3,435 research outputs found

    To Share or Not to Share in Client-Side Encrypted Clouds

    Full text link
    With the advent of cloud computing, a number of cloud providers have arisen to provide Storage-as-a-Service (SaaS) offerings to both regular consumers and business organizations. SaaS (different than Software-as-a-Service in this context) refers to an architectural model in which a cloud provider provides digital storage on their own infrastructure. Three models exist amongst SaaS providers for protecting the confidentiality data stored in the cloud: 1) no encryption (data is stored in plain text), 2) server-side encryption (data is encrypted once uploaded), and 3) client-side encryption (data is encrypted prior to upload). This paper seeks to identify weaknesses in the third model, as it claims to offer 100% user data confidentiality throughout all data transactions (e.g., upload, download, sharing) through a combination of Network Traffic Analysis, Source Code Decompilation, and Source Code Disassembly. The weaknesses we uncovered primarily center around the fact that the cloud providers we evaluated were each operating in a Certificate Authority capacity to facilitate data sharing. In this capacity, they assume the role of both certificate issuer and certificate authorizer as denoted in a Public-Key Infrastructure (PKI) scheme - which gives them the ability to view user data contradicting their claims of 100% data confidentiality. We have collated our analysis and findings in this paper and explore some potential solutions to address these weaknesses in these sharing methods. The solutions proposed are a combination of best practices associated with the use of PKI and other cryptographic primitives generally accepted for protecting the confidentiality of shared information

    Handling Confidential Data on the Untrusted Cloud: An Agent-based Approach

    Get PDF
    Cloud computing allows shared computer and storage facilities to be used by a multitude of clients. While cloud management is centralized, the information resides in the cloud and information sharing can be implemented via off-the-shelf techniques for multiuser databases. Users, however, are very diffident for not having full control over their sensitive data. Untrusted database-as-a-server techniques are neither readily extendable to the cloud environment nor easily understandable by non-technical users. To solve this problem, we present an approach where agents share reserved data in a secure manner by the use of simple grant-and-revoke permissions on shared data.Comment: 7 pages, 9 figures, Cloud Computing 201

    GraphSE2^2: An Encrypted Graph Database for Privacy-Preserving Social Search

    Full text link
    In this paper, we propose GraphSE2^2, an encrypted graph database for online social network services to address massive data breaches. GraphSE2^2 preserves the functionality of social search, a key enabler for quality social network services, where social search queries are conducted on a large-scale social graph and meanwhile perform set and computational operations on user-generated contents. To enable efficient privacy-preserving social search, GraphSE2^2 provides an encrypted structural data model to facilitate parallel and encrypted graph data access. It is also designed to decompose complex social search queries into atomic operations and realise them via interchangeable protocols in a fast and scalable manner. We build GraphSE2^2 with various queries supported in the Facebook graph search engine and implement a full-fledged prototype. Extensive evaluations on Azure Cloud demonstrate that GraphSE2^2 is practical for querying a social graph with a million of users.Comment: This is the full version of our AsiaCCS paper "GraphSE2^2: An Encrypted Graph Database for Privacy-Preserving Social Search". It includes the security proof of the proposed scheme. If you want to cite our work, please cite the conference version of i

    A secure data outsourcing scheme based on Asmuth – Bloom secret sharing

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Data outsourcing is an emerging paradigm for data management in which a database is provided as a service by third-party service providers. One of the major benefits of offering database as a service is to provide organisations, which are unable to purchase expensive hardware and software to host their databases, with efficient data storage accessible online at a cheap rate. Despite that, several issues of data confidentiality, integrity, availability and efficient indexing of users’ queries at the server side have to be addressed in the data outsourcing paradigm. Service providers have to guarantee that their clients’ data are secured against internal (insider) and external attacks. This paper briefly analyses the existing indexing schemes in data outsourcing and highlights their advantages and disadvantages. Then, this paper proposes a secure data outsourcing scheme based on Asmuth–Bloom secret sharing which tries to address the issues in data outsourcing such as data confidentiality, availability and order preservation for efficient indexing
    • …
    corecore