5,081 research outputs found

    Adaptive hypermedia for education and training

    Get PDF
    Adaptive hypermedia (AH) is an alternative to the traditional, one-size-fits-all approach in the development of hypermedia systems. AH systems build a model of the goals, preferences, and knowledge of each individual user; this model is used throughout the interaction with the user to adapt to the needs of that particular user (Brusilovsky, 1996b). For example, a student in an adaptive educational hypermedia system will be given a presentation that is adapted specifically to his or her knowledge of the subject (De Bra & Calvi, 1998; Hothi, Hall, & Sly, 2000) as well as a suggested set of the most relevant links to proceed further (Brusilovsky, Eklund, & Schwarz, 1998; Kavcic, 2004). An adaptive electronic encyclopedia will personalize the content of an article to augment the user's existing knowledge and interests (Bontcheva & Wilks, 2005; Milosavljevic, 1997). A museum guide will adapt the presentation about every visited object to the user's individual path through the museum (Oberlander et al., 1998; Stock et al., 2007). Adaptive hypermedia belongs to the class of user-adaptive systems (Schneider-Hufschmidt, Kühme, & Malinowski, 1993). A distinctive feature of an adaptive system is an explicit user model that represents user knowledge, goals, and interests, as well as other features that enable the system to adapt to different users with their own specific set of goals. An adaptive system collects data for the user model from various sources that can include implicitly observing user interaction and explicitly requesting direct input from the user. The user model is applied to provide an adaptation effect, that is, tailor interaction to different users in the same context. In different kinds of adaptive systems, adaptation effects could vary greatly. In AH systems, it is limited to three major adaptation technologies: adaptive content selection, adaptive navigation support, and adaptive presentation. The first of these three technologies comes from the fields of adaptive information retrieval (IR) and intelligent tutoring systems (ITS). When the user searches for information, the system adaptively selects and prioritizes the most relevant items (Brajnik, Guida, & Tasso, 1987; Brusilovsky, 1992b)

    Using Shared Workspaces in Higher Education

    Get PDF
    We evaluate the use of BSCW shared workspaces in higher education by means of a comparison of seven courses in which this environment was used. We identify a number of different functions for which the BSCW environment has been used and discuss the relative success of these functions across the cases. In addition, we evaluate the cases with the 4E model of Collis et al. (2000) which predicts the chances of acceptance of ICT in an educational setting. Effectiveness for the given task appears to be a prime success factor for using ICT. But an effective tool may fail due to other factors like ease of use and organisational, socialcultural or technological obstacles. The particular strength of a shared workspace, for which BSCW is most effective and efficient, is providing a repository for objects of collaborative work. Other types of usage showed mixed results. In the future we expect that learning takes place in an integrated, open ICT environment in which different kinds of tools are available for different purposes and users can switch between tools as appropriate. We could observe this in several of the case studies, where non-use of BSCW did not mean that a particular task was not performed, but, on the contrary, a more efficient solution for the same function was available. Shared workspaces have proven to be highly useful, but it seems advisable that their purpose be limited to what they were originally designed for

    Genisa: A web-based interactive learning environment for teaching simulation modelling

    Get PDF
    Intelligent Tutoring Systems (ITS) provide students with adaptive instruction and can facilitate the acquisition of problem solving skills in an interactive environment. This paper discusses the role of pedagogical strategies that have been implemented to facilitate the development of simulation modelling knowledge. The learning environment integrates case-based reasoning with interactive tools to guide tutorial remediation. The evaluation of the system shows that the model for pedagogical activities is a useful method for providing efficient simulation modelling instruction

    Using multimedia to enhance the accessibility of the learning environment for disabled students: reflections from the Skills for Access project

    Get PDF
    As educators' awareness of their responsibilities towards ensuring the accessibility of the learning environment to disabled students increases, significant debate surrounds the implications of accessibility requirements on educational multimedia. There would appear to be widespread concern that the fundamental principles of creating accessible web‐based materials seem at odds with the creative and innovative use of multimedia to support learning and teaching, as well as concerns over the time and cost of providing accessibility features that can hold back resource development and application. Yet, effective use of multimedia offers a way of enhancing the accessibility of the learning environment for many groups of disabled students. Using the development of ‘Skills for Access’, a web resource supporting the dual aims of creating optimally accessible multimedia for learning, as an example, the attitudinal, practical and technical challenges facing the effective use of multimedia as an accessibility aid in a learning environment will be explored. Reasons why a holistic approach to accessibility may be the most effective in ensuring that multimedia reaches its full potential in enabling and supporting students in learning, regardless of any disability they may have, will be outlined and discussed

    A generic architecture for interactive intelligent tutoring systems

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University, 07/06/2001.This research is focused on developing a generic intelligent architecture for an interactive tutoring system. A review of the literature in the areas of instructional theories, cognitive and social views of learning, intelligent tutoring systems development methodologies, and knowledge representation methods was conducted. As a result, a generic ITS development architecture (GeNisa) has been proposed, which combines the features of knowledge base systems (KBS) with object-oriented methodology. The GeNisa architecture consists of the following components: a tutorial events communication module, which encapsulates the interactive processes and other independent computations between different components; a software design toolkit; and an autonomous knowledge acquisition from a probabilistic knowledge base. A graphical application development environment includes tools to support application development, and learning environments and which use a case scenario as a basis for instruction. The generic architecture is designed to support client-side execution in a Web browser environment, and further testing will show that it can disseminate applications over the World Wide Web. Such an architecture can be adapted to different teaching styles and domains, and reusing instructional materials automatically can reduce the effort of the courseware developer (hence cost and time) in authoring new materials. GeNisa was implemented using Java scripts, and subsequently evaluated at various commercial and academic organisations. Parameters chosen for the evaluation include quality of courseware, relevancy of case scenarios, portability to other platforms, ease of use, content, user-friendliness, screen display, clarity, topic interest, and overall satisfaction with GeNisa. In general, the evaluation focused on the novel characteristics and performances of the GeNisa architecture in comparison with other ITS and the results obtained are discussed and analysed. On the basis of the experience gained during the literature research and GeNisa development and evaluation. a generic methodology for ITS development is proposed as well as the requirements for the further development of ITS tools. Finally, conclusions are drawn and areas for further research are identified
    corecore