Iltis: An Interactive, Web-Based System for Teaching Logic

    Full text link
    Logic is a foundation for many modern areas of computer science. In artificial intelligence, as a basis of database query languages, as well as in formal software and hardware verification --- modelling scenarios using logical formalisms and inferring new knowledge are important skills for going-to-be computer scientists. The Iltis project aims at providing a web-based, interactive system that supports teaching logical methods. In particular the system shall (a) support to learn to model knowledge and to infer new knowledge using propositional logic, modal logic and first-order logic, and (b) provide immediate feedback and support to students. This article presents a prototypical system that currently supports the above tasks for propositional logic. First impressions on its use in a second year logic course for computer science students are reported

    Leveraging Large Language Models to Boost Dafny's Developers Productivity

    Full text link
    This research idea paper proposes leveraging Large Language Models (LLMs) to enhance the productivity of Dafny developers. Although the use of verification-aware languages, such as Dafny, has increased considerably in the last decade, these are still not widely adopted. Often the cost of using such languages is too high, due to the level of expertise required from the developers and challenges that they often face when trying to prove a program correct. Even though Dafny automates a lot of the verification process, sometimes there are steps that are too complex for Dafny to perform on its own. One such case is that of missing lemmas, i.e. Dafny is unable to prove a result without being given further help in the form of a theorem that can assist it in the proof of the step. In this paper, we describe preliminary work on a new Dafny plugin that leverages LLMs to assist developers by generating suggestions for relevant lemmas that Dafny is unable to discover and use. Moreover, for the lemmas that cannot be proved automatically, the plugin also attempts to provide accompanying calculational proofs. We also discuss ideas for future work by describing a research agenda on using LLMs to increase the adoption of verification-aware languages in general, by increasing developers productivity and by reducing the level of expertise required for crafting formal specifications and proving program properties

    The Design and Use of Tools for Teaching Logic

    Get PDF

    The New Trivium

    Get PDF
    corecore