65 research outputs found

    Combining Super Resolution Algorithm (Gaussian Denoising and Kernel Blurring) and Compare with Camera Super Resolution

    Get PDF
    This problem addresses the problem of low-resolution image (noisy) that will proof later by PSNR number. The best way to improve this low-resolution problem is by utilizing Super Resolution (SR) algorithm methodology. SR algorithm methodology refers to the process of obtaining higher-resolution images from several lower-resolution ones, that is resolution enhancement. The quality improvement is caused by fractional-pixel displacements between images. SR allows overcoming the limitations of the imaging system (resolving limit of the sensors) without the need for additional hardware. This research aims to find the best SR algorithm in form of stand-alone algorithm or combine algorithm by comparing with the latest SR algorithm (Camera SR) from the previous research made by Chang Chen et al in 2019. Furthermore, we confidence this research will become the future guideline for anyone who want to improve the limitation of their low-resolution camera or vision sensor by implementing those SR algorithms

    A method for optimal linear super-resolution image restoration

    Get PDF
    Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ прСдлагаСтся ΠΌΠ΅Ρ‚ΠΎΠ΄ ΡΠ²Π΅Ρ€Ρ…Ρ€Π°Π·Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ (ΠΈΠ·ΠΌΠ΅Π»ΡŒΡ‡Π΅Π½ΠΈΡ сСтки пиксСлов) Ρ†ΠΈΡ„Ρ€ΠΎΠ²Ρ‹Ρ… ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ, основанный Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠΈ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ†ΠΈΠΈ ΠΊ дискрСтному сигналу, Π΄ΠΎΠΏΠΎΠ»Π½Π΅Π½Π½ΠΎΠΌΡƒ нулями ΠΌΠ΅ΠΆΠ΄Ρƒ отсчСтами (пиксСлами). Для синтСза Π²ΠΎΡΡΡ‚Π°Π½Π°Π²Π»ΠΈΠ²Π°ΡŽΡ‰Π΅ΠΉ систСмы вводится Π² рассмотрСниС Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎ-дискрСтная модСль наблюдСния, характСрная для Ρ€Π΅Π°Π»ΡŒΠ½Ρ‹Ρ… систСм формирования ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ, Π² соотвСтствии с ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΠΈΠ·Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎ Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½Ρ‹ΠΉ сигнал сначала ΠΏΡ€Π΅Ρ‚Π΅Ρ€ΠΏΠ΅Π²Π°Π΅Ρ‚ Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ (динамичСскиС) искаТСния, Π° Π·Π°Ρ‚Π΅ΠΌ подвСргаСтся дискрСтизации ΠΈ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡŽ Π°Π΄Π΄ΠΈΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ ΡˆΡƒΠΌΠ°. Для Ρ‚Π°ΠΊΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ наблюдСния строится ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Π° ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΏΠΎ ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΡŽ срСднСквадратичСского отклонСния ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Π° восстановлСния. ИспользованиС Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎ-дискрСтной ΠΌΠΎΠ΄Π΅Π»ΠΈ позволяСт Π±ΠΎΠ»Π΅Π΅ Π°Π΄Π΅ΠΊΠ²Π°Ρ‚Π½ΠΎ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ искаТСния ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ ΠΎΡΡ‚Π°Ρ‚ΠΎΡ‡Π½ΡƒΡŽ ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΡŒ Ρ‚Π°ΠΊΠΎΠ³ΠΎ восстановлСния, Ρ‡Ρ‚ΠΎ ΠΏΠΎΠ»Π΅Π·Π½ΠΎ для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ряда Π΄Ρ€ΡƒΠ³ΠΈΡ… Π·Π°Π΄Π°Ρ‡ (Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, комплСксирования ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ). Π’ тСорСтичСской части ΡΡ‚Π°Ρ‚ΡŒΠΈ приводится общая схСма Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ ΡΠ²Π΅Ρ€Ρ…Ρ€Π°Π·Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ сигнала, выводятся выраТСния для ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ½ΠΎΠΉ ΠΈ частотной характСристики ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠΉ Π²ΠΎΡΡΡ‚Π°Π½Π°Π²Π»ΠΈΠ²Π°ΡŽΡ‰Π΅ΠΉ систСмы, Π° Ρ‚Π°ΠΊΠΆΠ΅ для ошибки Ρ‚Π°ΠΊΠΎΠ³ΠΎ восстановлСния. Для краткости излоТСния ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° всё описаниС вСдСтся для ΠΎΠ΄Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ сигнала, Π½ΠΎ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°ΡŽΡ‚ СстСствСнноС ΠΎΠ±ΠΎΠ±Ρ‰Π΅Π½ΠΈΠ΅ Π½Π° случай Π΄Π²ΡƒΠΌΠ΅Ρ€Π½Ρ‹Ρ… ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ. РасчСтный ΠΏΠ°Ρ€Π°Π³Ρ€Π°Ρ„ ΡΡ‚Π°Ρ‚ΡŒΠΈ посвящСн Π°Π½Π°Π»ΠΈΠ·Ρƒ ошибки ΡΠ²Π΅Ρ€Ρ…Ρ€Π°Π·Ρ€Π΅ΡˆΠ°ΡŽΡ‰Π΅Π³ΠΎ восстановлСния Π² зависимости ΠΎΡ‚ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΠΌΠΎΠ΄Π΅Π»ΠΈ наблюдСния. ΠŸΡ€ΠΎΠ΄Π΅ΠΌΠΎΠ½ΡΡ‚Ρ€ΠΈΡ€ΠΎΠ²Π°Π½ΠΎ сущСствСнноС прСвосходство ΠΏΡ€Π΅Π΄Π»Π°Π³Π°Π΅ΠΌΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΏΠΎ точности Π² сравнСнии с Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ интСрполяциСй, ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ примСняСмой ΠΏΡ€ΠΈ ΠΈΠ·ΠΌΠ΅Π»ΡŒΡ‡Π΅Π½ΠΈΠΈ сСтки пиксСлов изобраТСния.ИсслСдованиС Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ΠΎ ΠΏΡ€ΠΈ финансовой ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΊΠ΅ РЀЀИ Π² Ρ€Π°ΠΌΠΊΠ°Ρ… Π½Π°ΡƒΡ‡Π½ΠΎΠ³ΠΎ ΠΏΡ€ΠΎΠ΅ΠΊΡ‚Π° β„– 19-31-90113 Π² частях Β«Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅Β», Β«ΠžΠ±Ρ‰Π°Ρ схСма Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ ΡΠ²Π΅Ρ€Ρ…Ρ€Π°Π·Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ сигнала», «НСпрСрывно-дискрСтная линСйная модСль наблюдСния сигнала», Β«ΠžΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠ΅ восстановлСниС дискрСтных Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎΠ³ΠΎ сигнала», Β«ΠžΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠ΅ восстановлСниС дискрСтных Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎΠ³ΠΎ сигнала – Π°Π½Π°Π»ΠΈΠ· Π² ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ области», «Ошибка ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ восстановлСния», Β«ΠžΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠ΅ восстановлСниС ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎΠ³ΠΎ сигнала», ΠΏΡ€ΠΎΠ΅ΠΊΡ‚Π° β„– 19-07-00474 Π² части «ИсслСдованиС ΠΏΡ€Π΅Π΄Π»Π°Π³Π°Π΅ΠΌΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°Β»

    A Neural Enhancement Post-Processor with a Dynamic AV1 Encoder Configuration Strategy for CLIC 2024

    Full text link
    At practical streaming bitrates, traditional video compression pipelines frequently lead to visible artifacts that degrade perceptual quality. This submission couples the effectiveness of a neural post-processor with a different dynamic optimsation strategy for achieving an improved bitrate/quality compromise. The neural post-processor is refined via adversarial training and employs perceptual loss functions. By optimising the post-processor and encoder directly our method demonstrates significant improvement in video fidelity. The neural post-processor achieves substantial VMAF score increases of +6.72 and +1.81 at bitrates of 50 kb/s and 500 kb/s respectively

    Adversarial training with cycle consistency for unsupervised super-resolution in endomicroscopy

    Get PDF
    In recent years, endomicroscopy has become increasingly used for diagnostic purposes and interventional guidance. It can provide intraoperative aids for real-time tissue characterization and can help to perform visual investigations aimed for example to discover epithelial cancers. Due to physical constraints on the acquisition process, endomicroscopy images, still today have a low number of informative pixels which hampers their quality. Post-processing techniques, such as Super-Resolution (SR), are a potential solution to increase the quality of these images. SR techniques are often supervised, requiring aligned pairs of low-resolution (LR) and high-resolution (HR) images patches to train a model. However, in our domain, the lack of HR images hinders the collection of such pairs and makes supervised training unsuitable. For this reason, we propose an unsupervised SR framework based on an adversarial deep neural network with a physically-inspired cycle consistency, designed to impose some acquisition properties on the super-resolved images. Our framework can exploit HR images, regardless of the domain where they are coming from, to transfer the quality of the HR images to the initial LR images. This property can be particularly useful in all situations where pairs of LR/HR are not available during the training. Our quantitative analysis, validated using a database of 238 endomicroscopy video sequences from 143 patients, shows the ability of the pipeline to produce convincing super-resolved images. A Mean Opinion Score (MOS) study also confirms this quantitative image quality assessment.Comment: Accepted for publication on Medical Image Analysis journa
    • …
    corecore