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Purpose: Magnetic resonance elastography (MRE) measures stiffness of soft tissues 
by analyzing their spatial harmonic response to externally induced shear vibrations. 
Many MRE methods use inversion-based reconstruction approaches, which invoke 
first- or second-order derivatives by finite difference operators (first- and second-
FDOs) and thus give rise to a biased frequency dispersion of stiffness estimates.
Methods: We here demonstrate analytically, numerically, and experimentally that 
FDO-based stiffness estimates are affected by (1) noise-related underestimation of 
values in the range of high spatial wave support, that is, at lower vibration frequen-
cies, and (2) overestimation of values due to wave discretization at low spatial sup-
port, that is, at higher vibration frequencies.
Results: Our results further demonstrate that second-FDOs are more susceptible 
to noise than first-FDOs and that FDO dispersion depends both on signal-to-noise 
ratio (SNR) and on a lumped parameter A, which is defined as wavelength over 
pixel size and over a number of pixels per stencil of the FDO. Analytical FDO 
dispersion functions are derived for optimizing A parameters at a given SNR. As a 
simple rule of thumb, we show that FDO artifacts are minimized when A/2 is in the 
range of the square root of 2SNR for the first-FDO or cubic root of 5SNR for the 
second-FDO.
Conclusions: Taken together, the results of our study provide an analytical solution 
to a long-standing, well-recognized, yet unsolved problem in MRE postprocessing 
and might thus contribute to the ongoing quest for minimizing inversion artifacts in 
MRE.
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1 |  INTRODUCTION

Magnetic resonance elastography (MRE) measures visco-
elastic shear properties of biological soft tissues in vivo using 
externally induced vibrations at different frequencies to cap-
ture the tissue's local harmonic response by motion-sensitive 
magnetic resonance imaging (MRI). MRE has been proven 
to be sensitive to many diseases including liver fibrosis,1 
liver tumors,2-4 renal dysfunction,5 and neuroinflammation.6

MRE generates parameter maps from time-harmonic shear 
wavefields using inverse problem solutions.7 Inverse methods 
in MRE published in the literature differ by their treatment of 
noise, boundary conditions, and tissue properties including 
heterogeneity, compressibility, anisotropy, and viscosity.8-13 
Nonetheless, most MRE inversion methods are similar in that 
they yield parameter maps with a spatial resolution above the 
diffraction limit, thus providing super-resolution. To achieve 
this, fine features of the curvature of shear waves are ana-
lyzed, often by applying finite-difference operators (FDOs) 
to the wave images.14 FDOs can retrieve the spatial gradient 
of the wave image with pixel-wise resolution.15

Inversion techniques that solve the wave equation in 
MRE (Helmholtz equation) rely on second-order FDOs  
(second-FDOs), or the Laplacian, whereas other techniques 
rely on the phase gradient of propagating plane waves and use 
only first-order FDOs (first-FDOs). First-FDO methods pro-
vide wave numbers, which are inversely proportional to shear 
wave speed c.16 By contrast, second-FDO inversion (Helmholtz 
inversion or direct inversion) yields shear modulus, which is 
related to c2.7 Despite their different physical units, shear mod-
ulus and shear wave speed are used in the literature as parame-
ters of tissue stiffness at vibration frequency.17 Henceforth, the 
term stiffness is used when discussing the qualitative changes 
in c and c2 that occur with frequency (dispersion).

Tissue-intrinsic dispersion of stiffness is determined by the 
material's viscoelastic behavior. A purely elastic material has 
no dispersion, yielding constant stiffness values over frequency. 
However, it has been recognized that intrinsic dispersion re-
covered by FDO methods is subject to bias.18-20 Specifically, 
we and others have shown that stiffness is likely to be overes-
timated at low spatial support due to the discretization of shear 
waves while it is often underestimated at high spatial support 
due to noise.18,19 Because spatial support in MRE is the num-
ber of pixels per wavelength (wave number times pixel size or 
wavelength divided by pixel size), multifrequency MRE exam-
inations automatically result in a variation of spatial support 
due to the occurrence of different wavelengths. Consequently, 
FDO-based inversion approaches can result in an artificial dis-
persion of stiffness over frequency, which is superposed to the 
intrinsic dispersion caused by tissue viscosity.

This well-known dispersion-by-inversion problem in 
MRE has never been analytically solved in a closed form for 
first- and second-order FDO approaches with consideration 

of both discretization and noise. Instead, earlier investigators 
proposed spatial support of 6 to 9 pixels per wavelength to 
avoid discretization artifacts18,19 without taking into account 
SNR, kernel width (or type of the stencil21), and order of 
FDOs. We here provide this information, validate our ana-
lytical solution of the dispersion-by-inversion problem by 
numerical simulations as well as phantom data, and derive a 
simple rule of thumb for minimizing FDO-related dispersion 
artifacts for future MRE examinations.

2 |  THEORY

In this section, we first outline the analytical responses of 
FDOs to data containing either discretized harmonic waves 
or pure Gaussian noise. We then continue by combining 
both signals into master equations of FDO-related dispersion 
functions for defining the range of unbiased MRE inversions.

2.1 | Discretization

Finite differences can be approximated by Taylor series ex-
pansions of O (hn) with n>1 and h = N ⋅ d, where d is the 
pixel size and N ≥1 is the width of the kernel measured in 
number of pixels (eg, with N = 1, derivatives are computed 
across adjacent pixels without gap). O(h2)-expansions of cen-
tral first- and second-order derivatives in one-dimensional 
image space (x) can be represented on the basis of Dirac dis-
tributions �(x)15:

1FDO and 2FDO denote central first- and second-order fi-
nite difference kernels, respectively, which are typically used 
in MRE inversion techniques.13,15 Central difference opera-
tors are often applied in MRE because other nonsymmetric 
stencils neglect information from one direction. Furthermore, 
O (hn) operators with n=2 have been proven relatively stable 
whereas higher order approximations of n>2 result in un-
wanted oscillations in the presence of noise due to Runge’s 
phenomenon.22 Henceforth, we restrict our attention to 1FDO 
and 2FDO approximations given by the first terms on the 
right hand sides in Equations (1) and (2) (neglecting the re-
mainders). These central difference FDOs are used in many 
MRE inversion techniques including multifrequency inver-
sions, MDEV (2FDO),23 and k-MDEV (1FDO).16
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Given infinite support, Equation (1) or (2) applied to har-
monic waves of wavenumber k0 provide their first or second 
spatial derivatives and thus result in phase-shifted waves, 
which are scaled by k0 or k2

0
, respectively. At finite support, 

the harmonic responses (kharmonic) of 1FDO and 2FDO can be 
obtained by Fourier transformation of Equations (1) and (2) 
with respect to x, yielding:

with

A is the key parameter of the resolution of wave images in 
MRE. Similar to the Nyquist limit, it determines when alias-
ing of wave numbers occurs due to low spatial support and 

FDO kernel sizes. As seen in Figure 1, A<2 (ie, dk0N >0.5),  
this is the spatial support below 2 pixels per wavelength  
signifies the limit of ambiguous derivatives because 
Equations (3) and (4) are symmetric around A=2.

As such, A determines the artifacts caused by discretization 
in FDO-based MRE inversion. The second important variable 
is SNR. Larger pixels and wider derivative kernels minimize 
the noise susceptibility of the apparent wave number k obtained 
by FDO. Henceforth, we account for the expectation values of 
FDO when applied to noise in order to find the optimal A.

2.2 | Noise

As further detailed in the Appendix, a complex-valued vari-
able Z =X+ iY  with X and Y being randomly scattered with 
Gaussian distribution of variance �2 and zero mean has the 
following expectation values:
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F I G U R E  1  Amplitude (wavenumber) responses of finite difference operators of first (first-FDO) and second order (second-FDO). Shown are 
numerical FDO responses to the following simulated signals: (A) harmonic u∗ = exp

(
ik0r

)
 (blue), (B) pure complex Gaussian noise based on Matlab's 

randn function (u∗
noise

, yellow), and (C) superposed signals of (A) and (B) (u∗ +u
∗
noise

, dark purple, signal-to-noise ratio [SNR] = 2). Additionally, 
analytical signals are plotted, (D) for 1k

harmonic
 (first-FDO) and 2k

harmonic
 (second-FDO) of Equations (3) and (4) (dashed, red) as well as (E) for 

n
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)2 of Equation (13) (green). Black dashed lines indicate ideal FDO properties of infinitely narrow kernels, that is, linear for 
first derivatives and quadratic for second derivatives. Note that (A) and (D) are visually identical. Arrows indicate the limits of A<2 or dk0N >0.5 
(corresponding to spatial supports of less than two pixels per wavelength) when aliased FDO derivatives are obtained (Nyquist limit of FDOs)
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We assume that Z is the noisy part of a complex harmonic 
function (signal) with normalized amplitude leading to an 
SNR of 1/E (|Z|).24 Thus, according to Equation (7), SNR 
reads

The corresponding wavenumbers obtained by FDO that 
were applied to pure noise Z are given as

2.3 | Discretization and noise

Apparent wave numbers nk with n = 1,2 for first- and second-
order FDOs, respectively, are the Euclidian norm of harmonic 
signal and noise:

Figure 1 illustrates the effect of overestimation of nk in 
noisy signals, which in turn leads to the underestimation of 
stiffness (c) at high support (high A). In Figure 2, the disper-
sion functions of normalized stiffness (c normalized by true c0)  
are given by c

c0

=
k0

1k
 and 

(
c

c0

)2

=
k2

0

2k
 for first- and second-FDOs, 

respectively, and plotted versus d ⋅ k0 (the ratio of wavelength 
over pixel size) in Figure 2A,B for N = 1, 2, …, 5. Stiffness 
values are correctly estimated when the curves cross c∕c0 =1.  
The position of these intercepts on the d ⋅ k0-axis depends on 
N such that higher spatial support is required for larger FDO 
kernel sizes. Figure 2C shows master curves of normalized 

shear wave speed for first- and second-FDOs versus A, into 
which all curves from Figure 2A,B collapse. Inflection points 
where both master curves equal 1, ie, 1A0 =

1

Ndk0

 with  

k0 = 1k and 2A0 =
1

Ndk0

 with k0 =
√

2k , can be derived analyt-

ically. Therefore, we insert the harmonic signals of Equations 
(3) or (4) and noise given by Equations (11) or (12) into 
Equation (13) that is then solved for the inflection point A0 as 
follows:

These equations cannot be solved directly for A0 but are 
solved for SNR instead:

Both functions, plotted in Figure 3 in the range of 
A0 =1, 2, … , 100, represent rather simple powerlaws in that 
range of A-values. Consequently, good approximations can 
be obtained by series expansion. Series expansion up to sec-
ond and third orders lead to numerical approximations of 
SNR≈

A2
0

8
 and SNR≈

A3
0

40
 for Equations (16) and (17), respec-

tively, as shown in Figure 3. The corresponding functions 
A0 (SNR) are readily obtained by

At a given SNR, these A-values indicate kernel sizes and 
pixel widths and provide values near ground truth in FDO-
based MRE inversion.

3 |  METHODS

3.1 | Experimental setup

Multifrequency MRE was investigated using an elastic, ho-
mogenous phantom made available to the MRE study group 
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of the ISMRM by Resoundant Inc. (Rochester, Minnesota, 
USA) in 2016. The phantom is made from a homogeneous 
elastic material permanently sealed in a high impact con-
tainer. The stiffness value for this phantom provided by the 
manufacturer are between 2.0 kPa and 4.0 kPa and are ex-
pected to increase slightly (5%-10%) per year. Data were 
acquired in a 1.5 Tesla MRI scanner (Siemens, Magnetom 
Sonata) using the standard head coil and a single-shot spin-
echo echo-planar imaging sequence with a bipolar motion-
encoding gradient of 20 mT/m amplitude.25 Vibrations from 

50 to 150 Hz frequency were induced by an external piezoe-
lectric driver mounted to a rigid rod for wave transmission,23 
resulting in concentrically emanating waves for the wave 
component, which was polarized through the plane. Five 
slices were acquired in an axial view through the center part 
of the cylindrical phantom vessel. Further imaging parame-
ters were repetition time (TR) = 2000 ms, time to echo (TE) =  
69 ms, flip angle = 90°, field of view = 288 × 240 mm2,  
matrix size = 96 × 80 (pixel size d = 1.9 × 1.9 mm2), and 
slice thickness = 1.9 mm.

F I G U R E  2  Analytical dispersion-by-inversion by first- (A) and second- (B) order finite difference operators (FDOs) of different stencil sizes 
N = 1 to 5 and signal-to-noise ratio (SNR) = 10 according to Equation (13). Note that the x-axes in (A) and (B) (pixels per wavelength or d ⋅ k0) are 
reversed in order to indicate the increase in values with increasing vibration frequency (frequency dispersion). The master curves of normalized 
shear wave speed for first-FDO (red) and second-order FDOs (blue) versus A are shown in (C) along with numerical simulations of noisy, harmonic 
signals and numerical FDOs of N = 1 to 5 (red, open circles for first-FDOs, blue dots for second-FDOs). Inflection points where A = A0 are 
indicated by red and blue vertical arrows for first- and second-FDOs according to Equations (18) and (19), respectively. These points correspond to 
the analytical solutions shown in Figure 3
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3.2 | Experimental data evaluation

The experimentally acquired concentric wave patterns were 
unwrapped and Fourier-transformed in time to extract com-
plex-valued wave images at driving frequency f as shown in 
Figure 4. These wave images were mapped onto cylindrical 
coordinates and averaged over the azimuthal angle, resulting 
in a single wave profile u∗ (r, f ) along the radial coordinate r 
(see Figure 4). The obtained one-dimensional profiles were 
used to demonstrate FDO inversion in experimental data. As 
in numerical simulations, FDO stencils were generated in 
Matlab by [−1, 1], [1, −2, 1] for first- and second-FDOs of 
N = 1, and [−1, 0, 1], [1, 0, −2, 0, 1] for N = 2, [−1, 0, 0, 1],  
[1, 0, 0, −2, 0, 0, 1] for N = 3 etc. These kernels were applied 
to u∗ (r, f ) using Matlab's conv function. SNR was determined 
by taking the amplitude of the fundamental spatial frequency 
over the averaged amplitudes of all higher harmonic frequen-
cies, which we treated as noise.

Ground truth shear wave speed c0 was reconstructed with-
out differential operators in order to avoid stiffness biases due 

to discretization and noise artifacts as theoretically analyzed 
in the previous section. Therefore, c0 values were determined 
by fitting Bessel functions to u∗ (r, f ) assuming that the shear 
waves are polarized along the infinitely large cylinder axis26-28:

J0 denotes the Bessel function of first kind, u0 is the wave 
amplitude, � is the phase of the shear wave at sample radius 
r=R, and O∗ is a complex-valued offset term that accounts 
for compression waves. k∗

0
, the ground truth complex-valued 

wave number, was the desired result of the fit and was con-
verted to shear wave speed by c0 = f∕Re

(
k∗

0

)
.

4 |  RESULTS

Numerical results of FDOs applied to simulations of com-
plex oscillations u∗ = exp

(
ik0r

)
 with added complex noise, 

(20)u∗ =u0

J0

(
k∗

0
r
)

J0

(
k∗

0
R
)ei� + O∗.

F I G U R E  3  Approximated and full functions of signal-to-noise ratio (SNR) versus A0 according to Equations (18) and (19)

F I G U R E  4  Experimental wave 
images and wave profiles at 21 driving 
frequencies. Wave images show through-
plane wave components (real part of 
temporally Fourier-transformed waves at 
vibration frequency). Graphs below the 
wave images depict profiles along the radius 
of the cylindrical waves, averaged over the 
azimuthal angle and filtered as described in 
the Methods section. Real- and imaginary 
parts of the complex-valued wave profiles 
are plotted in blue and red, respectively
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which was generated using Matlab’s randn function, are 
shown in Figure 2C. The analytical solutions given in 
Equation (13) agree with numerical simulations. For this 

master curve, second-FDO results are given as wave speed 
c∕c0 instead of 

(
c∕c0

)2 in order to demonstrate the align-
ment of first- and second-FDO results at low support, that is, 
in the range of discretization bias (c∕c0 >1). Figure 2C also 
demonstrates the excellent prediction of inflection point A0 
by Equations (18) and (19), allowing the further use of these 
approximates for minimization of inversion biases in FDO-
based MRE reconstruction.

Figure 5 shows ground truth shear wave speed values of 
the phantom over frequencies. The values obtained by analyt-
ical fits display no significant dispersion over frequency, as 
illustrated by the linear regression function of 0.0004 m/s/Hz 
slope and c0 = 1.72 m/s (R2 = 0.15, P value = .08).

Figure 6 demonstrates the relative overestimation as well 
as undershot of c∕c0 (first-FDO) and 

(
c∕c0

)2 (second-FDO) 
due to discretization and noise in experimental data. Colors 
encode different stencil widths from N = 1 to 5. Analytical 
curves were calculated by Equation (13) based on Equations 
(3) and (4) for kharmonic and Equations (11) and (12) for knoise 
using the experimental pixel size d = 1 mm and SNR values 
given in Table 1. Fluctuations in analytical signals visible 
at higher A-values (kernel size N = 1) resulted from SNR 

F I G U R E  5  Experimental shear wave speeds over frequency 
derived from Bessel fits with linear regression

F I G U R E  6  Experimental shear wave speed recovered by first-finite difference operators (FDOs) (c, closed circles) and second -FDOs  
(c2, open squares) of N = 1 (blue), 2 (yellow), 3 (green), 4 (orange), and 5 (dark red) and normalized with c0 from Figure 5 and Table 1 versus A. 
Analytical curves (black for second-FDOs, blue for first-FDOs) were calculated based on c0 and signal-to-noise ratio (SNR), both given in  
Table 1. Variations in analytical curves are mainly due to variations in SNR over frequency. Vertical arrows indicate the solutions of A0 according 
to Equations (18) and (19) taking the mean SNR of all frequencies from Table 1



68 |   MURA et Al.

variations in wave profiles u∗ (r, f ) between different vibra-
tion frequencies f. SNR values ranged from 2.6 at 150 Hz to 
23.2 at 95 Hz with a mean of 8.9 ± 5.7. Experimental results 
are summarized in Table 1.

5 |  DISCUSSION

This study adds to the ongoing quest for quantitative and re-
producible MRE biomarkers that are consistent with ground 
truth values.17 Ground truth in MRE is normally provided by 
shear oscillatory rheometry, which, however, has well-known 
limitations regarding its sensitivity to surface texture, plate 
pressure, and sample geometry. Moreover, MRE biomark-
ers involve inverse problem solutions, which are often ill 
posed due to noise and unknown boundary conditions, mak-
ing MRE susceptible to inversion bias.15 Many inversion 
methods in MRE methods use FDOs and are known to be 
biased by discretization and noise.29 Nevertheless, FDOs are 
frequently used in MRE due to their simple implementation, 
computational power, and their robustness against local stiff-
ness changes (heterogeneity) and variation in tissue geometry 
and morphology. As a result, competing over- and underes-
timates of FDO signals occur at the same time, giving rise to 
an inflection point (A0) at which the stiffness dispersion curve 

coincides with ground truth values. This synchrony of over- 
and undershooting effects is the reason why second-FDOs, 
which are highly sensitive to noise, require smaller A0 values 
than first-FDOs. However, considering SNR to be typically 
in the range of 1 to 100, the relative difference in A0 between 
first- and second-FDOs is relatively small (eg, A0 = 9.2 ver-
sus 12.4 for SNR = 10 and N = 1). In practice, approximated 
values of A0 rather than precise values should be taken into 
account. For instance, when A0 is more than an integer factor 
larger than recommended values, N should be increased in 
order to decrease the noise sensitivity of the FDO used.

It should be noted that many MRE inversion methods 
treat noise using k-space filters or wavelets prior to FDOs 
of constant kernel widths7,14 or apply Savitsky-Golay fil-
ters in order to combine second derivatives with denoising 
by polynomial regression.7 Effectively, these strategies can 
provide the same smoothing as an adaptation of N but nat-
urally vary in technical details and are thus difficult to ana-
lyze with an explicit estimation of the error as we do here. 
Therefore, we focused, in theory, on unsmoothed raw wave 
data u∗ (r, f ) assuming white Gaussian noise and analyzed 
the effect of noise suppression by FDO kernel size. Clearly, 
noise, as defined as unwanted signal in MRE,15 can have 
different sources including compression waves30 or slice 
jittering31 making noise anisotropic and non-Gaussian. 

# Frequency in Hz c in m/s c (SD) in m/s Wavelength/pixel size SNR

1 50 1.77 0.01 18.4 6.9

2 55 1.74 0.01 16.4 13.7

3 60 1.76 0.00 15.2 14.8

4 65 1.70 0.03 13.5 11.7

5 70 1.76 0.00 13.0 7.8

6 75 1.73 0.03 12.0 6.9

7 80 1.75 0.01 11.4 9.0

8 85 1.75 0.09 10.7 13.5

9 90 1.72 0.00 9.9 20.6

10 95 1.84 0.02 10.0 23.2

11 100 1.74 0.05 9.1 5.1

12 105 1.80 0.30 8.9 3.7

13 110 1.76 0.07 8.3 5.7

14 115 1.75 0.07 7.9 9.3

15 120 1.76 0.02 7.6 10.3

16 125 1.74 0.03 7.2 8.5

17 130 1.80 0.01 7.2 4.2

18 135 1.77 0.03 6.8 3.1

19 140 1.76 0.02 6.5 2.6

20 145 1.77 0.03 6.3 3.5

21 150 1.79 0.01 6.2 2.6

Abbreviation: SNR, signal-to-noise ratio.

T A B L E  1  Results obtained in 
phantom experiments
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Furthermore, SNR given by � in this study is normally ad-
dressed by other methods such as octahedral shear strain,24 
shear strain invariant noise,32 or wavelet-based methods,29 
all of which provide values different from those obtained 
by Equation (10). Our method of normalizing the funda-
mental vibration signal with higher harmonic noise agrees 
remarkably well with Gaussian SNR and, thus, also with 
the predicted dispersion functions. However, it should be 
mentioned that this strategy is only feasible in homogenous 
materials of single spatial frequency while limited in vivo. 
Our phantom data are not meant to reproduce in vivo soft 
tissue properties but to present ground truth wave speed c0 
values without frequency dependence. A drawback of the 
absence of viscosity is that undamped waves resulted in 
multidirectional k-vectors, which we treated by directional 
filtering as proposed in,33 although classical Helmholtz 
inversion (second-order FDO inversion) does not re-
quire such directional filtering. Finally, our study was re-
stricted to one-dimensional analysis. Again, the aim of this 
study was to develop the basic layout of an inversion-by- 
dispersion analysis in a mathematically consistent manner. 
Higher-dimensional FDO methods can be used to effi-
ciently suppress noise34 or to address stiffness heterogene-
ities by employing finite volumes.35

In summary, we have introduced an analytical approach 
to the well-known dispersion-by-inversion bias in MRE. 
Using closed-form solutions, numerical simulations, and 
phantom experiments, we demonstrate that FDO-based stiff-
ness estimates can be affected by simultaneous under- and 
overestimation of values due to the presence of noise and 
wave signal discretization, respectively. Our results further 
show that second-order FDOs are more sensitive to noise 
and are more markedly biased by discretization than first- 
order FDOs. A lumped parameter A was introduced, which 
defines spatial support of the shear waves including stencil 
width of FDOs. Analytical FDO dispersion functions were 
analytically derived, and simple rules of thumb are provided, 
which might help to minimize FDO-related inversion arti-
facts in future examinations. This study adds to research on 
inversion artifacts in MRE and may contribute to more reli-
able viscoelasticity reconstruction in future multifrequency 
MRE examinations.
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APPENDIX 
We here briefly derive the expected mean magnitude values 
of pure Gaussian noise in a complex-valued signal subjected 
to finite difference operators (FDOs), which yield the first and 
second derivatives. If a random variable X is normally dis-
tributed with mean � and variance �2, usually represented by 
X∼ (

�, �2
)
, its probability density function (pdf) is given by

The expectation for the absolute value of the a normally 
distributed random variable is

where

and

The change of variable x↦−x shows that 
I1 (�, �)= I2 (−�, �). For I2 we have

with

Therefore, in the particular case of � = 0, we have 
I1 = I2 =�2 and

(A1)pX (x)=
1

√
2𝜋𝜎2

e−(x−𝜇)
2∕(2𝜎2), −∞< x<∞

(A2)

E (�X�) = 1
√

2��2 ∫
∞

−∞
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1
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∞
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2∕(2�2)dx
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1

√
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0
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(−x) e−(x−�)
2∕(2�2)dx
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∞
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2
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A complex random variable is defined by Z =X+ iY , where 
i=

√
−1, and X and Y  are real-valued random variables. The 

distribution of a complex random variable is identified with 
the joint distribution of X and Y . If both X and Y  are uncorre-
lated random variables normally distributed with zero mean 
and �2 variance, the pdf for Z yields

when the polar form of Z is applied, that is, z= rei�. To calcu-
late the expected value of the magnitude of a complex vari-
able, it is convenient to keep using polar coordinates, because 
|z|= r on the complex plane. This implies that

Assuming that the change of variable u= r2∕(2�2) leads to

where Γ(x) represents the Gamma function evaluated in x. 
Therefore

In particular, if Z =
∑n

i=1
aiZi, then

and applying the following property for variance

implies that

which is valid for Z1, Z2, … , Zn, which represent pairwise in-
dependent random variables with Zi ∼ (

0, �2
)
. Recalling 

the definition given in Equation (1)

where Z1 =X1+ iY1 and Z2 =X2+ iY2 are independent and 
identically distributed (i.i.d.) random variables with zero mean 
and variance �2, which represent two different positions in the 
imaging plane. Using Equation (A14) we obtain

Correspondingly, second-order FDOs defined in (2) can be 
represented as

Again, Zj =Xj+ iYj is i.i.d for j = 1, 2, 3 with zero mean 
and variance �2. Then, from Equation (A14), it follows that
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