25 research outputs found

    Multifrequency magnetic resonance elastography-based tomoelastography of the parotid glands–feasibility and reference values

    Get PDF
    Objectives: Accurate radiological differentiation of parotid tumors remains challenging despite recent technical advances in quantitative medical imaging. Multifrequency magnetic resonance elastography (MRE) could provide additional information on viscoelastic properties of normal and abnormal biological tissues. This study investigates the feasibility of MRE of the parotid glands in healthy participants and provides first reference values. Methods: 20 healthy participants underwent multifrequency MRE of both parotid glands at 3 Tesla. Shear waves at frequencies of 25, 30, 40, and 50 Hz were introduced into the participants' heads through the occiput using pressurized-air actuators. Shear wave speed (SWS) and loss angle of the shear modulus (φ) were reconstructed by tomoelastography post-processing as surrogate parameters for tissue stiffness and viscosity or fluidity. 10 participants underwent repeated MRE to determine test-retest reliability based on intraclass correlation coefficients. Results: All MRE datasets acquired could be included in the analysis. Mean SWS was 0.97 ± 0.13 m/s, and mean φ was 0.59 ± 0.05 rad, each for both sides combined and without notable lateral difference (p = 0.88/0.87). Test-retest reliability was good for SWS (ICC = 0.84 for both sides/ICC = 0.77 for the right side/ICC = 0.79 for the left side) and good to excellent for φ(ICC = 0.94/0.86/0.90). Conclusions: Multifrequency MRE of the parotid glands is feasible and reliable. This technique, therefore, is a promising method for investigating the viscoelastic properties of salivary gland tumors in future studies

    Spatial heterogeneity of hepatic fibrosis in primary sclerosing cholangitis vs. viral hepatitis assessed by MR elastography

    Get PDF
    Spatial heterogeneity of hepatic fibrosis in primary sclerosing cholangitis (PSC) in comparison to viral hepatitis was assessed as a potential new biomarker using MR elastography (MRE). In this proof-of-concept study, we hypothesized a rather increased heterogeneity in PSC and a rather homogeneous distribution in viral hepatitis. Forty-six consecutive subjects (PSC: n=20, viral hepatitis: n=26) were prospectively enrolled between July 2014 and April 2017. Subjects underwent multifrequency MRE (1.5 T) using drive frequencies of 35-60 Hz and generating shear-wave speed (SWS in m/s) maps as a surrogate of stiffness. The coefficient of variation (CV in %) was determined to quantify fibrosis heterogeneity. Mean SWS and CV were 1.70 m/s and 21% for PSC, and 1.84 m/s and 18% for viral hepatitis. Fibrosis heterogeneity was significantly increased for PSC (P=0.04) while no difference was found for SWS of PSC and viral hepatitis (P=0.17). Global hepatic stiffness was similar in PSC and viral hepatitis groups, but spatial heterogeneity may reveal spatial patterns of stiffness changes towards enhanced biophysics-based diagnosis by MRI

    Cerebral Ultrasound Time-Harmonic Elastography Reveals Softening of the Human Brain Due to Dehydration

    Get PDF
    Hydration influences blood volume, blood viscosity, and water content in soft tissues - variables that determine the biophysical properties of biological tissues including their stiffness. In the brain, the relationship between hydration and stiffness is largely unknown despite the increasing importance of stiffness as a quantitative imaging marker. In this study, we investigated cerebral stiffness (CS) in 12 healthy volunteers using ultrasound time-harmonic elastography (THE) in different hydration states: (i) during normal hydration, (ii) after overnight fasting, and (iii) within 1 h of drinking 12 ml of water per kg body weight. In addition, we correlated shear wave speed (SWS) with urine osmolality and hematocrit. SWS at normal hydration was 1.64 ± 0.02 m/s and decreased to 1.57 ± 0.04 m/s (p < 0.001) after overnight fasting. SWS increased again to 1.63 ± 0.01 m/s within 30 min of water drinking, returning to values measured during normal hydration (p = 0.85). Urine osmolality at normal hydration (324 ± 148 mOsm/kg) increased to 784 ± 107 mOsm/kg (p < 0.001) after fasting and returned to normal (288 ± 128 mOsm/kg, p = 0.83) after water drinking. SWS and urine osmolality correlated linearly (r = -0.68, p < 0.001), while SWS and hematocrit did not correlate (p = 0.31). Our results suggest that mild dehydration in the range of diurnal fluctuations is associated with significant softening of brain tissue, possibly due to reduced cerebral perfusion. To ensure consistency of results, it is important that cerebral elastography with a standardized protocol is performed during normal hydration

    Inversion‐recovery MR elastography of the human brain for improved stiffness quantification near fluid–solid boundaries

    Get PDF
    Purpose: In vivo MR elastography (MRE) holds promise as a neuroimaging marker. In cerebral MRE, shear waves are introduced into the brain, which also stimulate vibrations in adjacent CSF, resulting in blurring and biased stiffness values near brain surfaces. We here propose inversion-recovery MRE (IR-MRE) to suppress CSF signal and improve stiffness quantification in brain surface areas. Methods: Inversion-recovery MRE was demonstrated in agar-based phantoms with solid-fluid interfaces and 11 healthy volunteers using 31.25-Hz harmonic vibrations. It was performed by standard single-shot, spin-echo EPI MRE following 2800-ms IR preparation. Wave fields were acquired in 10 axial slices and analyzed for shear wave speed (SWS) as a surrogate marker of tissue stiffness by wavenumber-based multicomponent inversion. Results: Phantom SWS values near fluid interfaces were 7.5 ± 3.0% higher in IR-MRE than MRE (P = .01). In the brain, IR-MRE SNR was 17% lower than in MRE, without influencing parenchymal SWS (MRE: 1.38 ± 0.02 m/s; IR-MRE: 1.39 ± 0.03 m/s; P = .18). The IR-MRE tissue-CSF interfaces appeared sharper, showing 10% higher SWS near brain surfaces (MRE: 1.01 ± 0.03 m/s; IR-MRE: 1.11 ± 0.01 m/s; P < .001) and 39% smaller ventricle sizes than MRE (P < .001). Conclusions: Our results show that brain MRE is affected by fluid oscillations that can be suppressed by IR-MRE, which improves the depiction of anatomy in stiffness maps and the quantification of stiffness values in brain surface areas. Moreover, we measured similar stiffness values in brain parenchyma with and without fluid suppression, which indicates that shear wavelengths in solid and fluid compartments are identical, consistent with the theory of biphasic poroelastic media

    Real‐time MR elastography for viscoelasticity quantification in skeletal muscle during dynamic exercises

    Get PDF
    Purpose: To develop and test real-time MR elastography for viscoelastic parameter quantification in skeletal muscle during dynamic exercises. Methods: In 15 healthy participants, 6 groups of lower-leg muscles (tibialis anterior, tibialis posterior, peroneus, extensor digitorum longus, soleus, gastrocnemius) were investigated by real-time MR elastography using a single-shot, steady-state spiral gradient-echo pulse sequence and stroboscopic undersampling of harmonic vibrations at 40 Hz frequency. One hundred and eighty consecutive maps of shear-wave speed and loss angle (φ) covering 30.6 s of total acquisition time at 5.9-Hz frame rate were reconstructed from 360 wave images encoding 2 in-plane wave components in an interleaved manner. The experiment was carried out twice to investigate 2 exercises-isometric plantar flexion and isometric dorsiflexion-each performed over 10 s between 2 resting periods. Results: Activation of lower-extremity muscles was associated with increasing viscoelastic parameters shear-wave speed and phi, both reflecting properties related to the transverse direction relative to fiber orientation. Major viscoelastic changes were observed in soleus muscle during plantar flexion (shear-wave speed: 20.0% ± 3.6%, φ: 41.3% ± 12.0%) and in the tibialis anterior muscle during dorsiflexion (41.8% ± 10.2%, φ: 27.9% ± 2.8%; all P < .0001). Two of the muscles analyzed were significantly activated by plantar flexion and 4 by dorsiflexion based on shear-wave speed, whereas φ changed significantly in 5 muscles during both exercises. Conclusion: Real-time MR elastography allows mapping of dynamic, nonperiodic viscoelasticity changes in soft tissues such as voluntary muscle with high spatial and temporal resolution. Real-time MR elastography thus opens new horizons for the in vivo study of physiological processes in soft tissues toward functional elastography

    Reduction of breathing artifacts in multifrequency magnetic resonance elastography of the abdomen

    Get PDF
    Purpose: With abdominal magnetic resonance elastography (MRE) often suffering from breathing artifacts, it is recommended to perform MRE during breath-hold. However, breath-hold acquisition prohibits extended multifrequency MRE examinations and yields inconsistent results when patients cannot hold their breath. The purpose of this work was to analyze free-breathing strategies in multifrequency MRE of abdominal organs. Methods: Abdominal MRE with 30, 40, 50, and 60 Hz vibration frequencies and single-shot, multislice, full wave-field acquisition was performed four times in 11 healthy volunteers: once with multiple breath-holds and three times during free breathing with ungated, gated, and navigated slice adjustment. Shear wave speed maps were generated by tomoelastography inversion. Image registration was applied for correction of intrascan misregistration of image slices. Sharpness of features was quantified by the variance of the Laplacian. Results: Total scan times ranged from 120 seconds for ungated free-breathing MRE to 376 seconds for breath-hold examinations. As expected, free-breathing MRE resulted in larger organ displacements (liver, 4.7 ± 1.5 mm; kidneys, 2.4 ± 2.2 mm; spleen, 3.1 ± 2.4 mm; pancreas, 3.4 ± 1.4 mm) than breath-hold MRE (liver, 0.7 ± 0.2 mm; kidneys, 0.4 ± 0.2 mm; spleen, 0.5 ± 0.2 mm; pancreas, 0.7 ± 0.5 mm). Nonetheless, breathing-related displacement did not affect mean shear wave speed, which was consistent across all protocols (liver, 1.43 ± 0.07 m/s; kidneys, 2.35 ± 0.21 m/s; spleen, 2.02 ± 0.15 m/s; pancreas, 1.39 ± 0.15 m/s). Image registration before inversion improved the quality of free-breathing examinations, yielding no differences in image sharpness to uncorrected breath-hold MRE in most organs (P > .05). Conclusion: Overall, multifrequency MRE is robust to breathing when considering whole-organ values. Respiration-related blurring can readily be corrected using image registration. Consequently, ungated free-breathing MRE combined with image registration is recommended for multifrequency MRE of abdominal organs

    An analytical solution to the dispersion‐by‐inversion problem in magnetic resonance elastography

    Get PDF
    Purpose: Magnetic resonance elastography (MRE) measures stiffness of soft tissues by analyzing their spatial harmonic response to externally induced shear vibrations. Many MRE methods use inversion-based reconstruction approaches, which invoke first- or second-order derivatives by finite difference operators (first- and second-FDOs) and thus give rise to a biased frequency dispersion of stiffness estimates. Methods: We here demonstrate analytically, numerically, and experimentally that FDO-based stiffness estimates are affected by (1) noise-related underestimation of values in the range of high spatial wave support, that is, at lower vibration frequencies, and (2) overestimation of values due to wave discretization at low spatial support, that is, at higher vibration frequencies. Results: Our results further demonstrate that second-FDOs are more susceptible to noise than first-FDOs and that FDO dispersion depends both on signal-to-noise ratio (SNR) and on a lumped parameter A, which is defined as wavelength over pixel size and over a number of pixels per stencil of the FDO. Analytical FDO dispersion functions are derived for optimizing A parameters at a given SNR. As a simple rule of thumb, we show that FDO artifacts are minimized when A/2 is in the range of the square root of 2SNR for the first-FDO or cubic root of 5SNR for the second-FDO. Conclusions: Taken together, the results of our study provide an analytical solution to a long-standing, well-recognized, yet unsolved problem in MRE postprocessing and might thus contribute to the ongoing quest for minimizing inversion artifacts in MRE

    Fully automated quantification of in vivo viscoelasticity of prostate zones using magnetic resonance elastography with Dense U-net segmentation

    Get PDF
    Magnetic resonance elastography (MRE) for measuring viscoelasticity heavily depends on proper tissue segmentation, especially in heterogeneous organs such as the prostate. Using trained network-based image segmentation, we investigated if MRE data suffice to extract anatomical and viscoelastic information for automatic tabulation of zonal mechanical properties of the prostate. Overall, 40 patients with benign prostatic hyperplasia (BPH) or prostate cancer (PCa) were examined with three magnetic resonance imaging (MRI) sequences: T2-weighted MRI (T2w), diffusion-weighted imaging (DWI), and MRE-based tomoelastography yielding six independent sets of imaging data per patient (T2w, DWI, apparent diffusion coefficient (ADC), MRE magnitude, shear wave speed, and loss angle maps). Combinations of these data were used to train Dense U-nets with manually segmented masks of the entire prostate gland (PG), central zone (CZ), and peripheral zone (PZ) in 30 patients and to validate them in 10 patients. Dice score (DS), sensitivity, specificity, and Hausdorff distance were determined. We found that segmentation based on MRE magnitude maps alone (DS, PG: 0.93±\pm0.04, CZ: 0.95±\pm0.03, PZ: 0.77±\pm0.05) was more accurate than magnitude maps combined with T2w and DWI_b (DS, PG: 0.91±\pm0.04, CZ: 0.91±\pm0.06, PZ: 0.63±\pm0.16) or T2w alone (DS, PG: 0.92±\pm0.03, CZ: 0.91±\pm0.04, PZ: 0.65±\pm0.08). Automatically tabulated MRE values were not different from ground-truth values (P>0.05). In conclusion: MRE combined with Dense U-net segmentation allows tabulation of quantitative imaging markers without manual analysis and independent of other MRI sequences and can thus contribute to PCa detection and classification

    Microscopic multifrequency MR elastography for mapping viscoelasticity in zebrafish

    Get PDF
    Purpose: The zebrafish (Danio rerio) has become an important animal model in a wide range of biomedical research disciplines. Growing awareness of the role of biomechanical properties in tumor progression and neuronal development has led to an increasing interest in the noninvasive mapping of the viscoelastic properties of zebrafish by elastography methods applicable to bulky and nontranslucent tissues. Methods: Microscopic multifrequency MR elastography is introduced for mapping shear wave speed (SWS) and loss angle (φ) as markers of stiffness and viscosity of muscle, brain, and neuroblastoma tumors in postmortem zebrafish with 60 µm in-plane resolution. Experiments were performed in a 7 Tesla MR scanner at 1, 1.2, and 1.4 kHz driving frequencies. Results: Detailed zebrafish viscoelasticity maps revealed that the midbrain region (SWS = 3.1 ± 0.7 m/s, φ = 1.2 ± 0.3 radian [rad]) was stiffer and less viscous than telencephalon (SWS = 2.6 ± 0. 5 m/s, φ = 1.4 ± 0.2 rad) and optic tectum (SWS = 2.6 ± 0.5 m/s, φ = 1.3 ± 0.4 rad), whereas the cerebellum (SWS = 2.9 ± 0.6 m/s, φ = 0.9 ± 0.4 rad) was stiffer but less viscous than both (all p < .05). Overall, brain tissue (SWS = 2.9 ± 0.4 m/s, φ = 1.2 ± 0.2 rad) had similar stiffness but lower viscosity values than muscle tissue (SWS = 2.9 ± 0.5 m/s, φ = 1.4 ± 0.2 rad), whereas neuroblastoma (SWS = 2.4 ± 0.3 m/s, φ = 0.7 ± 0.1 rad, all p < .05) was the softest and least viscous tissue. Conclusion: Microscopic multifrequency MR elastography-generated maps of zebrafish show many details of viscoelasticity and resolve tissue regions, of great interest in neuromechanical and oncological research and for which our study provides first reference values

    On the relationship between metabolic capacities and in vivo viscoelastic properties of the liver

    Get PDF
    The liver is the central metabolic organ. It constantly adapts its metabolic capacity to current physiological requirements. However, the relationship between tissue structure and hepatic function is incompletely understood; this results in a lack of diagnostic markers in medical imaging that can provide information about the liver's metabolic capacity. Therefore, using normal rabbit livers, we combined magnetic resonance elastography (MRE) with proteomics-based kinetic modeling of central liver metabolism to investigate the potential role of MRE for predicting the liver's metabolic function in vivo. Nineteen New Zealand white rabbits were investigated by multifrequency MRE and positron emission tomography (PET). This yielded maps of shear wave speed (SWS), penetration rate (PR) and standardized uptake value (SUV). Proteomic analysis was performed after the scans. Hepatic metabolic functions were assessed on the basis of the HEPATOKIN1 model in combination with a model of hepatic lipid-droplet metabolism using liquid chromatography-mass spectrometry. Our results showed marked differences between individual livers in both metabolic functions and stiffness properties, though not in SUV. When livers were divided into 'stiff' and 'soft' subgroups (cutoff SWS = 1.6 m/s), stiff livers showed a lower capacity for triacylglycerol storage, while at the same time showing an increased capacity for gluconeogenesis and cholesterol synthesis. Furthermore, SWS was correlated with gluconeogenesis and PR with urea production and glutamine exchange. In conclusion, our study indicates a close relationship between the viscoelastic properties of the liver and metabolic function. This could be used in future studies to predict non-invasively the functional reserve capacity of the liver in patients
    corecore