
Tools for Address-Event-Representation Communication
Systems and Debugging

M. Rivas, F. Gomez-Rodriguez, R. Paz, A. Linares-Barranco,
S. Vicente, and D. Cascado

Departamento de Arquitectura y Tecnología de Computadores, Universidad de Sevilla,
Av. Reina Mercedes s/n, 41012-Sevilla, Spain

{mrivas, gomezroz, rpaz, alinares, satur, danic}@atc.us.es
http://www.atc.us.es

Abstract. Address-Event-Representation (AER) is a communications protocol
for transferring spikes between bio-inspired chips. Such systems may consist of
a hierarchical structure with several chips that transmit spikes among them in
real time, while performing some processing. To develop and test AER based
systems it is convenient to have a set of instruments that would allow to:
generate AER streams, monitor the output produced by neural chips and modify
the spike stream produced by an emitting chip to adapt it to the requirements of
the receiving elements. In this paper we present a set of tools that implement
these functions developed in the CAVIAR EU project.

1 Introduction

Address-Event-Representation (AER) was proposed in 1991 by Sivilotti [1] for
transferring the state of an array of neurons from one chip to another. It uses mixed
analog and digital principles and exploits pulse density modulation for coding
information. The state of the neurons is a continuous time varying analog signal.

Fig. 1 explains the principle behind the AER. The emitter chip contains an array of
cells (like, e.g., an imager or artificial retina chip) where each pixel shows a state that
changes with a slow time constant (in the order of milliseconds). Each pixel includes
an oscillator that generates pulses of minimum width (a few nanoseconds). Each time
a pixel generates a pulse (called "event"), it communicates with the periphery and its
address is placed on the external digital bus (the AER bus). Handshaking lines
(Acknowledge and Request) are used for completing the communication.

Fig. 1. AER inter-chip communication scheme

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/158966546?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

In the receiver chip the pulses are directed to the pixels or cells whose address was
on the bus. This way, pixels with the same address in the emitter and receiver chips
will "see" the same pulse stream. The receiver cell integrates the pulses and
reconstructs the original low frequency continuous-time waveform.

Transmitting the pixel addresses allows performing extra operations on the images
while they travel from one chip to another. For example, inserting memories (e.g.
EEPROM) allows transformations of images.

There is a growing community of AER protocol users for bio-inspired applications
in vision and audition systems, as demonstrated by the success in the last years of the
AER group at the Neuromorphic Engineering Workshop series [2]. The goal of this
community is to build large multi-chip hierarchically structured systems capable of
performing complicated array data processing in real time. The CAVIAR EU project
has the objective to demonstrate this technology by targeting and following a moving
ball. The planned AER system under CAVIAR uses the following AER chips: one
Retina, four Convolutions, four Winner-Take-All (Object) and one Learning chip. To
make possible the right communication of these chips and for debugging purposes it
is essential to have a set of instruments that would allow to:

− Sequence: Produce synthetic AER event streams that can be used as controlled
inputs while testing and adjusting a chip or set of chips.

− Monitor: Observe the output of any element in the system.
− Map: Alter the stream produced by an emitter and send the modified stream to a

receiver

Fig. 2. AER tools usage scenario

For these purposes we have designed and implemented two different instruments: a
PCI board capable of sequencing and monitoring events at a rate of over 15Mevents/s
and a versatile board that can be used for sequencing, monitoring and mapping. This
last board can be used either in a stand alone mode or connected to an external
computer through a USB bus. A possible scenario for these tools is shown in Fig. 2
where a computer with a PCI-AER board produces output for AER chip1. The output

from this chip is remapped by a USB-AER board and fetched to AER chip 2. The
stream produced by chip 2 is monitored by another USB-AER board which can send
its output directly to a VGA monitor or to a computer through USB bus.

To be useful for debugging an AER tool should be able to receive and also send a
long sequence of events interfering as little as possible with the system under test.

As neurons have the information coded in the frequency (or timing) of their spikes,
the pixels that transmit their address through an AER bus also have their information
coded in the frequency of appearance of those addresses in the bus. Therefore, inter-
spike-intervals (ISIs) are critical for this communication mechanism. Thus, a well
designed tool shouldn’t modify the ISIs of the AER.

Sections 2 and 3 present the PCI and the USB solutions and their applications in
AER testing. Section 4 presents a Switch-AER. Section 5 presents a small version of
a USB board with lower capabilities and performance, but very simple to use. And
finally in section 6 we conclude with two examples of connectivity.

2 PCI-AER Interface

Before the development of our tools the only available PCI-AER interface board was
developed by Dante at ISS-Rome (See [3]). This board is very interesting as it embeds
all the requirements mentioned above: AER generation, remapping and monitoring.
Anyhow its performance is limited to 1Mevent/s approximately. In realistic
experiments software overheads reduce this value even further. In many cases these
values are acceptable but, currently many address event chips can produce (or accept)
much higher spike rates.
 As the Computer interfacing elements are mainly a monitoring and testing feature
in many address event systems, the instruments used for these purposes should not
delay the neuromorphic chips in the system. Thus, speed requirements are at least 10
times higher than those of the original PCI-AER board. Several alternatives are
possible to meet these goals: extended PCI buses, bus mastering or hardware based
Frame to AER and AER to Frame conversion.
 The previously available PCI-AER board uses polled I/O to transfer data to and
from the board. This is possibly the main limiting factor on its performance. To
increase PCI bus mastering is the only alternative. The hardware and driver
architecture of a bus mastering capable board is significantly different, and more
complex, than a polling or interrupt based implementation.
 The theoretical maximum PCI32/33 bandwidth is around 133Mbytes/s. This would
allow for approximately 44Mevent/s considering 2 bytes per address and two bytes
for timing information. Realistic figures in practice are closer to 20Mbyte/s. Thus, in
those cases where the required throughput is higher a possible solution is to transmit
the received information by hardware based conversion to/from a frame based
representation. Although this solution is adequate in many cases, there are
circumstances where the developers want to know precisely the timing of each event,
thus both alternatives should be preserved.
 The physical implementation of all the steps is equal. They differ in the VHDL
FPGA code and in the operating system dependent driver. The first design was a
VIRTEX based board which was completely redesigned after the first tests. It was

established that most of the functionality, demanded by the users, could be supported
by the smaller devices in the less expensive SPARTAN-II family. The Spartan
Version of the board is shown in Fig. 3.
 Currently a Windows driver that implements bus mastering is being tested. The
Linux version with bus mastering is still under development. An API that is
compatible, as much as permitted by the different functionality, with that used in the
current PCI-AER board has been implemented. MEX files to control the board from
MATLAB have also been developed.

Current performance of PCI-AER board is around 15 Mevents/second using PCI
mastering capabilities.

Fig. 3. CAVIAR PCI-AER board

3 USB-AER

The CAVIAR PCI-AER board can perform Address Event sequencing and
monitoring functions but has no hardware mapping capabilities. Although software
based mapping is feasible a specific device for this purpose is needed if we want to
build AER systems that can operate without requiring any standard computer. This
standalone operating mode requires to be able to load the FPGA and the mapping
RAM from some type of non volatile storage that can be easily modified by the users.
MMC/SD cards used in digital cameras are a very attractive possibility. However in
the development stage the users prefer to load the board directly from a computer and,
for this purpose USB seems the most suitable solution.
 Many AER researchers would like to demonstrate their systems using instruments
that could be easily interfaced to a laptop computer. This requirement can also be
supported with the USB-AER board as it includes a relatively large FPGA that can be
loaded from MMC/SD or USB, a large SRAM bank and two AER ports. Thus the
board can be used also as a sequencer or a monitor. Due to the bandwidth limitations
of full speed USB (12Mbit/s) hardware based event to frame conversion is essential in
this board for high, or even moderate, event rates.
 The USB-AER board is based around a Spartan-II 200 Xilinx FPGA, with a
512K*32 12ns SRAM memory bank. The board uses a Silicon Laboratories

C8051F320 microcontroller to implement the USB and the MMC/SD interface. A
simple VGA monitor interface is also provided to allow the board to act as a monitor
(frame grabber).
 The board will act as a different device according to the module that is loaded in
the FPGA either through a MMC/SD card or from the USB bus. Currently the
following Modes are implemented:

− Mapper: 1 event to 1 event and 1 event to several events.
− Monitor (frame-grabber): using either USB or VGA as output. For the VGA output

there are two possibilities: B/W VGA, using the VGA connector of the board. And
Gray VGA, using a VGA-DAC board connected to the out-AER connector of the
board.

− Sequencer: based on hardware frame to AER conversion using the Random or
Exhaustive methods [4][5][6]. Can produce up to 25 Mevents/second. (40 ns per
event).

− Datalogger: allows to capture sequences of up to 512K events with timestamps and
send them to the PC offline through USB bus.

− Player (under development): to play up to 512Kevents with their timestamps.

These two modules are very interesting when a researcher wants to use the output
stream produced by a chip from another researcher (probably in other country) as
input to his or her chip.
 This new board was interfaced in Telluride 04 [7] to the current version of the
CAVIAR retina and to an imager developed at JHU. Later in the CAVIAR meeting in
September 04 it was interfaced to the remaining project chips. The USB-AER board
is shown in Fig. 4.

Fig. 4. USB-AER Board

 A simple interface to control this board is available under windows. It allows
loading modules into the FPGA, uploading or downloading data to the FPGA, and
showing the received images when the board acts as a monitor. There is also available
a MATLAB interface that support the same functionality.
 A Linux driver for the USB-AER is currently under test. With this driver the USB-
AER board can be easily integrated with several MATLAB applications developed at
INI [8].

4 AER-Switch Board

A 4 to 1 and 1 to 4 AER-switch is presented in this paper. This board allows:

- The connection of more complex AER systems.
- An easier debugging by inserting PCI-AER or USB-AER board without

modifying the structure of the global system to be tested.

This board has a CPLD as a communication centre, that manages the different modes
and controls asynchronously the protocol lines. It can work in 2 different modes: 4
input, 1 output mode and 1 input, 4 output mode, both in unicast mode (selecting one
output) or broadcast mode. This functionality should be configured by jumpers. There
are 5 different AER ports, where one of them works always as an output, and another
as an input. The others three are bidirectional. Fig. 5 shows the current version of this
board.

Fig. 5. AER-Switch Board

5 Mini-USB Board

For those tests or applications where it is not needed high speed performance, a small
version of the USB board is available. This one doesn’t have FPGA, nor MMC/SD
card. This board can be connected to the PC through the USB bus, and all the
functionality (Monitor or Sequencer) has to be programmed into the microcontroller
under C code. Fig. 6 shows the current version of this board. The board has been
developed also under CAVIAR project by INI partner and authors.

Fig. 6. AER-Switch Board

Fig. 7. Two demonstration Scenarios

Fig. 8. Scenario Photograph

PCI-AER
Random
generator

WTA chip

USB-AER
framegrabber

6 Conclusions

A set of tools has been developed that allow efficient testing and demonstration of
address event based systems. Two demonstration scenarios are shown in Fig. 7. In the
left case a PCI-AER board is generating a stream of events from a digital frame, using
a hardware synthetic method. This sequence is used to feed a WTA filter chip,
developed at INI. The output of the WTA chip is captured using a USB-AER board
configured as a frame-grabber. A photograph of this scenario is shown in fig. 8.

On the right a USB-AER is working as a frame to AER sequencer to feed a AER
chip. This chip receives also the transformed output of another AER chip using the
AER-Switch. The output of the second chip can be viewed in the laptop screen, using
another USB-AER as a monitor.

In this scenario only the presented tools are shown. In real world cases the tools are
used to evaluate or tune neural chips. In the CAVIAR project the chips have been
interfaced to two different retinas, a convolution chip, a winner take-all (object) chip
and a learning chip.

Acknowledgements

This work was in part supported by EU project IST-2001-34124 (CAVIAR), and
Spanish project TIC-2003-08164-C03-02 (SAMANTA).

References

1. M. Sivilotti, Wiring Considerations in analog VLSI Systems with Application to Field-
Programmable Networks, Ph.D. Thesis, California Institute of Technology, Pasadena CA,
1991.

2. A. Cohen, R. Douglas, C. Koch, T. Sejnowski, S. Shamma, T. Horiuchi, and G. Indiveri,
Report to the National Science Foundation: Workshop on Neuromorphic Engineering,
Telluride, Colorado, USA, June-July 2001. [www.ini.unizh.ch/telluride]

3. V. Dante. “PCI AER Adapter board”, http://neural.iss.infn.it/Board/draft.html.
4. A. Linares-Barranco. Estudio y evaluación de interfaces para la conexión de sistemas

neuromórficos mediante Address- Event-Representation. Ph.D. Thesis, University of
Seville, Spain, 2003

5. A. Linares-Barranco, R. Senhadji-Navarro, I. García-Vargas, F. Gómez-Rodríguez, G.
Jimenez and A. Civit. Synthetic Generation of Address-Event for Real-Time Image
Processing. ETFA 2003, Lisbon, September. Proceedings, Vol. 2, pp. 462-467.

6. Linares-Barranco, A.; Jimenez-Moreno, G.; Civit-Ballcels, A.; Linares-Barranco, B.; On
synthetic AER generation. ISCAS '04. Proceedings of the IEEE 2004 May 2004 Pages:V-
784 - V-787 Vol.5

7. Avis Cohen, et.al., Report on the 2004 Workshop On Neuromorphic Engineering, Telluride,
CO. June - July , 2004 [www.ini.unizh.ch/telluride/previous/report04.pdf]

8. M. Oster, Serverbased Software Architecture for AER systems
[http://www.ini.unizh.ch/~mao/AerSoftware/SoftwareOverview.pdf]

	Introduction
	PCI-AER Interface
	USB-AER
	AER-Switch Board
	Mini-USB Board
	Conclusions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

