17,077 research outputs found

    Tools for Address-Event-Representation Communication Systems and Debugging

    Get PDF
    Address-Event-Representation (AER) is a communications protocol for transferring spikes between bio-inspired chips. Such systems may consist of a hierarchical structure with several chips that transmit spikes among them in real time, while performing some processing. To develop and test AER based systems it is convenient to have a set of instruments that would allow to: generate AER streams, monitor the output produced by neural chips and modify the spike stream produced by an emitting chip to adapt it to the requirements of the receiving elements. In this paper we present a set of tools that implement these functions developed in the CAVIAR EU project.European Commission IST-2001-34124Ministerio de Ciencia y Tecnología TIC-2003-08164-C03-0

    Multi-task Implementation for Image Reconstruction of an AER Communication

    Get PDF
    Address-Event-Representation (AER) is a communication protocol for transferring spikes between bio-inspired chips. Such systems may consist of a hierarchical structure with several chips that transmit spikes among them in real time, while performing some processing. There exist several AER tools to help in developing and testing AER based systems. These tools require the use of a computer to allow the processing of the event information, reaching very high bandwidth at the AER communication level. We propose to use an embedded platform based on multi-task operating system to allow both, the AER communication and the AER processing without a laptop or a computer. We have connected and programmed a Gumstix computer to process Address- Event information and measured the performance referred to the previous AER tools solutions. In this paper, we present and study the performance of a new philosophy of a frame-grabber AER tool based on a multi-task environment, composed by the Intel XScale processor governed by an embedded GNU/Linux system.Ministerio de Ciencia e Innovación TEC2006-11730-C03-0

    AER tools for Communications and Debugging

    Get PDF
    Address-event-representation (AER) is a communications protocol for transferring spikes between bio-inspired chips. Such systems may consist of a hierarchical structure with several chips that transmit spikes among them in real time, while performing some processing. To develop and test AER based systems it is convenient to have a set of instruments that would allow to: generate AER streams, monitor the output produced by neural chips and modify the spike stream produced by an emitting chip to adapt it to the requirements of the receiving elements. In this paper we present a set of tools that implement these functions developed in the CAVIAR EU projectUnión Europea IST-2001-34124 (CAVIAR)Ministerio de Ciencia y Tecnología TIC-2003-08164-C03-0

    Monitoring extensions for component-based distributed software

    Get PDF
    This paper defines a generic class of monitoring extensions to component-based distributed enterprise software. Introducing a monitoring extension to a legacy application system can be very costly. In this paper, we identify the minimum support for application monitoring within the generic components of a distributed system, necessary for rapid development of new monitoring extensions. Furthermore, this paper offers an approach for design and implementation of monitoring extensions at reduced cost. A framework of basic facilities supporting the monitoring extensions is presented. These facilities handle different aspects critical to the monitoring process, such as ordering of the generated monitoring events, decoupling of the application components from the components of the monitoring extensions, delivery of the monitoring events to multiple consumers, etc.\ud The work presented in this paper is being validated in the prototype of a large distributed system, where a specific monitoring extension is built as a tool for debugging and testing the application behaviour.\u

    Spike Processing on an Embedded Multi-task Computer: Image Reconstruction

    Get PDF
    There is an emerging philosophy, called Neuro-informatics, contained in the Artificial Intelligence field, that aims to emulate how living beings do tasks such as taking a decision based on the interpretation of an image by emulating spiking neurons into VLSI designs and, therefore, trying to re-create the human brain at its highest level. Address-Event-Representation (AER) is a communication protocol that has embedded part of the processing. It is intended to transfer spikes between bioinspired chips. An AER based system may consist of a hierarchical structure with several chips that transmit spikes among them in real-time, while performing some processing. There are several AER tools to help to develop and test AER based systems. These tools require the use of a computer to allow the higher level processing of the event information, reaching very high bandwidth at the AER communication level. We propose the use of an embedded platform based on a multi-task operating system to allow both, the AER communication and processing without the requirement of either a laptop or a computer. In this paper, we present and study the performance of a new philosophy of a frame-grabber AER tool based on a multi-task environment. This embedded platform is based on the Intel XScale processor which is governed by an embedded GNU/Linux system. We have connected and programmed it for processing Address-Event information from a spiking generator.Ministerio de Educación y Ciencia TEC2006-11730-C03-0

    Visual Spike-based Convolution Processing with a Cellular Automata Architecture

    Get PDF
    this paper presents a first approach for implementations which fuse the Address-Event-Representation (AER) processing with the Cellular Automata using FPGA and AER-tools. This new strategy applies spike-based convolution filters inspired by Cellular Automata for AER vision processing. Spike-based systems are neuro-inspired circuits implementations traditionally used for sensory systems or sensor signal processing. AER is a neuromorphic communication protocol for transferring asynchronous events between VLSI spike-based chips. These neuro-inspired implementations allow developing complex, multilayer, multichip neuromorphic systems and have been used to design sensor chips, such as retinas and cochlea, processing chips, e.g. filters, and learning chips. Furthermore, Cellular Automata is a bio-inspired processing model for problem solving. This approach divides the processing synchronous cells which change their states at the same time in order to get the solution.Ministerio de Educación y Ciencia TEC2006-11730-C03-02Ministerio de Ciencia e Innovación TEC2009-10639-C04-02Junta de Andalucía P06-TIC-0141

    Embedding Multi-Task Address-Event- Representation Computation

    Get PDF
    Address-Event-Representation, AER, is a communication protocol that is intended to transfer neuronal spikes between bioinspired chips. There are several AER tools to help to develop and test AER based systems, which may consist of a hierarchical structure with several chips that transmit spikes among them in real-time, while performing some processing. Although these tools reach very high bandwidth at the AER communication level, they require the use of a personal computer to allow the higher level processing of the event information. We propose the use of an embedded platform based on a multi-task operating system to allow both, the AER communication and processing without the requirement of either a laptop or a computer. In this paper, we present and study the performance of an embedded multi-task AER tool, connecting and programming it for processing Address-Event information from a spiking generator.Ministerio de Ciencia e Innovación TEC2006-11730-C03-0

    An AER-Based Actuator Interface for Controlling an Anthropomorphic Robotic Hand

    Get PDF
    Bio-Inspired and Neuro-Inspired systems or circuits are a relatively novel approaches to solve real problems by mimicking the biology in its efficient solutions. Robotic also tries to mimic the biology and more particularly the human body structure and efficiency of the muscles, bones, articulations, etc. Address-Event-Representation (AER) is a communication protocol for transferring asynchronous events between VLSI chips, originally developed for neuro-inspired processing systems (for example, image processing). Such systems may consist of a complicated hierarchical structure with many chips that transmit data among them in real time, while performing some processing (for example, convolutions). The information transmitted is a sequence of spikes coded using high speed digital buses. These multi-layer and multi-chip AER systems perform actually not only image processing, but also audio processing, filtering, learning, locomotion, etc. This paper present an AER interface for controlling an anthropomorphic robotic hand with a neuro-inspired system.Unión Europea IST-2001-34124 (CAVIAR)Ministerio de Ciencia y Tecnología TIC-2003-08164-C03-0
    corecore