98 research outputs found

    Model-checking Timed Temporal Logics

    Get PDF
    AbstractIn this paper, we present several timed extensions of temporal logics, that can be used for model-checking real-time systems. We give different formalisms and the corresponding decidability/complexity results. We also give intuition to explain these results

    Weak Alternating Timed Automata

    Full text link
    Alternating timed automata on infinite words are considered. The main result is a characterization of acceptance conditions for which the emptiness problem for these automata is decidable. This result implies new decidability results for fragments of timed temporal logics. It is also shown that, unlike for MITL, the characterisation remains the same even if no punctual constraints are allowed

    Parameterized Model-Checking for Timed-Systems with Conjunctive Guards (Extended Version)

    Full text link
    In this work we extend the Emerson and Kahlon's cutoff theorems for process skeletons with conjunctive guards to Parameterized Networks of Timed Automata, i.e. systems obtained by an \emph{apriori} unknown number of Timed Automata instantiated from a finite set U1,,UnU_1, \dots, U_n of Timed Automata templates. In this way we aim at giving a tool to universally verify software systems where an unknown number of software components (i.e. processes) interact with continuous time temporal constraints. It is often the case, indeed, that distributed algorithms show an heterogeneous nature, combining dynamic aspects with real-time aspects. In the paper we will also show how to model check a protocol that uses special variables storing identifiers of the participating processes (i.e. PIDs) in Timed Automata with conjunctive guards. This is non-trivial, since solutions to the parameterized verification problem often relies on the processes to be symmetric, i.e. indistinguishable. On the other side, many popular distributed algorithms make use of PIDs and thus cannot directly apply those solutions

    LNCS

    Get PDF
    We provide a procedure for detecting the sub-segments of an incrementally observed Boolean signal ω that match a given temporal pattern ϕ. As a pattern specification language, we use timed regular expressions, a formalism well-suited for expressing properties of concurrent asynchronous behaviors embedded in metric time. We construct a timed automaton accepting the timed language denoted by ϕ and modify it slightly for the purpose of matching. We then apply zone-based reachability computation to this automaton while it reads ω, and retrieve all the matching segments from the results. Since the procedure is automaton based, it can be applied to patterns specified by other formalisms such as timed temporal logics reducible to timed automata or directly encoded as timed automata. The procedure has been implemented and its performance on synthetic examples is demonstrated

    Logic-based schedulability analysis for compositional hard real-time embedded systems

    Get PDF
    This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in SIGBED Review, VOL.12, ISS.1, http://doi.acm.org/10.1145/2752801.2752808Over the past decades several approaches for schedu- lability analysis have been proposed for both uniprocessor and multi-processor real-time systems. Although different techniques are employed, very little has been put forward in using formal specifications, with the consequent possibility for misinterpretations or ambiguities in the problem statement. Using a logic based approach to schedulability analysis in the design of hard real-time systems eases the synthesis of correct-by- construction procedures for both static and dynamic verification processes. In this paper we propose a novel approach to schedulability analysis based on a timed temporal logic with time durations. Our approach subsumes classical methods for uniprocessor scheduling analysis over compositional resource models by providing the developer with counter-examples, and by ruling out schedules that cause unsafe violations on the system. We also provide an example showing the effectiveness of our proposal.This work was partially supported by National Funds through FCT (Portuguese Foundation for Science and Technology) and by ERDF (European Regional Development Fund) through COMPETE (Operational Programme ’Thematic Fac- tors of Competitiveness’), within projects Ref. FCOMP-01- 0124-FEDER-022701 (CISTER), FCOMP-01-0124-FEDER- 015006 (VIPCORE) and FCOMP-01-0124-FEDER-020486 (AVIACC)

    A compositional monitoring framework for hard real-time systems

    Get PDF
    Runtime Monitoring of hard real-time embedded systems is a promising technique for ensuring that a running system respects timing constraints, possibly combined with faults originated by the software and/or hardware. This is particularly important when we have real-time embedded systems made of several components that must combine different levels of criticality, and different levels of correctness requirements. This paper introduces a compositional monitoring framework coupled with guarantees that include time isolation and the response time of a monitor for a predicted violation. The kind of monitors that we propose are automatically generated by synthesizing logic formulas of a timed temporal logic, and their correctness is ensured by construction.This work was partially supported by National Funds through FCT (Portuguese Foundation for Science and Technology) and by ERDF (European Regional Development Fund) through COMPETE (Operational Programme ’Thematic Factors of Competitiveness’), within projects Ref. FCOMP-01-0124-FEDER-022701 (CISTER), FCOMP-01-0124- FEDER-015006 (VIPCORE) and FCOMP-01-0124-FEDER-020486 (AVIACC)

    Forthcoming Papers

    Get PDF

    Specification Patterns for Time-Related Properties

    Get PDF
    We present a pattern system for property specification. It extends the existing patterns identified in [4] which allow to reason about occurrence and order of events, but not about time conditions. Introducing time-related patterns allows the specification of real-time requirements. The paper is limited to 3 pages. Therefore it contains only basic ideas. The details can be found in [9]
    corecore