5 research outputs found

    High-level synthesis of dataflow programs for heterogeneous platforms:design flow tools and design space exploration

    Get PDF
    The growing complexity of digital signal processing applications implemented in programmable logic and embedded processors make a compelling case the use of high-level methodologies for their design and implementation. Past research has shown that for complex systems, raising the level of abstraction does not necessarily come at a cost in terms of performance or resource requirements. As a matter of fact, high-level synthesis tools supporting such a high abstraction often rival and on occasion improve low-level design. In spite of these successes, high-level synthesis still relies on programs being written with the target and often the synthesis process, in mind. In other words, imperative languages such as C or C++, most used languages for high-level synthesis, are either modified or a constrained subset is used to make parallelism explicit. In addition, a proper behavioral description that permits the unification for hardware and software design is still an elusive goal for heterogeneous platforms. A promising behavioral description capable of expressing both sequential and parallel application is RVC-CAL. RVC-CAL is a dataflow programming language that permits design abstraction, modularity, and portability. The objective of this thesis is to provide a high-level synthesis solution for RVC-CAL dataflow programs and provide an RVC-CAL design flow for heterogeneous platforms. The main contributions of this thesis are: a high-level synthesis infrastructure that supports the full specification of RVC-CAL, an action selection strategy for supporting parallel read and writes of list of tokens in hardware synthesis, a dynamic fine-grain profiling for synthesized dataflow programs, an iterative design space exploration framework that permits the performance estimation, analysis, and optimization of heterogeneous platforms, and finally a clock gating strategy that reduces the dynamic power consumption. Experimental results on all stages of the provided design flow, demonstrate the capabilities of the tools for high-level synthesis, software hardware Co-Design, design space exploration, and power optimization for reconfigurable hardware. Consequently, this work proves the viability of complex systems design and implementation using dataflow programming, not only for system-level simulation but real heterogeneous implementations

    Embedded System Design

    Get PDF
    A unique feature of this open access textbook is to provide a comprehensive introduction to the fundamental knowledge in embedded systems, with applications in cyber-physical systems and the Internet of things. It starts with an introduction to the field and a survey of specification models and languages for embedded and cyber-physical systems. It provides a brief overview of hardware devices used for such systems and presents the essentials of system software for embedded systems, including real-time operating systems. The author also discusses evaluation and validation techniques for embedded systems and provides an overview of techniques for mapping applications to execution platforms, including multi-core platforms. Embedded systems have to operate under tight constraints and, hence, the book also contains a selected set of optimization techniques, including software optimization techniques. The book closes with a brief survey on testing. This fourth edition has been updated and revised to reflect new trends and technologies, such as the importance of cyber-physical systems (CPS) and the Internet of things (IoT), the evolution of single-core processors to multi-core processors, and the increased importance of energy efficiency and thermal issues

    Embedded System Design

    Get PDF
    A unique feature of this open access textbook is to provide a comprehensive introduction to the fundamental knowledge in embedded systems, with applications in cyber-physical systems and the Internet of things. It starts with an introduction to the field and a survey of specification models and languages for embedded and cyber-physical systems. It provides a brief overview of hardware devices used for such systems and presents the essentials of system software for embedded systems, including real-time operating systems. The author also discusses evaluation and validation techniques for embedded systems and provides an overview of techniques for mapping applications to execution platforms, including multi-core platforms. Embedded systems have to operate under tight constraints and, hence, the book also contains a selected set of optimization techniques, including software optimization techniques. The book closes with a brief survey on testing. This fourth edition has been updated and revised to reflect new trends and technologies, such as the importance of cyber-physical systems (CPS) and the Internet of things (IoT), the evolution of single-core processors to multi-core processors, and the increased importance of energy efficiency and thermal issues

    An Abstraction-Refinement Theory for the Analysis and Design of Concurrent Real-Time Systems

    Get PDF
    Concurrent real-time systems with shared resources belong to the class of safety-critical systems for which it is required to determine both temporally and functionally conservative guarantees. However, the growing complexity of real-time systems makes it more and more challenging to apply standard techniques for their analysis. Especially the presence of both cyclic data dependencies and cyclic resource dependencies makes many related analysis approaches inapplicable. The usage of Static Priority Preemptive (SPP) scheduling further impedes the employment of many "classical" analysis techniques. To address this growing complexity and to be able to give guarantees nevertheless we present an abstraction-refinement theory for real-time systems. We introduce a timed component model that is defined in such a generic way that both real-time system implementations and any kinds of analysis models for such applications can be expressed therein. Thereafter, we devise three different abstraction-refinement theories for the timed component model, exclusion, inclusion and bounding. Exclusion can be used to remove unconsidered corner cases, inclusion allows for the substitution of uncertainty with non-determinism, while bounding permits to replace non-determinism with determinism. The latter enables the creation of efficiently analyzable models that can be used to give temporal or functional guarantees on non-deterministic and non-monotone implementations. We use such abstractions to construct analysis models from concurrent real-time systems with shared resources and SPP scheduling. On these models we apply various analysis techniques, with the goal to increase analysis accuracy. Our first accuracy improvement is achieved by combining the rather coarse state-of-the-art period-and-jitter interference characterization with an explicit consideration of cyclic data dependencies. The interference-limiting effect of such cycles can be exploited even more with an "iterative buffer sizing". Next we replace period-and-jitter with execution intervals, resulting in an even higher accuracy. In our last approach we increase both accuracy and applicability by enabling the support of real-time systems with tasks consisting of multiple phases and operating at different rates. With a modification of this approach we further enable the analysis of applications with multiple shared resources. Finally, we also present the so-called HAPI simulator that is capable of simulating any kinds of concurrent real-time systems with shared resources
    corecore