2,432 research outputs found

    VRIA: A Web-based Framework for Creating Immersive Analytics Experiences

    Get PDF
    We present, a Web-based framework for creating Immersive Analytics (IA) experiences in Virtual Reality.is built upon WebVR, A-Frame, React and D3.js, and offers a visualization creation workflow which enables users, of different levels of expertise, to rapidly develop Immersive Analytics experiences for the Web. The use of these open-standards Web-based technologies allows us to implement VR experiences in a browser and offers strong synergies with popular visualization libraries, through the HTMLDocument Object Model (DOM). This makesubiquitous and platform-independent. Moreover, by using WebVR’s progressive enhancement, the experiencescreates are accessible on a plethora of devices. We elaborate on our motivation for focusing on open-standards Web technologies, present thecreation workflow and detail the underlying mechanics of our framework. We also report on techniques and optimizations necessary for implementing Immersive Analytics experiences on the Web, discuss scalability implications of our framework, and present a series of use case applications to demonstrate the various features of . Finally, we discuss current limitations of our framework, the lessons learned from its development, and outline further extensions

    VR-Viz: Visualization system for data visualization in VR

    Get PDF
    Recent years have seen fast growth in big data. The datasets are not only exponentially larger, but also more complex (multi-dimensional). Because of the scale and complexity of these datasets, their visualization poses significant challenges. As a solution, this thesis explores how virtual reality (VR) and 3D visualization can be used to visualize complex and large datasets, and proposes a visualization system for designing visualizations in VR. First, this thesis examines concepts of information visualization, VR, and 3D information visualization. Next, it explores visualization systems for 3D visualization and three examples of information visualization in VR and discusses their successes and short comings. Finally, in order to make VR information visualization accessible to a wider audience, a tool is introduced to simplify the process of designing information visualization in VR for beginners. The tool can also be used as a quick prototyping tool by more advanced users

    RSVP: Remote Sensing Visualization Platform for Data Fusion

    Get PDF
    Remote sensing involves the acquisition of data in terms of images, point clouds and so on. One of the major challenges with remote sensing datasets is managing and understanding the massive amounts of data that is collected. In many instances, scientists acquire data for the same region using varied sensing devices. Scientists would like to fuse and examine this data acquired from different sensing devices to further explore the region under investigation. Immersive visualization has emerged as an ideal solution for three-dimensional exploration of multimodal remote sensing data. The ability to manipulate data interactively in true 3D (using stereo) with interfaces designed specifically for the immersive environment can significantly speed up the exploration process. We have developed a visualization platform that facilitates the fusion of multiple modalities of remote sensing data and allows a scientist to learn more about the data obtained from different sensing devices. It is currently being used in research labs at Idaho State University and at the Idaho National Labs

    3D Visualization Architecture for Building Applications Leveraging an Existing Validated Toolkit

    Get PDF
    The diagnostic radiology space and healthcare in general is a slow adopter of new software technologies and patterns. Despite the widespread embrace of mobile technology in recent years, altering the manner in which societies in developed countries live and communicate, diagnostic radiology has not unanimously adopted mobile technology for remote diagnostic review. Desktop applications in the diagnostic radiology space commonly leverage a validated toolkit. Such toolkits not only simplify desktop application development but minimize the scope of application validation. For these reasons, such a toolkit is an important piece of a company’s software portfolio. This thesis investigated an approach for leveraging a Java validated toolkit for the purpose of creating numerous ubiquitous applications for 3D diagnostic radiology. Just as in the desktop application space, leveraging such a toolkit minimizes the scope of ubiquitous application validation. Today, the most standard execution environment in an electronic device is an Internet browser; therefore, a ubiquitous application is web application. This thesis examines an approach where ubiquitous applications can be built using a viewport construct provided by a client-side ubiquitous toolkit that hides the client-server communication between the ubiquitous toolkit and the validated visualization toolkit. Supporting this communication is a Java RESTful web service wrapper around the validated visualization toolkit that essentially “webifies” the validated toolkit. Overall, this ubiquitous viewport is easily included in a ubiquitous application and supports remote visualization and manipulation of volumes on the widest range of electronic devices. Overall, this thesis provided a flexible and scalable approach to developing ubiquitous applications that leverage an existing validated toolkit that utilizes industry standard technologies, patterns, and best practices. This approach is significant because it supports easy ubiquitous application development and minimizes the scope of application validation, and allows medical professionals easy anytime and anywhere access to diagnostic images

    Interactive Camera Network Design using a Virtual Reality Interface

    Full text link
    Traditional literature on camera network design focuses on constructing automated algorithms. These require problem specific input from experts in order to produce their output. The nature of the required input is highly unintuitive leading to an unpractical workflow for human operators. In this work we focus on developing a virtual reality user interface allowing human operators to manually design camera networks in an intuitive manner. From real world practical examples we conclude that the camera networks designed using this interface are highly competitive with, or superior to those generated by automated algorithms, but the associated workflow is much more intuitive and simple. The competitiveness of the human-generated camera networks is remarkable because the structure of the optimization problem is a well known combinatorial NP-hard problem. These results indicate that human operators can be used in challenging geometrical combinatorial optimization problems given an intuitive visualization of the problem.Comment: 11 pages, 8 figure

    Sounds of silence: How to animate virtual worlds with sound

    Get PDF
    Sounds are an integral and sometimes annoying part of our daily life. Virtual worlds which imitate natural environments gain a lot of authenticity from fast, high quality visualization combined with sound effects. Sounds help to increase the degree of immersion for human dwellers in imaginary worlds significantly. The virtual reality toolkit of IGD (Institute for Computer Graphics) features a broad range of standard visual and advanced real-time audio components which interpret an object-oriented definition of the scene. The virtual reality system 'Virtual Design' realized with the toolkit enables the designer of virtual worlds to create a true audiovisual environment. Several examples on video demonstrate the usage of the audio features in Virtual Design

    Analysis domain model for shared virtual environments

    Get PDF
    The field of shared virtual environments, which also encompasses online games and social 3D environments, has a system landscape consisting of multiple solutions that share great functional overlap. However, there is little system interoperability between the different solutions. A shared virtual environment has an associated problem domain that is highly complex raising difficult challenges to the development process, starting with the architectural design of the underlying system. This paper has two main contributions. The first contribution is a broad domain analysis of shared virtual environments, which enables developers to have a better understanding of the whole rather than the part(s). The second contribution is a reference domain model for discussing and describing solutions - the Analysis Domain Model
    • …
    corecore