124 research outputs found

    CMOS VLSI circuits for imaging

    Get PDF

    EIE: Efficient Inference Engine on Compressed Deep Neural Network

    Full text link
    State-of-the-art deep neural networks (DNNs) have hundreds of millions of connections and are both computationally and memory intensive, making them difficult to deploy on embedded systems with limited hardware resources and power budgets. While custom hardware helps the computation, fetching weights from DRAM is two orders of magnitude more expensive than ALU operations, and dominates the required power. Previously proposed 'Deep Compression' makes it possible to fit large DNNs (AlexNet and VGGNet) fully in on-chip SRAM. This compression is achieved by pruning the redundant connections and having multiple connections share the same weight. We propose an energy efficient inference engine (EIE) that performs inference on this compressed network model and accelerates the resulting sparse matrix-vector multiplication with weight sharing. Going from DRAM to SRAM gives EIE 120x energy saving; Exploiting sparsity saves 10x; Weight sharing gives 8x; Skipping zero activations from ReLU saves another 3x. Evaluated on nine DNN benchmarks, EIE is 189x and 13x faster when compared to CPU and GPU implementations of the same DNN without compression. EIE has a processing power of 102GOPS/s working directly on a compressed network, corresponding to 3TOPS/s on an uncompressed network, and processes FC layers of AlexNet at 1.88x10^4 frames/sec with a power dissipation of only 600mW. It is 24,000x and 3,400x more energy efficient than a CPU and GPU respectively. Compared with DaDianNao, EIE has 2.9x, 19x and 3x better throughput, energy efficiency and area efficiency.Comment: External Links: TheNextPlatform: http://goo.gl/f7qX0L ; O'Reilly: https://goo.gl/Id1HNT ; Hacker News: https://goo.gl/KM72SV ; Embedded-vision: http://goo.gl/joQNg8 ; Talk at NVIDIA GTC'16: http://goo.gl/6wJYvn ; Talk at Embedded Vision Summit: https://goo.gl/7abFNe ; Talk at Stanford University: https://goo.gl/6lwuer. Published as a conference paper in ISCA 201

    Self-sustaining Ultra-wideband Positioning System for Event-driven Indoor Localization

    Full text link
    Smart and unobtrusive mobile sensor nodes that accurately track their own position have the potential to augment data collection with location-based functions. To attain this vision of unobtrusiveness, the sensor nodes must have a compact form factor and operate over long periods without battery recharging or replacement. This paper presents a self-sustaining and accurate ultra-wideband-based indoor location system with conservative infrastructure overhead. An event-driven sensing approach allows for balancing the limited energy harvested in indoor conditions with the power consumption of ultra-wideband transceivers. The presented tag-centralized concept, which combines heterogeneous system design with embedded processing, minimizes idle consumption without sacrificing functionality. Despite modest infrastructure requirements, high localization accuracy is achieved with error-correcting double-sided two-way ranging and embedded optimal multilateration. Experimental results demonstrate the benefits of the proposed system: the node achieves a quiescent current of 47 nA47~nA and operates at 1.2 μA1.2~\mu A while performing energy harvesting and motion detection. The energy consumption for position updates, with an accuracy of 40 cm40~cm (2D) in realistic non-line-of-sight conditions, is 10.84 mJ10.84~mJ. In an asset tracking case study within a 200 m2200~m^2 multi-room office space, the achieved accuracy level allows for identifying 36 different desk and storage locations with an accuracy of over 95 %95~{\%}. The system`s long-time self-sustainability has been analyzed over 700 days700~days in multiple indoor lighting situations

    Implementing an Integrated Signaling and Power Distribution Control System for Remotely Located Devices

    Get PDF
    A system was designed and implemented that combined the distribution of high-current power with a digital control signal over a common conductor. Two different versions of this system were implemented. Initially, a design based on of commercially available parts was created and tested to prove that the concept of combining communications and power is valid. The resulting design was then miniaturized to show that the system might be combined onto a single integrated circuit. In the miniaturization process, some circuit blocks were redesigned to take advantage of the flexibility provided by ASIC designs. Both the proof of concept and the VLSI implementations were completely designed, implemented, and fully tested. It was shown that the system can be miniaturized. The miniaturization provided the advantages of smaller overall implementation size and higher reliability due to decreased part count. The disadvantage of the miniaturization process was that the design became fixed once it was fabricated in silicon

    The Large Array Survey Telescope -- System Overview and Performances

    Full text link
    The Large Array Survey Telescope (LAST) is a wide-field visible-light telescope array designed to explore the variable and transient sky with a high cadence. LAST will be composed of 48, 28-cm f/2.2 telescopes (32 already installed) equipped with full-frame backside-illuminated cooled CMOS detectors. Each telescope provides a field of view (FoV) of 7.4 deg^2 with 1.25 arcsec/pix, while the system FoV is 355 deg^2 in 2.9 Gpix. The total collecting area of LAST, with 48 telescopes, is equivalent to a 1.9-m telescope. The cost-effectiveness of the system (i.e., probed volume of space per unit time per unit cost) is about an order of magnitude higher than most existing and under-construction sky surveys. The telescopes are mounted on 12 separate mounts, each carrying four telescopes. This provides significant flexibility in operating the system. The first LAST system is under construction in the Israeli Negev Desert, with 32 telescopes already deployed. We present the system overview and performances based on the system commissioning data. The Bp 5-sigma limiting magnitude of a single 28-cm telescope is about 19.6 (21.0), in 20 s (20x20 s). Astrometric two-axes precision (rms) at the bright-end is about 60 (30)\,mas in 20\,s (20x20 s), while absolute photometric calibration, relative to GAIA, provides ~10 millimag accuracy. Relative photometric precision, in a single 20 s (320 s) image, at the bright-end measured over a time scale of about 60 min is about 3 (1) millimag. We discuss the system science goals, data pipelines, and the observatory control system in companion publications.Comment: Submitted to PASP, 15p

    Nano-Watt Modular Integrated Circuits for Wireless Neural Interface.

    Full text link
    In this work, a nano-watt modular neural interface circuit is proposed for ECoG neuroprosthetics. The main purposes of this work are threefold: (1) optimizing the power-performance of the neural interface circuits based on ECoG signal characteristics, (2) equipping a stimulation capability, and (3) providing a modular system solution to expand functionality. To achieve these aims, the proposed system introduces the following contributions/innovations: (1) power-noise optimization based on the ECoG signal driven analysis, (2) extreme low-power analog front-ends, (3) Manchester clock-edge modulation clock data recovery, (4) power-efficient data compression, (5) integrated stimulator with fully programmable waveform, (6) wireless signal transmission through skin, and (7) modular expandable design. Towards these challenges and contributions, three different ECoG neural interface systems, ENI-1, ENI-16, and ENI-32, have been designed, fabricated, and tested. The first ENI system(ENI-1) is a one-channel analog front-end and fabricated in a 0.25µm CMOS process with chopper stabilized pseudo open-loop preamplifier and area-efficient SAR ADC. The measured channel power, noise and area are 1.68µW at 2.5V power-supply, 1.69µVrms (NEF=2.43), and 0.0694mm^2, respectively. The fabricated IC is packaged with customized miniaturized package. In-vivo human EEG is successfully measured with the fabricated ENI-1-IC. To demonstrate a system expandability and wireless link, ENI-16 IC is fabricated in 0.25µm CMOS process and has sixteen channels with a push-pull preamplifier, asynchronous SAR ADC, and intra-skin communication(ISCOM) which is a new way of transmitting the signal through skin. The measured channel power, noise and area are 780nW, 4.26µVrms (NEF=5.2), and 2.88mm^2, respectively. With the fabricated ENI-16-IC, in-vivo epidural ECoG from monkey is successfully measured. As a closed-loop system, ENI-32 focuses on optimizing the power performance based on a bio-signal property and integrating stimulator. ENI-32 is fabricated in 0.18µm CMOS process and has thirty-two recording channels and four stimulation channels with a cyclic preamplifier, data compression, asymmetric wireless transceiver (Tx/Rx). The measured channel power, noise and area are 140nW (680nW including ISCOM), 3.26µVrms (NEF=1.6), and 5.76mm^2, respectively. The ENI-32 achieves an order of magnitude power reduction while maintaining the system performance. The proposed nano-watt ENI-32 can be the first practical wireless closed-loop solution with a practically miniaturized implantable device.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/98064/1/schang_1.pd

    Single-chip CMOS tracking image sensor for a complex target

    Get PDF

    Design, construction and operation of the ProtoDUNE-SP Liquid Argon TPC

    Full text link
    The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber (LArTPC) that was constructed and operated in the CERN North Area at the end of the H4 beamline. This detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment (DUNE), which will be constructed at the Sandford Underground Research Facility (SURF) in Lead, South Dakota, USA. The ProtoDUNE-SP detector incorporates full-size components as designed for DUNE and has an active volume of 7×6×7.27\times 6\times 7.2~m3^3. The H4 beam delivers incident particles with well-measured momenta and high-purity particle identification. ProtoDUNE-SP's successful operation between 2018 and 2020 demonstrates the effectiveness of the single-phase far detector design. This paper describes the design, construction, assembly and operation of the detector components
    corecore