10,888 research outputs found

    Clock tree synthesis for prescribed skew specifications

    Get PDF
    In ultra-deep submicron VLSI designs, clock network layout plays an increasingly important role in determining circuit performance including timing, power consumption, cost, power supply noise and tolerance to process variations. It is required that a clock layout algorithm can achieve any prescribed skews with the minimum wire length and acceptable slew rate. Traditional zero-skew clock routing methods are not adequate to address this demand, since they tend to yield excessive wire length for prescribed skew targets. The interactions among skew targets, sink location proximities and capacitive load balance are analyzed. Based on this analysis, a maximum delay-target ordering merging scheme is suggested to minimize wire and buffer area, which results in lesser cost, power consumption and vulnerability to process variations. During the clock routing, buffers are inserted simultaneously to facilitate a proper slew rate level and reduce wire snaking. The proposed algorithm is simple and fast for practical applications. Experimental results on benchmark circuits show that the algorithm can reduce the total wire and buffer capacitance by 60% over an extension of the existing zero-skew routing method

    Desynchronization: Synthesis of asynchronous circuits from synchronous specifications

    Get PDF
    Asynchronous implementation techniques, which measure logic delays at run time and activate registers accordingly, are inherently more robust than their synchronous counterparts, which estimate worst-case delays at design time, and constrain the clock cycle accordingly. De-synchronization is a new paradigm to automate the design of asynchronous circuits from synchronous specifications, thus permitting widespread adoption of asynchronicity, without requiring special design skills or tools. In this paper, we first of all study different protocols for de-synchronization and formally prove their correctness, using techniques originally developed for distributed deployment of synchronous language specifications. We also provide a taxonomy of existing protocols for asynchronous latch controllers, covering in particular the four-phase handshake protocols devised in the literature for micro-pipelines. We then propose a new controller which exhibits provably maximal concurrency, and analyze the performance of desynchronized circuits with respect to the original synchronous optimized implementation. We finally prove the feasibility and effectiveness of our approach, by showing its application to a set of real designs, including a complete implementation of the DLX microprocessor architectur

    Cloaking the Clock: Emulating Clock Skew in Controller Area Networks

    Full text link
    Automobiles are equipped with Electronic Control Units (ECU) that communicate via in-vehicle network protocol standards such as Controller Area Network (CAN). These protocols are designed under the assumption that separating in-vehicle communications from external networks is sufficient for protection against cyber attacks. This assumption, however, has been shown to be invalid by recent attacks in which adversaries were able to infiltrate the in-vehicle network. Motivated by these attacks, intrusion detection systems (IDSs) have been proposed for in-vehicle networks that attempt to detect attacks by making use of device fingerprinting using properties such as clock skew of an ECU. In this paper, we propose the cloaking attack, an intelligent masquerade attack in which an adversary modifies the timing of transmitted messages in order to match the clock skew of a targeted ECU. The attack leverages the fact that, while the clock skew is a physical property of each ECU that cannot be changed by the adversary, the estimation of the clock skew by other ECUs is based on network traffic, which, being a cyber component only, can be modified by an adversary. We implement the proposed cloaking attack and test it on two IDSs, namely, the current state-of-the-art IDS and a new IDS that we develop based on the widely-used Network Time Protocol (NTP). We implement the cloaking attack on two hardware testbeds, a prototype and a real connected vehicle, and show that it can always deceive both IDSs. We also introduce a new metric called the Maximum Slackness Index to quantify the effectiveness of the cloaking attack even when the adversary is unable to precisely match the clock skew of the targeted ECU.Comment: 11 pages, 13 figures, This work has been accepted to the 9th ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS

    Radiation safety based on the sky shine effect in reactor

    Get PDF
    In the reactor operation, neutrons and gamma rays are the most dominant radiation. As protection, lead and concrete shields are built around the reactor. However, the radiation can penetrate the water shielding inside the reactor pool. This incident leads to the occurrence of sky shine where a physical phenomenon of nuclear radiation sources was transmitted panoramic that extends to the environment. The effect of this phenomenon is caused by the fallout radiation into the surrounding area which causes the radiation dose to increase. High doses of exposure cause a person to have stochastic effects or deterministic effects. Therefore, this study was conducted to measure the radiation dose from sky shine effect that scattered around the reactor at different distances and different height above the reactor platform. In this paper, the analysis of the radiation dose of sky shine effect was measured using the experimental metho

    Automated performance evaluation of skew-tolerant clocking schemes

    Get PDF
    In this paper the authors evaluate the timing and power performance of three skew-tolerant clocking schemes. These schemes are the well known master–slave clocking scheme (MS) and two schemes developed by the authors: Parallel alternating latches clocking scheme (PALACS) and four-phase parallel alternating latches clocking scheme (four-phase PALACS). In order to evaluate the timing performance, the authors introduce algorithms to obtain the clock waveforms required by a synchronous sequential circuit. Separated algorithms were developed for every clocking scheme. From these waveforms it is possible to get parameters such as the non-overlapping time and the clock period. They have been implemented in a tool and have been used to compare the timing performance of the clocking schemes applied to a simple circuit. To analyse the power consumption the authors have electrically simulated a simple circuit for several operation frequencies. The most remarkable conclusion is that it is possible to save about 50% of the power consumption of the clock distribution network by using PALACS.Ministerio de Ciencia y Tecnología TEC 2004-00840/MI

    Modeling of thermally induced skew variations in clock distribution network

    Get PDF
    Clock distribution network is sensitive to large thermal gradients on the die as the performance of both clock buffers and interconnects are affected by temperature. A robust clock network design relies on the accurate analysis of clock skew subject to temperature variations. In this work, we address the problem of thermally induced clock skew modeling in nanometer CMOS technologies. The complex thermal behavior of both buffers and interconnects are taken into account. In addition, our characterization of the temperature effect on buffers and interconnects provides valuable insight to designers about the potential impact of thermal variations on clock networks. The use of industrial standard data format in the interface allows our tool to be easily integrated into existing design flow
    corecore