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Abstract

This paper proposes a calculational approach to prove properties of two well-known binary trees used to
enumerate the rational numbers: the Stern-Brocot tree and the Eisenstein-Stern tree (also known as Calkin-
Wilf tree). The calculational style of reasoning is enabled by a matrix formulation that is well-suited to
naturally formulate path-based properties, since it provides a natural way to refer to paths in the trees.

Three new properties are presented. First, we show that nodes with palindromic paths contain the same
rational in both the Stern-Brocot and Eisenstein-Stern trees. Second, we show how certain numerators
and denominators in these trees can be written as the sum of two squares z? and 32, with the rational £
appearing in specific paths. Finally, we show how we can construct Sierpinski’s triangle from these trees of
rationals.

Keywords: Stern-Brocot tree, Eisenstein-Stern tree (aka Calkin-Wilf tree), number theory, calculational
method, palindromic paths, Euclid’s algorithm, invariant, rational number, sum of two squares,
Sierpinski’s triangle, Lucas’s theorem

Why do people look for compact notations? A compact notation leads to shorter documents (less lines
of code in programming) in which patterns are easier to identify and to reason about. Properties can be
stated in clear-cut, one-line long equations which are easy to memorize. — JOSE N. OLIVEIRA [1]

1. Introduction

Vigorous reasoning is concise. As stated in the opening quote by José N. Oliveira, conciseness facilitates
reasoning and the identification of patterns. Indeed, Oliveira’s work in pointfree calculational techniques
and algebraic methods in programming [2, 3, 4] is an excellent example of how conciseness leads to shorter
documents and elegant theories. As Oliveira writes in [3]:

Theories “refactored” via the PF-transform [pointfree transform] become more general, more
structured and simpler. Elegant expressions replace lengthy formulae and easy-to-follow calcu-
lations replace pointwise proofs with lots of “...” notation, case analyses and natural language
explanations for “obvious” steps.

(...)

Thanks to the PF-transform, opportunities for creativity steps are easier to spot and carry out
with less symbol trading.

In the same spirit as José N. Oliveira’s work on the application of calculational techniques, this paper
proposes a calculational approach to prove properties of two well-known binary trees used to enumerate
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the rational numbers: the Stern-Brocot tree and the Eisenstein-Stern tree (also known as Calkin-Wilf tree).
The approach described in this paper is based on the matrix formulation first presented in [5]. In Section 2,
we discuss this matrix formulation in more detail, together with some background on the Stern-Brocot and
Eisenstein-Stern trees of rationals.

As we hope to demonstrate, besides allowing a calculational style of reasoning, the matrix formulation
has other advantages. First, because both Stern-Brocot and Eisenstein-Stern trees can be obtained from
a single tree of matrices, it becomes easier to establish relationships between the two trees of rationals.
Second, the matrix formulation is well-suited to formulate and reason about path-based properties, for it
provides a natural way to refer to paths in the trees. In Section 3, for instance, we show how we can use the
algebra of matrices to prove properties that relate the Stern-Brocot and FEisenstein-Stern trees. An example
is the previously unknown property (as far as we know) that nodes with palindromic paths contain the same
rational in both trees of rationals. The way in which this new property was found is an example of the
“opportunities for creative steps” provided by the calculational method.

A third advantage is that, because a 2x2 matrix contains more information than a single rational, it
becomes easier to find properties that are not at all obvious when considering only the trees of rationals.
In Sections 4 and 5, we show how the extra information provided by matrices can be used to find new
path-based properties. More specifically, in Section 4 we show how certain numerators and denominators in
the Stern-Brocot and Eisenstein-Stern trees can be written as the sum of two squares z? and 2, with the
rational 5 appearing in specific positions of these trees. In Section 5, we show how this extra information can
be used to establish a relationship between Sierpinski’s triangle and the Stern-Brocot and Eisenstein-Stern
trees. Incidentally, the first time that the authors of this paper studied and generated Sierpinski’s triangle
computationally was in one of José N. Oliveira’s modules on program calculation [1] (the goal was to write
a “Sierpinski’s triangle generator” as a catamorphism).

We conclude the paper in Section 6, where we also give an account of current and future work.

2. Preliminaries

A standard theorem of mathematics is that the rationals are “denumerable”, i.e. they can be put in
one-to-one correspondence with the natural numbers. Another way of saying this is that it is possible to
enumerate the rationals so that each appears exactly once. Two of the most well-studied sequences used to
enumerate the rationals are known as Stern-Brocot sequence and Calkin- Wilf sequence.

These sequences give rise to complete binary trees, commonly known as Stern-Brocot tree and Calkin-
Wilf tree. For reasons of historical accuracy, we deviate from common practice and use a different name
for what is commonly know as Calkin-Wilf tree. As pointed out in [6], Stern [7] had already documented
essentially the same structural characterisation of the rationals almost 150 years earlier than Calkin and
Wilf. Stern attributes the structure to Eisenstein, so henceforth we refer to the “Eisenstein-Stern” tree of
rationals where recent publications would refer to the “Calkin-Wilf” tree of rationals. For more details on
Stern’s characterisation, see the appendix in [6]. For a comprehensive account of properties of the Stern-
Brocot tree, including further relationships with Euclid’s algorithm, see [8, pp. 116-118]. For more details
about the Eisenstein-Stern tree, we refer the reader to [9].

The first four levels of the Stern-Brocot tree and of the Eisenstein-Stern tree are shown in Figures 1 and
2, respectively.

There has been a spate of interest in the construction of bijections between the natural numbers and
the (positive) rationals (see [5, 10, 11, 9] and [12, pp. 94-97]). In [11], it is shown that the rationals can be
efficiently enumerated! by “deforesting” the Eisenstein-Stern tree of rationals [9] (the algorithm is credited
to Moshe Newman). Motivated by the remark in [10] that it is “not at all obvious” how to “deforest”
the Stern-Brocot tree of rationals, the authors of [5] developed an efficient algorithm for enumerating the
rationals according to both orderings. The algorithm is based on a bijection between the rationals and

1By an efficient enumeration we mean a method of generating each rational without duplication with constant cost per
rational in terms of arbitrary-precision simple arithmetic operations.
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Figure 1: Stern-Brocot tree of rationals
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Figure 2: Eisenstein-Stern tree of rationals (also known as Calkin-Wilf tree)

invertible 2x2 matrices. The key to the algorithm’s derivation is the reformulation of Euclid’s algorithm in
terms of matrices. The enumeration is efficient in the sense that it has the same time and space complexity
as the algorithm credited to Moshe Newman in [11], albeit with a constant-fold increase in the number of
variables and number of arithmetic operations needed at each iteration. The enumeration presented in [5]
gives rise to a full binary tree of finite products of the matrices L and R defined as

10 11
L—>1 1{ and R_>0 1{

The root of the tree is the identity matrix I (the empty product). The tree can be displayed with “L”
labelling a left branch (post-multiplication by L) and “R” labelling a right branch (post-multiplication by
R). Figure 3 displays the first four levels of the tree.

(o 7)

7/ AN 7/ \1 9 3 1/ \2 3 7/ AN
(1 3) (5 1) (i 2)

Figure 3: Tree of products of L and R

By pre-multiplying each matrix in the tree by (1 1), we get a tree of rationals. (Premultiplying by (1 1)

is accomplished by adding the elements in each column.) The resulting tree is the Eisenstein-Stern tree
(where the vector (z y) corresponds to the rational ¥).
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By post-multiplying each matrix in the tree by i ‘g we also get a tree of rationals. (Postmultiplying by

is accomplished by adding the elements in each row.) The resulting tree is the Stern-Brocot tree (where

1
1
the vector ) z Qcorresponds to the rational %)
The key observation in [5] is that the problem of enumerating the rationals can be transformed into the
problem of enumerating all finite products of the matrices L and R. This is achieved by transforming each
matrix M into its successor next(M), defined as:

() Lntt if M =R"
next = i . n
M x )3 (1)( it M #R
c d a-tc
follows the rightmost matrix of level n is the first matrix of level n+1 (i.e. L™*!). To understand the second
case, note that the matrix immediately following a matrix M (that is not the last, i.e. M # R") is found by

identifying the rightmost L in the decomposition of M as a product of the matrices L and R. Supposing M
is the product M'LR/, its successor is M'RL’; so, to find the successor matrix, we post-multiply M'LR’

by R™7L~'RL/, which is the same as ) 23:';1 ! ({ For the full details, we refer the reader to [5, 6].

where for M = )a b g; we have j = | 291 The first case (when M = R™) states that the matrix that

0

As discussed in the introduction, the matrix formulation has several advantages. First, because both
Stern-Brocot and Eisenstein-Stern trees can be obtained from the tree of matrices, it becomes easier to
establish relationships between the two trees of rationals. Second, because a 2x2 matrix contains more
information than a single rational, it becomes easier to find properties that are not at all obvious when
considering only the trees of rationals. In Sections 4 and 5, we show how the extra information provided
by matrices can be used to find new properties. Finally, the matrix formulation is well-suited to formulate
and reason about path-based properties, for it provides a natural way to refer to paths in the trees. For
example, if we want to consider the rationals with path LRR, we can study the matrix product LRR. In
the remainder of this paper, we use paths and matrix products interchangeably. We will use expressions
like “the rational with path LRR” or “the node with path LRR” to refer to the rational obtained from
the matrix } g (t(i.e. it either refers to the rational % in the Stern-Brocot tree or to the rational g in the
Eisenstein-Stern tree). We also use matrix terminology with paths. An example is the use of the expression
“transpose paths”; we use expressions such as “the transpose of the path LRR is the path LLR” (note that
the transpose of the product is the product of the transposes in reverse order; also LY = R and R = L).

As a first example of what we call a path-based property, let us show that for all paths M that are equal to
their own transpose (e.g. the path LR), the rational with path M in the Stern-Brocot tree is the reciprocal
of the rational with path M in the Eisenstein-Stern tree. This can easily be proved as:

™ has path M in the Stern-Brocot tree
= { matrix formulation }

JELT
= {M=MT}
m 1
n (: MT X 1
{Mranspose of the product }
(mn)=(1 1)xM
= { matrix formulation }
- has path M in the Eisenstein-Stern tree

All the matrices used in the remainder of the paper are finite products of Ls and Rs, unless stated
otherwise.

3. Calculating with matrices

In this section, we show how we can prove existing and discover new properties of the Stern-Brocot and
Eisenstein-Stern trees using the algebra of matrices. We start with a well-known property of the Eisenstein-
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Stern tree: the denominator of each fraction in the tree is the numerator of the next fraction in the tree.

Theorem 1. In the Eisenstein-Stern tree, the denominator of each fraction in the tree is the numerator of
the next fraction in the tree. Formally:

(1 1)><M><>(1){ = (1 1)><next(M)><)?{

Proof. The definition of next(M) induces two cases. The first case is when M # R"™, so we have next(M) =
M x )ijl (1) (for some j:

(1 1) x next(M) x (1)(

— (M#R")

(1 1)xMx ¥t 1 7
= {arithmeti)c} O<X (
(1 1) x M x (1)(

The second case is when M = R", so we have next(M) = L"*1. We calculate:

0
= { arithmetic }
(1 nx §i(x (=0 1>x)ni1?(>< il
= { arithmetic }
(1 n+1)x 3(:(n+2 1) x ‘j(
= { arithmetic}
1=1
= { reflexivity }
true

(1 1) xR™ x 1(:(1 1) x L x (1)<

O

This theorem appears in [9], where it is proved in three cases and by contradiction. In fact, as described
in [6], this property is known since at least 1858, since it is obviously present in Stern’s paper [7]. An
inductive proof can be found in [12] and an alternative proof based in branching can be found in [13]; both
proofs are decomposed into three cases.

It can be said that the matrix formulation of Theorem 1 and its proof do not offer great advantages,
other than reducing the number of cases that need to be analysed. In fact, it could be argued that our proof
is slightly more complicated, since it uses the properties L™ = 711 ? L<laund R = (1) i gwithout proving them
(they can easily be proved by induction). Nevertheless, and althotugh the proof is not pointfree, the style
of reasoning used naturally supports pointfree reasoning. We now prove this claim by showing a pointfree
proof that the jth node in level n of the Eisenstein-Stern tree is the reciprocal of the jth node from the
end of level n. For example, we can see in Figure 2 that the third node in level 3 (the rational %) is the
reciprocal of the third node from the end of level 3 (the rational 2).

We start by introducing the notion of bit reversal for finite products of Ls and Rs.

Definition 1. Let M be a finite product of Ls and Rs. The bit reversal of M, denoted as br(M), is the
product obtained by replacing in M all the Ls by Rs and all the Rs by Ls. Formally, it can be defined
recursively as:

br(I) =1

br(L) =R

br(R) =L

br(L x M) =R x br(M)
br(R x M) =L x br(M)



This definition induces the use of case analysis, which, in general, we want to avoid. So, we introduce
the following lemma that allows us to express the bit reversal of a matrix as a product of matrices. We write
S to denote the exchange matriz of size 2, that is, S = (1) é g The exchange matrix, also known as reversal
matrix or backward identity, can be used to exchange rows and columns: to exchange the rows of a matrix
M, we pre-multiply? M by S: to exchange the columns, we post-multiply by S. We also have S = S~ = 87

and S? = 1. Moreover, (1 1) x S= (1 1) and S x 1 = i .

Lemma 1. The bit reversal of a matriz M can be defined as:
br(M) =S x M x S
Proof. Proof in Appendix A. O

In the remaining of the paper, we always use this definition of br. Now that we have the notion of bit
reversal defined we can state the theorem on reciprocals:

Theorem 2. The jth node in level n of the Fisenstein-Stern tree is the reciprocal of the jth node from the
end of level n. Formally:
(I H)xM = (1 1)xbr(M) xS

Proof.

(1 1) xbr(M) xS

= { definition of br and arithmetic }
(1 1)xSxMx8S?

— ($-1)

(I I)xSxM

— {1 )xS=( 1}

(1 I)xM

O

This theorem is proved in [13] by induction on the levels of the tree and case analysis. We believe that
our proof is a good alternative: it is simpler, shorter, and completely pointfree! Moreover, we can follow
similar steps to prove the same property for the Stern-Brocot tree.

Theorem 3. The jth node in level n of the Stern-Brocot tree is the reciprocal of the jth node from the end
of level n. Formally:
1 1
M x = S x br(M) x
1 1
S x br(M) x|

= { definition og br and arithmetic }
S2xMxSx (
- (ste1)

M x S x
Lo

= {Sx
Mx ! (

We can also obtain Theorem 3 as a consequence of Theorem 2 by transposing the matrices and using

the equality br(M)T = br(M?). The proof is left to the reader.

Proof.

Ll SR

1

O

?Note that if M is a finite product of Ls and Rs, the matrix MS may not be a finite product of Ls and Rs (e.g. LS).
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3.1. Characterisation of node invariance

So far, we have only verified known properties of the Stern-Brocot and Eisenstein-Stern trees. However,
the calculational approach is well-suited to investigate and discover new properties. In this section, we show
how we can characterise the paths of the nodes that represent the same rational in both the Stern-Brocot
and Eisenstein-Stern trees. For example, the path L represents the same rational in both trees (%), the
same applies to the path LRL (%) We say that the nodes with paths L and LRL are invariant. In general,
when a node represents the same rational in both Stern-Brocot and Eisenstein-Stern trees, we say that the
node is invariant. We seek to characterise all the paths that have this property.

Recall that the rational with path M in the Stern-Brocot tree is given by M x } g the resulting vector
jj Qrepresents the rational % Similarly, the rational with path M in the Eisenstein-Stern tree is given by

(1 ) x M; the resulting vector (z y) represents the rational £. As a result, a way of formulating that a
node with path M is invariant is:

Mx>1 —Sx((1 1)xM)”

Note that on the right-hand side the transpose transforms the row vector into a column vector and the
pre-multiplication by S swaps its rows. Moreover, by transposing the product, this formula can be rewritten

into the more symmetric:
1 1
Mx)l{:SxMTx)l{ (1)

Because we want to characterise the paths M, it would be good to get rid of the column vector } . We do
not have a general cancellation property that allows us to remove the column vector from both sides, but
the following lemma shows that we can do it for transpose paths.

Lemma 2. Let M be an arbitrary 2x2 matriz. We have:

Mx)i{:MTx>1{ = M=M"

Proof. Proof in Appendix A. O

Using this lemma, we can simplify (1) as follows:

1
{8x (= }g}
MxSx ;[=8xMT x }(d
= { transpose of the product hnd ST =S }
M x S x i(:(MxS)Tx }(
= { Lemma2 }

MxS=(MxS)T

M x 1(:S><MT>< }(

Now that we got rid of the vector } (, we can further simplify and obtain a characterisation of M:

MxS=(MxS)T
= { transpose of the product }
MxS=SxMT
= {8=s"}
M=SxMT xS
= { definition of br }
M = br(MT)



So, we have just proved that a node with path M is invariant if and only if M = br(M?). But since LT = R
and RT = L, we have that br(M7) is the same product as M but in reverse order! We can thus write:

M = br(MT)
= { definition }
M is a palindromic path

In conclusion, we have just proved the following theorem.

Theorem 4. A node with path M is invariant if and only if M is a palindromic path. Formally, we have:

Mx>1{8xMTx>1{ = M =br(M7T)

As far as we know, this theorem was never explicitly stated before. Although invariance is defined and
identified in [13, Theorem 28], there is no connection with the nature of the paths. On the other hand,
although the authors of [10] did not consider node invariance and did not explicitly state this property, they
did point out that each level of the Eisenstein-Stern tree is the bit-reversal permutation of the corresponding
level of the Stern-Brocot tree. It is not difficult to prove Theorem 4 using their observation.

4. On the sums of two squares

As the previous section demonstrates, the use of matrices is particularly well-suited to formulate and rea-
son about path-based properties. Another advantage of using the matrix formulation is that they have more
information than rationals, since 2x2 matrices consist of 4 integers. This allows us to discover relationships
that are not at all obvious when considering only the trees of rationals.

In this section, we make use of this extra information to extend previous work and show how certain
numerators and denominators in the Eisenstein-Stern and Stern-Brocot trees can be written as the sum of
two squares 22 and y2, with the rational % appearing in specific positions of these trees. For example, using
the properties that are about to be presented, we are able to conclude that we can write the denominator
of the rational with path LRL in the Eisenstein-Stern tree (Figure 2) as the sum of the squares of the
numerator and denominator of the rational with the path L in the same tree (i.e. 5 can be written as
12 + 22).

We use the results presented in [14] as a starting point. In that paper, an extended version of Euclid’s
algorithm is inverted to investigate when a number can be written as the sum of two squares. Euclid’s
algorithm is expressed in matrix terms® and computes a matrix D that is a product of Ls and Rs. The
main theorem of [14] states that a number m at least 2 can be written as the sum of two squares if there is
a number n such that 0<n<m and n? = —1 (mod m). Moreover, when the inputs to the algorithm satisfy
these conditions, the final value of D is of the form M x L with M = M. Although the matrices are key to
establish the result in [14], no connection was established with the Stern-Brocot and Eisenstein-Stern trees.
We investigate the connection in this section.

First, we present a lemma showing that when a matrix M can be decomposed as the product of another
matrix by its transpose, we have M = M7

Lemma 3. Let M be an arbitrary 2x2 matriz.
(VP :M =PPT: M =MT)

where P ranges over all 2X2 matrices.

3More precisely, a vector (z ) is iteratively post-multiplied by either L=1! = <_11 ?) orR™! = ((1) _11 ) This corresponds

to the assignments x,y := z—y,y and z,y = z, y—z, respectively. In addition to computing the greatest common divisor, the
extended algorithm also computes a matrix C that is a product of the matrices L—! and R~!. The matrix D mentioned in
the body text is the inverse of C.



Proof. Proof in Appendix A. O

This lemma is relevant because it gives us a new path-based property of the Eisenstein-Stern tree: the
denominator of rationals with path of the form PP”L can be written as the sum of two squares. Let - be
the rational with path PPTL; then

(m n)=(1 1) x PPTL

If we let P :)“ b (, we have:

c d
(m n)=(1 1) x PPTL = ((a+¢c)>+ (b+d)* cla+c)+d(b+d)) (2)
meaning that m can be written as the sum of two squares: (a + ¢)? + (b + d)?. Now, let the rational with
path P be % Given the above definition of P, it is the same as %. From (2), we can conclude that the

denominator of the rational with path PPTL can be written as x? + y?. Moreover, using Theorem 1, we
can immediately conclude that the numerator of the rational with path PPTR can be written as z2 + y2.
We can thus formulate the following theorem.

Theorem 5. Let % be the rational in the Fisenstein-Stern tree with path P. Then,

a) the denominator of the rational with path PPTL is 2% + 32

b) the numerator of the rational with path PPTR is x? + y?

Example 1 (Paths in the Eisenstein-Stern tree). At the beginning of the section we gave the example of the
path LRL, which gives 52 = 22 +12. We now give another example: if starting from the root we follow a
path P where

P =LLRRLRLLR

we get the node with the rational %. If from that node we follow the transpose path P, i.e.
P” = LRRLRLLRR

and then go left, we get to the node PPTL with the rational %. We have 5657 = 612 + 442. Figure 4(a)

illustrates the shapes of the paths that can be taken in the Fisenstein-Stern tree.
By transposing all the matrices in (2), we get a similar theorem associated with the Stern-Brocot tree:

Theorem 6. Let % be the rational in the Stern-Brocot tree with path PT. Then,

a) the denominator of the rational with path LPPT is 2% + 32

b) the numerator of the rational with path RPPT is 2% + y?

Example 2 (Paths in the Stern-Brocot tree). If starting from the root we go left and then we follow a path
P where
P =LLRRLRLLR

we get the node with path LP. If from that node we follow the transpose path PT, i.e.
P” = LRRLRLLRR

we get to the node LPPT with the rational %. If starting from the root we follow the path PT, we reach

the node with rational %. We have 5657 = 612 + 442. Figure 4(b) illustrates the shapes of the paths that
can be taken in the Stern-Brocot tree.
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5. Uncovering Sierpinski’s triangle

In the previous section, we used the extra information provided by matrices to establish a relationship
between nodes that would be more difficult to identify if we had only used the rationals. In this section, we
show how this extra information makes it easier to establish a relationship between Sierpiniski’s triangle and
the Eisenstein-Stern and Stern-Brocot trees.

5.1. Intermezzo: on Pascal’s and Sierpinski’s triangles

Pascal’s triangle is a triangular array of numbers whose left and right border are all 1’s, and where each
number is the sum of the two numbers immediately above it. The nth row and kth column of Pascal’s
triangle contains the binomial coefficient C'(n, k). The first 16 levels of Pascal are shown in Figure 5(a).
Now, if we take Pascal’s triangle and colour the even numbers white and the odd numbers black, we get
the startling property that the resulting triangle is an approximation to Sierpinski’s triangle! Sierpinski’s
triangle is a famous fractal structure with the overall shape of a triangle, subdivided recursively into smaller
triangles (see Figure 5(b)).

As explained in Tan Stewart’s essay Pascal’s Fractals [15], the theorem that justifies this connection is
stated in [16] and was originally proved by the great French recreational mathematician Edouard Lucas.
The theorem lets us predict whether a cell will be black or white, without calculating the corresponding
binomial coefficient. It can be stated as:

odd(C(n,k)) < n—k

even(C(n,k)) < n4£k
where n < k is true when every binary digit in k is at most the corresponding digit in n. For example,
we have 7 < 3, since these in binary are respectively 111 and 011 and no digit in 3 is greater than the
corresponding digit in 7. This means that C(7,3) is odd. On the other hand, we have 2 4 1, since these in
binary are respectively 10 and 01, and the least significant digit in 1 is greater than the corresponding digit
in 2. This means that C(2,1) is even. As pointed out in [17], we can define n — k as

n—k = n&k =k

where & is the bitwise and operator.
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(a) First 16 rows of Pascal’s triangle (b) Sierpinski’s triangle (level 4)

Figure 5: Pascal’s and Sierpinski’s triangles

5.2. Sierpinski’s triangle in the Eisenstein-Stern and Stern-Brocot trees

The question that we propose to address here is: can we construct Sierpinski’s triangle from the
Eisenstein-Stern tree or from the Stern-Brocot tree? The challenge is to decide how to colour a given
node based solely on the rational that the node contains.

The first step we need to take is to identify suitable triangular shapes within the trees. The two obvious
choices are to consider only the nodes with paths L"RF or the nodes with paths R"LF, both with k<n.
The triangles obtained from these nodes are illustrated in Figure 6. Focusing first on the triangle made of
nodes with paths L"R¥, we note that
1 k

n nk+1

Because we have the values of n and k in the antidiagonal of these matrices, we can immediately use Lucas’s
theorem to obtain Sierpiriski’s triangle from the tree of matrices?:

black() ) () = nek
white()l FD o= n4k

Lan _ >

n nk+1

The predicate black(x) (respectively, white(x)) can be defined as “the colour of node x is black” (respectively,
white), where z is either a matrix or a rational. Moreover, since L"R* corresponds to the rational k("ﬂ-‘-iﬁ“

in the Eisenstein-Stern tree we can easily decide when to colour a rational black or white:

black(y) <« y—1+ (z—1)/y

white($) < y—14 (z—1)/y
Similarly, we have the following for the Stern-Brocot tree:

black(y) <« (y—1)/z—a-1
white(£) <« (y—1)/x 4 x—1

z
Y

Figure 7 shows the result of applying the two rules above. We have similar results for the triangle made of

4Note that in Lucas’s theorem the definition of C(n, k) is irrelevant: the colouring is only dependent on the arguments n
and k. That is why we can immediately apply the theorem to L™R¥.
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(a) Triangle with nodes of the shape L"RF (left) and correspondent
nodes in the Eisenstein-Stern (top right) and Stern-Brocot (bottom
right) trees

(b) Triangle with nodes of the shape R™L* (left) and correspondent
nodes in the Eisenstein-Stern (top right) and Stern-Brocot (bottom
right) tree

Figure 6: Possible triangles within the Eisenstein-Stern and Stern-Brocot trees
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blaek(i) <=
white(%) <«

T
Y

y—1+ (z=1)/y
y=14 (z=1)/y

(y—1)/x — z—1
(y=1)/z 4 2-1

black(%)
white(Z)

T
Y

~=
“=

Figure 7: Linking nodes of the form L™RF in the Eisenstein-Stern (top left) and Stern-Brocot (bottom left) trees with an
approximation to Sierpinski’s triangle

nodes with paths R"LF. The details are left as an exercise for the reader.

To conclude this section, we invite the reader to derive the results above using only the rationals of the
Eisenstein-Stern and Stern-Brocot trees shown in Figure 7. For the authors, it is not obvious how to do it,
since Lucas’s theorem can not be directly applied. On the other hand, the extra information provided by
the matrices makes a solution obvious!

6. Conclusion

We hope to have demonstrated that the calculational approach followed in this paper makes proofs
more structured and simpler to follow (particularly, in the context of handwritten proofs). Together with
the matrix formulation, the approach proposed certainly provides “opportunities for creativity steps’: for
example, from a simple definition of node invariance, we were able to calculate a new property of palindromic
paths linking the Stern-Brocot and Eisenstein-Stern trees, with no guessing involved!

The natural interpretation of matrix products as paths and the extra information provided by matrices
were key to formulate the new properties shown in Sections 4 and 5. We find appealing the idea of encoding
more information into a concise structure that can be syntactically manipulated. It would be interesting
to see whether we can use the approach presented here to prove other known properties of these trees and
to discover new connections between them. For example, it would be good to investigate whether we could
write a calculational proof of the properties relating the Eisenstein-Stern tree and the hyperbinary sequence
[9]. Another interesting direction is to use the approach presented in this paper to prove properties about the
Bird Tree [18]. Given a tree of matrices where left branching corresponds to post-multiplication by LS and
right branching corresponds to post-multiplication by RS, the Bird tree can be obtained by post-multiplying
each matrix by the vector 1 g Note that since Lemma 1 is still valid, Theorem 3 and its proof also apply
to the Bird Tree! However, sitice (LS)? # RS, we do not have the same node invariance results. We leave
this investigation as future work.

Another idea that deserves further investigation is the formulation of alternative criteria to colour the
trees of rationals so that we obtain an approximation to Sierpiriski triangle (e.g. criteria based on parity as
in the example given for Pascal’s triangle).
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This paper is part of an endeavour which aims at reinvigorating mathematical content by adopting a
calculational style of reasoning [6, 19, 14, 20, 21]. As suggested by the results shown in [22], the calculational
method can indeed have a positive impact on mathematics education. However, in our view, the combination
of practicality with mathematical elegance that arises from an adequate focus on calculational techniques
can enrich and improve, not only mathematics education, but also the process of constructing computer
programs. We plan to continue this effort not only by trying to find more properties of the Stern-Brocot,
Eisenstein-Stern, and Bird trees, but also by investigating whether other areas of mathematics can be made
more calculational. We are also building software tools that can help us write calculational proofs in a more
reliable way; as an example, we are currently extending the structure editor described in [23] to support
automated verification of handwritten calculational proofs.
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Appendix A. Omitted Proofs
Proof of Lemma 1 (page 6). We show that by using the equality
br(M) =S x M x S (A1)

we have the same five cases as shown in Definition 1.

1. br(I)
- {1}
SxIxS
= { arithmetic }
52
= {8*=1}
I

2. br(L)
{ (A.1) and definition of L }

S x }(1) xS
= { arithmetic }
gy 01

11

= { arithmetic }

11

01
= { definition of R }
R

3. br(R)
{ (A.1) and definition of R }
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Sx s1(x8S

= { arithmetic }
11
Sx 1,
= { arithmetic }
10

11
= { definition of L }
L

For the two remaining cases, we assume that M = ) “ Z <

4. br(L x M)
= { arithmetic }
a b
bl’() a+c b+d

)
= { (A1) argl arithmetic }
) b+d a+c'§\
b a
= { arithmetic }

11 d ¢

01 X)baQ
= { definition of R and arithmetic }
RxSx)if’i(xS

= {(AD}
R x br(M)

5. br(R x M)
= { arithmetic }
a+c b+d
br() c d

)
= { (A1) ang arithmetic }

d c
)b+d a+c(§
= { arithmetic }
10 d c
11 X ) b aQ
= { definition of L and arithmetic }
a b
LxSx ) . d <>< S
= {(AD}
L x br(M)

The following lemma is used in the proof of Lemma 2.

Lemma 4. Let M = ) . Z ( Then:

M=MT = b=c¢
Proof of Lemma 4.
M =MT
= { definition of M and M7 }
15



a b <_ a ¢
cd b d
= { arithmetic }
a=a Nb=c N c=bANd=d
= { reflexivity and symmetry of equality; idempotence of conjunction }

b=c
O
Proof of Lemma 2 (page 7). Let M = ) “ Z( Then:
1 1
Mx | (=MTx 1&
= {M:)‘i Z ; arithmetic }
) a+b (_ ) a+c
etd| = ) btd
= { arithmetic
a+b=a+c N c+d=b+d
= { arithmetic }
b=c AN c=b
= { symmetry of equality and idempotence of conjunction }
b=c
= {Lemmad4}
M =MT
O
Proof of Lemma 8 (page 8). Let P = )‘; Z( Then:
M =P x PT
= {p=)} Q
b
M= ) o d ix b d (
= { arithmetic }
_ 0‘2-‘,-b2 ac+bd
M = ) ac+bd c24d? ga
= { definition of transpose }
M =MT
O
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