70 research outputs found

    Deep Networks for Compressed Image Sensing

    Full text link
    The compressed sensing (CS) theory has been successfully applied to image compression in the past few years as most image signals are sparse in a certain domain. Several CS reconstruction models have been recently proposed and obtained superior performance. However, there still exist two important challenges within the CS theory. The first one is how to design a sampling mechanism to achieve an optimal sampling efficiency, and the second one is how to perform the reconstruction to get the highest quality to achieve an optimal signal recovery. In this paper, we try to deal with these two problems with a deep network. First of all, we train a sampling matrix via the network training instead of using a traditional manually designed one, which is much appropriate for our deep network based reconstruct process. Then, we propose a deep network to recover the image, which imitates traditional compressed sensing reconstruction processes. Experimental results demonstrate that our deep networks based CS reconstruction method offers a very significant quality improvement compared against state of the art ones.Comment: This paper has been accepted by the IEEE International Conference on Multimedia and Expo (ICME) 201

    Measure What Should be Measured: Progress and Challenges in Compressive Sensing

    Full text link
    Is compressive sensing overrated? Or can it live up to our expectations? What will come after compressive sensing and sparsity? And what has Galileo Galilei got to do with it? Compressive sensing has taken the signal processing community by storm. A large corpus of research devoted to the theory and numerics of compressive sensing has been published in the last few years. Moreover, compressive sensing has inspired and initiated intriguing new research directions, such as matrix completion. Potential new applications emerge at a dazzling rate. Yet some important theoretical questions remain open, and seemingly obvious applications keep escaping the grip of compressive sensing. In this paper I discuss some of the recent progress in compressive sensing and point out key challenges and opportunities as the area of compressive sensing and sparse representations keeps evolving. I also attempt to assess the long-term impact of compressive sensing

    Restricted Isometries for Partial Random Circulant Matrices

    Get PDF
    In the theory of compressed sensing, restricted isometry analysis has become a standard tool for studying how efficiently a measurement matrix acquires information about sparse and compressible signals. Many recovery algorithms are known to succeed when the restricted isometry constants of the sampling matrix are small. Many potential applications of compressed sensing involve a data-acquisition process that proceeds by convolution with a random pulse followed by (nonrandom) subsampling. At present, the theoretical analysis of this measurement technique is lacking. This paper demonstrates that the ssth order restricted isometry constant is small when the number mm of samples satisfies m(slogn)3/2m \gtrsim (s \log n)^{3/2}, where nn is the length of the pulse. This bound improves on previous estimates, which exhibit quadratic scaling

    Quantized Compressed Sensing for Partial Random Circulant Matrices

    Full text link
    We provide the first analysis of a non-trivial quantization scheme for compressed sensing measurements arising from structured measurements. Specifically, our analysis studies compressed sensing matrices consisting of rows selected at random, without replacement, from a circulant matrix generated by a random subgaussian vector. We quantize the measurements using stable, possibly one-bit, Sigma-Delta schemes, and use a reconstruction method based on convex optimization. We show that the part of the reconstruction error due to quantization decays polynomially in the number of measurements. This is in line with analogous results on Sigma-Delta quantization associated with random Gaussian or subgaussian matrices, and significantly better than results associated with the widely assumed memoryless scalar quantization. Moreover, we prove that our approach is stable and robust; i.e., the reconstruction error degrades gracefully in the presence of non-quantization noise and when the underlying signal is not strictly sparse. The analysis relies on results concerning subgaussian chaos processes as well as a variation of McDiarmid's inequality.Comment: 15 page
    corecore