3 research outputs found

    Just In Time Assembly (JITA) - A Run Time Interpretation Approach for Achieving Productivity of Creating Custom Accelerators in FPGAs

    Get PDF
    The reconfigurable computing community has yet to be successful in allowing programmers to access FPGAs through traditional software development flows. Existing barriers that prevent programmers from using FPGAs include: 1) knowledge of hardware programming models, 2) the need to work within the vendor specific CAD tools and hardware synthesis. This thesis presents a series of published papers that explore different aspects of a new approach being developed to remove the barriers and enable programmers to compile accelerators on next generation reconfigurable manycore architectures. The approach is entitled Just In Time Assembly (JITA) of hardware accelerators. The approach has been defined to allow hardware accelerators to be built and run through software compilation and run time interpretation outside of CAD tools and without requiring each new accelerator to be synthesized. The approach advocates the use of libraries of pre-synthesized components that can be referenced through symbolic links in a similar fashion to dynamically linked software libraries. Synthesis still must occur but is moved out of the application programmers software flow and into the initial coding process that occurs when programming patterns that define a Domain Specific Language (DSL) are first coded. Programmers see no difference between creating software or hardware functionality when using the DSL. A new run time interpreter is introduced to assemble the individual pre-synthesized hardware accelerators that comprise the accelerator functionality within a configurable tile array of partially reconfigurable slots at run time. Quantitative results are presented that compares utilization, performance, and productivity of the approach to what would be achieved by full custom accelerators created through traditional CAD flows using hardware programming models and passing through synthesis

    Run-time reconfigurable, fault-tolerant FPGA systems for space applications

    Get PDF
    Cozzi D. Run-time reconfigurable, fault-tolerant FPGA systems for space applications. Bielefeld: Universität Bielefeld; 2016.The aim of this thesis is to investigate the use of Dynamic Partial Reconfiguration (DPR) on Commercial Off-the-Shelf (COTS) FPGAs in space applications. Reconfigurable systems gained interest in a wide range of application fields, including aerospace, where electronic devices are exposed to a harsh working environment. COTS SRAM-based FPGA devices represent an interesting hardware platform for this kind of systems since they combine low cost with the possibility to utilize state-of-the-art processing power as well as the flexibility of reconfigurable hardware. FPGA architectures have high computational power and thanks to their ability to be reconfigured at run-time, they became interesting candidates for payload processing in space applications. The presented Dynamic Reconfigurable Processing Module (DRPM) has been developed to investigate the use of the DPR approach for satellite payload processing. This scalable platform combines dynamically reconfigurable FPGAs with the required avionic interfaces (e.g., SpaceWire, MIL-STD-1553B, and SpaceFibre). In particular, a novel communication interface has been developed, the Heterogeneous Multi Processor Communication Interface (HMPCI), which allows inter-process communication with small latency and low memory footprint. Current synthesis tools do not support fully the DPR capabilities of FPGAs. Therefore, this thesis introduces INDRA 2.0: an INtegrated Design flow for Reconfigurable Architectures. The key part of INDRA 2.0 is DHHarMa: a Design flow for Homogeneous Hard Macros, which generates homogeneous hard macros for Xilinx FPGAs starting from a high-level description (e.g., VHDL). In particular, the homogeneous DHHarMa router is explained in detail, providing novel terminologies and algorithms, which have enabled the generation of homogeneous routed designs. Results have been shown that Design flow for Homogeneous Hard Macros (DHHarMa) can route homogeneously a communication infrastructure utilizing just between 1% and 31% more resources than the Xilinx router, which cannot provide a homogeneous solution. Furthermore, the permanent faults that can occur on FPGAs have been investigated. This thesis presents OLT(RE)2: an on-line on-demand approach to testing permanent faults induced by radiation in reconfigurable systems used in space missions. The proposed approach relies on a test circuit and custom placer and router. OLT(RE)2 exploits DPR to place the test circuits at run-time. Its goal is to test unprogrammed areas of the FPGA before using them. Experimental results of OLT(RE)2 have shown that is possible to generate, place, and route the test circuits needed to detect on average more than 99 % of the physical wires and on average about 97 % of the programmable interconnection points of a large arbitrary region of the FPGA in a reasonable time. Moreover, the test can be run on the target device without interfering the functional behavior of the system

    Dynamisch partielle Rekonfiguration in fehlertoleranten FPGA-Systemen

    Get PDF
    Korf S. Dynamisch partielle Rekonfiguration in fehlertoleranten FPGA-Systemen. Bielefeld: Universität Bielefeld; 2017.Die Anforderungen an mikroelektronische Systeme steigen kontinuierlich. Rekonfigurierbare Architekturen bieten einen Kompromiss zwischen der Leistungsfähigkeit anwendungsspezifischer Schaltungen (ASICs) und der Flexibilität heutiger Prozessoren. Sogenannte im Feld programmierbare Gatter-Arrays (engl. Field-Programmable Gate Arrays, FPGAs) haben sich hierbei in den letzten Jahrzehnten besonders etabliert. Die Konfigurationsart dynamisch partielle Rekonfiguration (DPR) moderner SRAM-basierter FPGAs verdeutlicht die gewonnene System-Flexibilität. DPR wird in verschiedensten Anwendungsgebieten aus unterschiedlichsten Motivationen heraus eingesetzt. Die Hauptanwendung der DPR ist die Erstellung eines Systems, welches Veränderungen an der Schaltung auf dem FPGA zur Laufzeit erlaubt. Obwohl viele FPGA-Familien bereits seit zwei Jahrzehnten DPR hardwareseitig ermöglichen, ist die Unterstützung durch die Hersteller-Software und insbesondere die Eigenschaften des daraus resultierenden DPR-Systems verbesserungswürdig. Um das Potenzial der verfügbaren Hardware-Flexibilität ausnutzen zu können, wird in dieser Dissertation ein neuer Entwurfsablauf (INDRA 2.0, INtegrated Design Flow for Reconfigurable Architectures) vorgestellt. Dieser Entwurfsablauf ermöglicht die Erstellung eines flexiblen DPR-Systems mit geringem Speicher-, Verwaltungs- und Wartungsaufwand. Für Anwendungen mit Homogenitätsanforderungen wird mit DHHarMa (Design Flow for Homogeneous Hard Macros) ein Entwurfsablauf vorgestellt, der die Transformation eines zunächst inhomogenen Designs in ein homogenes Design ermöglicht. Bei dieser Design-Homogenisierung ergibt sich die Fragestellung nach möglichen Auswirkungen bezüglich des FPGA-Ressourcenbedarfs und der Leistungsfähigkeit durch die einzelnen Homogenisierungsschritte. Die einzelnen DHHarMa-Softwarekomponenten wurden daher detailliert durch verschiedene Bewertungsmaße analysiert. Hierbei konnte festgehalten werden, dass die Homogenisierungsschritte im Mittel einen, teils deutlichen, positiven Einfluss auf den FPGA-Ressourcenbedarf jedoch teils einen geringen negativen Einfluss auf die Leistungsfähigkeit hat. Die verwendete FPGA-Architektur hat hierbei auf beide Größen einen entscheidenden Einfluss. Zusätzlich wird in Anwendungsgebieten mit Strahlungseinfluss die DPR-Funktionalität in Verfahren zur Abschwächung von durch Strahlung induzierten Fehlern eingesetzt. In der Dissertation wird mit der Readback Scrubbing Unit eine Komponente vorgestellt, welche eine Einbitfehlerkorrektur und Zweibitfehlererkennung im FPGA-Konfigurationsspeicher implementiert. Durch integrierte Fehlerstatistikmechanismen wird eine Analyse des Systems zur Laufzeit realisiert. Zusätzlich ist die Erstellung von Readback Scrubbing Schedules möglich, sodass die Fehlererkennung und -korrektur zum einen autonom und zum anderen zur Laufzeit angepasst werden kann. Zusätzlich wird mit OLT(RE)² (On-Line on-demand Testing approach for permanent Radiation Effects in REconfigurable systems) ein Selbsttest für ein SRAM-basiertes FPGA vorgestellt. Dieser Selbsttest ermöglicht zur Systemlaufzeit eine Überprüfung einer FPGA-Fläche vor der Verwendung auf permanente Fehler in den Verdrahtungsressourcen
    corecore